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Introduction

Modern mathematics presents a large number of abstract notions and sophisticated
constructions. It is enough to mention two branches of mathematics - topology and
algebra - to see how they compete in inventing and formulating more and more
complicated notions and general concepts. For instance, in topology many classes
of spaces remote from our everyday intuitions are defined and investigated. Also in
algebra we may point to categories and functors with their numerous diagrams to
see how abstract objects we deal with.

However, we shall not make a big mistake if we state that the real line R still re-
mains the fundamental object for the whole mathematics. Notice that it is equipped
with three basic mathematical structures - ordering, topologic and algebraic struc-
tures - and is used as an initial model for further constructions and investigations.
Evidently, the real line is placed in the center of modern mathematical analysis and
its various applications.

It is worth reminding here how several problems and questions from the classical
mathematical analysis unavoidably brought the nineteen century mathematicians
to the study of different subsets of R (for example, to the study of the set of con-
vergence points of a given sequence of functions, or to the study of the set of points
at which a given function has a derivative). Moreover, the complexity of some
problems from analysis implied complication of the structure of the considered sets.
Qualitative changes took place by the end of the nineteenth century, when there
appeared Cantor’s idea, concerning both the general theory of infinite sets and the
theory of point-sets. Essentially new constructions, which gave entirely different
point-sets, having no analogs in mathematical analysis of previous times, were car-
ried (for instance, it is enough to mention the construction of the famous Cantor
discontinuum on R). At the beginning of the twentieth century, with the appear-
ance of the theory of real functions which originated from the works of three French
classicists - Baire, Borel and Lebesgue - still new families of subsets of R constructed
with complicated methods became the subject of investigations. Such sets turned
out to be very useful for solving several important problems and questions from
analysis. Finally, the first reasoning which used uncountable forms of the Axiom
of Choice has brought new subsets of R with a more complicated and sophisticated
nature. These sets, too, have gradually become objects of intense study.

At present we posses a rather developed theory of subsets of the real line. This
theory helps us to see the structure of R more deeply. Of course, when we study
subsets of the real line it is convenient to classify them with respect to some com-
mon properties. For instance, instead of studying one particular first category set
on R it is sometimes better to focus on the whole ideal of first category sets and
investigate the properties of this ideal. The same remark may be applied to the
sets of Lebesgue measure zero and to many other ideals containing small subsets of
the real line. We do not mention the ideals of the first category sets and Lebesgue
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measure zero sets accidentally. A large number of very deep analogies between these
ideals can be observed. Moreover, the similarity between the category and measure
can also be noticed in considerations of two fundamental σ-algebras of subsets of
R: namely, the σ-algebra of sets with the Baire property and the σ-algebra of sets
measurable in the Lebesgue sense. It is worth remarking here that one of the most
important properties of these algebras is the so called countable chain condition
from which the completeness of the appropriate quotient algebras follows. This fact
plays an essential role in constructing various special models of set theory.

In our book we consider both a variety of remarkable subsets of the real line and
certain interesting classes of subsets of R .

For the reader’s convenience we try to present the material in a comprehensive
and detailed form. For this reason the first part of the book has a more general
character and contains a large number of basic facts from set theory, topology, de-
scriptive set theory and measure theory. After these preliminary facts we consider
some structural properties of R and then give detailed constructions of some im-
portant classical subsets of R . Among them there are the Cantor discontinuum
mentioned above, a Lebesgue measurable set which together with its complement
intersects every non-empty open interval on a set of strictly positive measure, a
Vitali non-measurable set, a Hamel basis for R, a totally imperfect Bernstein set, a
Luzin set, a Sierpiński set and so on. In this part of the book we begin the study
of first category sets and Lebesgue measure zero sets and discuss not only analogies
between category and measure but also some essential differences between them.
Besides, we present here an important result of Choquet, namely, the Choquet the-
orem on capacities with several applications.

The second part of our book is devoted to more recent and technically more
complicated constructions of subsets of the real line. We start with deeper infor-
mation from set theory: we discuss axioms of set theory, forcing techniques and
absoluteness of various formulas. Basing on these concepts we continue investiga-
tions and study, as before, of properties of individual subsets of the real line as well
as properties of certain special classes of subsets of R . We present Mycielski’s two
theorems concerning measure and category in the product space and Mokobodzki’s
one theorem about essential difference between measure and category. Then we give
some applications of these results to the subsets of R . Further, we consider more
thoroughly the ideal of first category sets , the ideal of Lebesgue measure zero sets
and the appropriate σ-algebras: of sets with the Baire property and of the Lebesgue
measurable sets. Our main purpose here is to describe some cardinal-valued func-
tions (characteristics) related to the classes of sets mentioned above and to some
other auxiliary classes. In particular, we demonstrate how these cardinal-valued
characteristics behave and change in different models of set theory. Among other
results presented in this part worth noticing are: Kunen’s theorem on the existence
of a Lebesgue non-measurable set in R with cardinality less than the cardinality
of continuum, provided the cardinality of continuum is a real-valued measurable
cardinal and related, stronger results; Raisonnier’s theorem on the existence (with-
out uncountable forms of the Axiom of Choice) of Lebesgue non-measurable subset
of R, provided the first uncountable cardinal is comparable to the cardinality of
continuum.

The book ends with three appendices. The first one contains some fundamen-
tal facts from infinitary combinatorics which have numerous applications in general
topology and analysis. The second one is devoted to the proof of two basic theorems
from measure theory: Maharam’s theorem on representation of Boolean algebras
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with measures and von Neumann’s theorem on the existence of a multiplicative
lifting. The last appendix contains a few results on measurable selectors such as,
e.g., the famous Kuratowski - Ryll–Nardzewski theorem, and some applications of
these results.

We will end our book with historical remarks about authors of some results and
thorems presented in the main text an exercises.

Finally, let us notice that the present book includes a large number of various
exercises. One can meet here exercises of a standard type but there are many
original and rather difficult exercises, too. We recommend these exercises to the
reader even if he is not going to solve them. We can say that the reader will get
a possibility to gain additional information about the subject of this book, if he
sometimes looks through these exercises.
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Chapter 1

Preliminary Facts from Set
Theory

In this Chapter we fix the notation and introduce some elementary facts from set
theory which we need in Part 1 of our book.

Our presentation is done in the so called ”naive set theory” however, this is
actually the theory that is commonly used by the mathematicians. This kind of
treatment allows us to present several basic definitions and facts about ordinals,
cardinals, infinitary combinatorics and some extra axioms of set theory without
getting too deeply into the logical structure of these notions.

The most popular system of axioms of set theory is the so called Zermelo-Fra-
enkel set theory usually denoted by ZF. The basic notions of this theory are sets
and the membership relation denoted by ∈. Theory ZF consists of several axioms
which formalize properties of sets in terms of relation ∈. In this Chapter we are
not going to present a full list of these axioms since, as stated above, we shall work
in the naive set theory, which is sufficient for most of our purposes in Part 1 of
this book. A construction of the formal Zermelo-Fraenkel axiomatic system will be
discussed in Chapter 1 of Part 2 of the book.

Until now it is unknown whether theory ZF is consistent. In other words, we do
not know if it is possible to deduce a logically false statement from the axioms of
ZF. This explains why the notion of relative consistency is used in a lot of results
of the modern set theory. However, we believe that theory ZF is consistent and we
shall tactically assume this in our book.

In our considerations we shall apply standard notations and terminology com-
monly used in many branches of mathematics. However, we shall briefly recall some
of these notations.

We constantly use the following logical symbols

¬, ∨, &, →, ←→, ∃, ∀,

which we expect to be well-known to the reader.
The empty set will be denoted by ∅. The set of all elements x of a given set X

such that the condition φ(x) holds, will be denoted by

{x ∈ X : φ(x)}.

We write Y ⊆ X, if Y is a subset of X. We will use the standard notations ∪
and ∩ for unions and intersections of the families of sets. We say that two sets X
and Y are disjoint if X ∩ Y = ∅.
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The difference between two sets X and Y will be denoted by X \ Y . The
symmetric difference between sets X and Y will be denoted by X M Y , i.e.

X M Y = (X \ Y ) ∪ (Y \X).

We denote the power set of a set X, i.e. the set of all subsets of X, by P (X).
The ordered pair of x and y is denoted by (x, y). Recall that

(x, y) = {{x}, {x, y}}.

The ordered n-tuple (x1 . . . xn) is a natural generalization of the notion of an
ordered pair and is defined by an easy recursion. The Cartesian product X × Y
of two sets X and Y is the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y .
Analogously, X1 × · · · ×Xn is the set of all n-tuples (x1, · · · , xn) such that

xi ∈ Xi(i = 1, . . . , n).

A binary relation is any set of ordered of ordered pairs. If Φ is a binary
relation then we put

pr1(Φ) = {x : (∃y)((x, y) ∈ Φ)},

pr2(Φ) = {y : (∃x)(x, y) ∈ Φ)},

Φ−1 = {(x, y) : (y, x) ∈ Φ}.

If Ψ is another binary relation, then we put

Ψ ◦ Φ = {(x, z) : (∃y)((x, y) ∈ Φ & (y, z) ∈ Ψ)}.

If for Φ we have the inclusion Φ ⊆ X×Y , then we say that Φ is a binary relation
between elements of sets X and Y . Moreover, if X = Y then we say that Φ is a
binary relation on X. The important example of a binary relation on a given set
X is any equivalence relation on this set, i.e. a binary relation Φ on X which
satisfies the following three conditions:

{(x, x) : x ∈ X} ⊆ Φ,

Φ−1 = Φ,

Φ ◦ Φ = Φ.

We will treat a function (a mapping) as a special binary relation f satisfying
the following condition:

((x, y) ∈ f & (x, y′) ∈ f)→ (y = y′).

For any function f and any pair (x, y) ∈ f we will write y = f(x) and say that y
is the value of f on an element x. We will say that f is a function defined on X
if X = pr1(f). In such a case we also write X = dom(f) and say that X is the
domain of f . The set pr2(f) is called the range of f . As a rule we denote the
range of f by the symbol ran(f).

A function f defined on a set X is into a set Y if ran(f) ⊆ Y . In such a case
we write

f : X → Y

and say that f is a mapping fromX into Y . Sometimes we will also use the following
notation:

x→ f(x) (x ∈ dom(f)).
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We say that a mapping f : X → Y is an injection if

(∀x ∈ X)(∀y ∈ X)(x 6= y → f(x) 6= f(y)).

We say that a mapping f : X → Y is a surjection if Y = f(X) and, finally, we
say that f is a bijection if f is both an injection and a surjection.

The restriction of a function f : X → Y to a set A ⊆ X is denoted by f | A.
We will denote the set of all functions from X into Y by Y X .

An indexed family of sets (Xi)i∈I is a function with domain I such that its
value on every i ∈ I is Xi. In the usual way we define the union

⋃
i∈I Xi and the

intersection
⋂

i∈I Xi of this family. The Cartesian product of a family (Xi)i∈I ,
denoted

∏
i∈I Xi, is the set of all mappings f from I into

⋃
i∈I Xi such that for

each i ∈ I we have f(i) ∈ Xi.
A partial ordering on a set X is a binary relation � contained in X×X which

is reflexive (i.e. x � x for all x ∈ X), transitive (i.e. x � y and y � z imply
x � z) and weakly antisymmetric (i.e. x � y and y � x imply x = y). If x ∈ X,
y ∈ X and x � y, then we sometimes say that y is above x. Sometimes instead of
x � y it is more convenient to write y � x.

Let X be a set partially ordered by �. The pair (X,�) is called a partially
ordered set. In some considerations it is convenient to use the strict ordering ≺
instead of �. Of course, we define the strict ordering in the usual way as follows

x ≺ y ←→ (x � y & x 6= y).

An element x from the partially ordered set (X,�) is called maximal in X if

(∀y ∈ X)(y � x→ x = y).

An element x from the partially ordered set (X,�) is called minimal in X if

(∀y ∈ X)(y � x→ x = y).

For any two elements a, b from the partially ordered set (X,�) we put:

]a, b[= {x ∈ X : a ≺ x ≺ b},

[a, b[= {x ∈ X : a � x ≺ b},

]a, b] = {x ∈ X : a ≺ x � b},

[a, b] = {x ∈ X : a � x � b}.

A partial ordering � on a set X is linear if it is connected (i.e. x � y or y � x
for any x, y ∈ X).

Any subset of a partially ordered set (X,�) linearly ordered by � will be called
a chain in X. A set Y ⊆ X is called an antichain in X if any two distinct elements
from Y are incomparable with respect to �, i.e.

(∀x ∈ Y )(∀y ∈ Y ) (x 6= y → (¬(x � y) & ¬(y � x))) .

A set (X,�) is well ordered by � if each non-empty subset Y of X has the
least element y ∈ Y , i.e.

(∀z ∈ Y )(y � z).

Ordinal numbers (or simply ordinals) are sometimes defined as the isomor-
phism types of well ordered sets. We prefer another, more convenient for us, way.
We define an ordinal number as any set α satisfying the following two conditions:

1) α is transitive, i.e.
⋃
α ⊆ α;
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2) α is well ordered by the relation

{(x, y) ∈ α× α : x = y ∨ x ∈ y}.

If α and β are ordinals, then we write α < β if α ∈ β. It is easy to check that

α ⊆ β ←→ (α ∈ β ∨ α = β).

It is clear that the empty set ∅ is an ordinal which is also denoted by the usual
symbol 0. By the method of transfinite induction it is not difficult to prove that for
any ordinal α the equality

α = {ξ : ξ < α}

holds. The above definition of ordinal numbers seems to be a bit artificial but it
simplifies the notation and many considerations. Moreover, this definition shows us
that ordinal numbers are concrete mathematical objects which can be constructed
recursively beginning from the empty set. Extending this idea we may also assert
that all sets can be constructed recursively starting with the empty set (in this way
we obtain the so called von Neumann Universe, which will be discussed in detail
in Part 2 of the book).

Of course, one can prove that every well ordered set is isomorphic with an ordinal
in our sense. Hence, ordinal numbers defined as above are the canonical members
of the equivalence classes of isomorphism types of well ordered sets. Let us recall
to the reader that for any two well ordered sets one (of them) is isomorphic with an
initial segment of the second one. From these facts we immediately deduce that the
relation ∈ is a well ordering on the class of all ordinals (more precisely, the relation
∈ is a well ordering on any set of ordinals).

If α is an ordinal and α =
⋃
α, then we say that α is a limit ordinal. Notice

that if an ordinal α is not a limit ordinal, then we have α = β∪{β} for some ordinal
β. In this case we write α = β+1 and call α a successor ordinal number or (more
exactly) the successor of β.

Addition and multiplication of ordinals are defined by the method of transfinite
recursion. Namely, for addition we have

1) α+ 0 = α,

2) α+ (β + 1) = (α+ β) + 1,

3) α+ λ =
⋃

ζ<λ(α+ ζ), for limit ordinal λ.

Respectively, for multiplication we have

1) α · 0 = 0,

2) α · (β + 1) = α · β + α,

3) α · λ =
⋃

ζ<λ α · ζ, for limit ordinal λ.

We denote the least infinite ordinal number by ω (or by ω0). This ordinal will
be usually identified with the set N of all natural numbers. Any ordinal α can be
uniquely represented in the form

α = β + n,

where β is a limit ordinal and n < ω. If in this representation n is an odd natural
number, then α is called an odd ordinal. If n is an even natural number, then α
is called an even ordinal. In particular, all limit ordinals are even ordinals.
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Ordinal numbers are very useful in a lot of fields of modern mathematics, es-
pecially when the method of transfinite induction or transfinite recursion must be
used. Strong results can be obtained if we assume that any set of objects may be
well ordered. This is guaranteed by the famous Axiom of Choice. An equivalent
version of the Axiom of Choice is the following sentence:

for every set X there exists a bijection from X onto some ordinal.

The Axiom of Choice is denoted by AC. The famous result of Gödel says that
theory (ZF) & (AC) is consistent. To establish this result Gödel distinguished
from the von Neumann Universe a certain subclass of sets, which is now called the
Constructible Universe, and showed that in this class all axioms of theory (ZF)
& (AC) hold. The second important result is due to Cohen, who proved that theory
(ZF) & (¬ AC) is also consistent. To construct a required universe Cohen used
an essentially different technique which is known now as the method of forcing.
These two results say together that the Axiom of Choice is independent of theory
ZF.

Theory (ZF) & (AC) is usually denoted by ZFC. In this book we shall use
theory ZFCmainly. Only few, specially interesting results will be formulated in
theory ZF and we shall stress these parts of considerations separately.

The Axiom of Choice is commonly used in most branches of mathematics. For
example, it is even used in the classical proof of the equivalence of two definitions
of continuous functions from the real line into the real line. One of these definitions
is due to Cauchy and the other to Heine. It is worth remarking here that in the
proof of the equivalence of these two definitions we need only some weak version of
AC.

At present a lot of equivalent formulations of the Axiom of Choice are known.
Probably the simplest one is the following :

the Cartesian product of any family of non-empty sets is also non-empty.

But the most usual form of AC is known as the Zorn Lemma (proved, in fact,
several years before Zorn by Kuratowski). The formulation of the Zorn lemma is
the following:

Let (X,�) be a partially ordered set such that for each chain Y ⊆ X
there exists an element x ∈ X which is above all elements from Y ; then
X has a maximal element.

As we have already said, the Axiom of Choice implies that any given set X
can be bijectively mapped onto some ordinal. Therefore, it is natural to define the
cardinality of a set X as the least ordinal α such that there exists a bijection
from X onto α. Equivalently, the cardinality of X is the least order-type of all well-
orderings on X. The cardinality of a set X is denoted by card(X) (in contemporary
works on set theory more popular is the notation |X|).

We start the discussion about cardinal arithmetic with one useful result which
will have a lot of further applications.

Theorem 1.1 (Banach) Suppose that X, Y are two sets and that

f : X → Y, g : Y → X

are two injections. Then the sets X and Y can be represented as disjoint unions

X = X1 ∪X2, Y = Y1 ∪ Y2
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in such a way that the functions

f | X1 : X1 → Y1, g | Y2 : Y2 → X2

are bijections.

Proof. Let φ : P (X)→ P (X) be a mapping defined by the formula

φ(Z) = X \ g(Y \ f(Z)),

where Z ∈ P (X). It is easy to check that for any family (Zi)i∈I of subsets of X the
equality

φ(
⋃
i∈I

Zi) =
⋃
i∈I

φ(Zi)

holds. Let us denote
A = ∅ ∪ φ(∅) ∪ φ2(∅) ∪ φ3(∅) · · ·

and observe that
φ(A) = A.

So we have
A = X \ g(Y \ f(A)), X \A = g(Y \ f(A)).

Thus, we may put

X1 = A, X2 = X \A, Y1 = f(A), Y2 = Y \ f(A).

The Banach theorem is proved.

We want to pay the reader’s attention not only to the theorem just proved but
also to the method of the proof. It will be important for us that the constructed
sets X1 , X2 , Y1 and Y2 are obtained, applying functions f and g, by taking images,
differences of sets and countable unions of sets. Moreover, the proof of the Banach
theorem was done effectively, i.e. without the use of the Axiom of Choice, so this
theorem was proved in theory ZF.

From Theorem 1 we easily get the classical Cantor theorem, which says that if
there are injections f : X → Y and g : Y → X, then there exists a bijection between
X and Y . The Cantor theorem (called also the Cantor - Bernstein theorem) is the
basic fact of the theory of cardinal numbers and is one of the few important results
about cardinalities which can be proved without the Axiom of Choice.

We say that an ordinal α is a cardinal number (or simply cardinal) if α is
the least ordinal of its own cardinality, i.e. if α = card(α). Equivalently, an ordinal
number α is a cardinal if it is equal to card(X) for some set X.

The first cardinal after ω is denoted by ω1, the first cardinal after ω1 is denoted
by ω2 , and so on. Hence, for any ordinal α the αth cardinal number after ω is
denoted by ωα. We want to remark here that we usually reserve symbols

κ, λ, µ, ν, . . .

to denote arbitrary cardinals.
The successor of a cardinal κ, denoted by κ+ , is the least cardinal bigger

than κ. Hence, for example

ω+ = ω1, (ω1)+ = ω2, . . .

Addition and multiplication of cardinal numbers κ and λ are defined by the
formulas

κ+ λ = card((κ× {∅}) ∪ (λ× {1})),
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κ · λ = card(κ× λ).

We want to pay the reader’s attention to an essential difference between cardinal
and ordinal arithmetics (for example, ω+1 = ω in cardinal arithmetic and ω+1 > ω
in ordinal arithmetic).

Addition and multiplication of cardinal numbers have usual well known prop-
erties of addition and multiplication defined in the set N of natural numbers. The
following theorem essentially simplifies the calculations with infinite cardinals and
has no analogue for natural numbers.

Theorem 1.2 If κ is an infinite cardinal number, then κ · κ = κ.

Proof. The theorem is obvious for κ = ω. Suppose now that the theorem is
true for all infinite cardinals λ < κ. In particular, we have λ ·λ < κ for all cardinals
λ < κ. Let us define the ordering � on κ× κ. Let us put

(ξ, η)� (ξ′, η′)

if and only if one of the next three conditions holds:

1) max{ξ, η} < max{ξ′, η′},

2) max{ξ, η} = max{ξ′, η′} and ξ < ξ′,

3) max{ξ, η} = max{ξ′, η′} and ξ = ξ′ and η < η′.

It is easy to see that the ordering � defined in this way is a well ordering on
κ× κ. For each (α, β) ∈ κ× κ we have

{(ξ, η) : (ξ, η)� (α, β)} ⊆ (max{α, β}+ 1)× (max{α, β}+ 1).

From this fact we obtain

card({(ξ, η) : (ξ, η)� (α, β)}) ≤ ω · card(α) · card(β) < κ.

Hence, κ · κ ≤ κ and it is obvious that κ ≤ κ · κ. Consequently, we have κ · κ = κ.

From Theorems 1 and 2 it immediately follows that for any two infinite cardinals
κ and λ the equality

κ+ λ = κ · λ = max{κ, λ}

holds. The next theorem (essentially due to Sierpiński) will play an important role
in many further constructions.

Theorem 1.3 Suppose that κ is an infinite cardinal number, (Xα)α∈κ is a family
of sets and each of these sets has cardinality κ. Then there exists a family (Yα)α∈κ

of pairwise disjoint sets such that

Yα ⊆ Xα & card(Yα) = κ

for any α < κ.

Proof. Let us fix any bijection φ : κ → κ × κ. Of course, we can write φ =
(φ1, φ2), where φ1 : κ→ κ and φ2 : κ→ κ. We may define by transfinite recursion
an injective family (xα)α∈κ such that xα ∈ Xφ1(α) for every α < κ. This can be
done, since at each step α < κ we have

card({xξ : ξ < α}) < κ = card(Xφ1(α)).

Now we put
Yα = {xβ : φ1(β) = α}
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and the proof is finished since

card({β : φ1(β) = α}) = κ

for every α < κ.

The exponention of cardinals is defined in the following way:

κλ = card(XY ),

where X and Y are any two sets such that card(X) = κ and card(Y ) = λ.
Exponention of cardinals has a lot of properties which are similar to properties

of exponention of natural numbers. For example,

(κ · λ)ν = κν · λν ,

κλ · κν = κλ+ν ,

(κλ)ν = κλ·ν .

Moreover, it is easy to check that κ0 = 1 for any κ (in particular, 00 = 1) and
1κ = 1. If κ is infinite and 0 < λ < ω, then by induction we have κλ = κ. If
2 ≤ κ ≤ λ and λ is infinite, then κλ = 2λ.

Example 1.1 Let us consider the set Q of all rational numbers and the set R of
all real numbers. These two sets are the main objects in the our entire book. At
first we have

2ω = card(R) ≤ card(RN) = (2ω)ω = 2ω·ω = 2ω,

so by the Cantor theorem all these cardinal numbers are equal. The cardinal number
2ω is called the cardinality continuum and sometimes is also denoted by the
symbol c.

Let C(R,R) denote the set of all continuous functions from R into R. If f, g ∈
C(R,R) and f | Q = g | Q, then, obviously, f = g. Hence, we obtain

2ω = card(R) ≤ card(C(R,R)) ≤ card(RQ) = (2ω)ω = 2ω,

so we see that card(C(R,R)) = 2ω.

For any infinite set X we frequently use the following three symbols:

[X]κ = {Y ⊆ X : card(Y ) = κ},

[X]<κ = {Y ⊆ X : card(Y ) < κ},
[X]≤κ = {Y ⊆ X : card(Y ) ≤ κ}.

It is easy to check that if ω ≤ λ ≤ κ, then card([κ]λ) = κλ. Hence, we see, for
example, that card([R]ω) = 2ω.

Now we define addition and multiplication for an arbitrary family of cardinal
numbers. Let (κi)i∈I be a family of cardinals. We put∑

i∈I

κi = card(
⋃
i∈I

(Xi × {i})),

∏
i∈I

κi = card(
∏
i∈I

Xi),

where (Xi)i∈I is an arbitrary family of sets such that

card(Xi) = κi (i ∈ I).

The next classical theorem establishes an important relation between addition
and multiplication of cardinal numbers.
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Theorem 1.4 (König) Let (κi)i∈I and (λi)i∈I be two families of cardinals such
that for each i ∈ I we have κi < λi. Then the inequality∑

i∈I

κi <
∏
i∈I

λi

holds.

Proof. At first let us define a mapping

φ :
⋃
i∈I

(κi × {i})→
∏
j∈I

λj

by the formula

φ((α, i))(j) =
{
α if i = j,
0 if i 6= j.

It is easy to see that φ is an injective mapping. Hence, the inequality∑
i∈I

κi ≤
∏
i∈I

λi

holds. We want to exclude the equality. To get a contradiction suppose that there
exists a family (Xi)i∈I of pairwise disjoint sets such that card(Xi) = κi for every
i ∈ I and ⋃

i∈I

Xi =
∏
i∈I

λi.

Let us put
Yi = {f(i) : f ∈ Xi}

for each i ∈ I. Obviously, we have card(Yi) ≤ card(Xi). Now, take any g ∈
∏

i∈I λi

such that
g(i) ∈ λi \ Yi (i ∈ I).

Then g 6∈
⋃

i∈I Xi, so we obtain a contradiction.

The König theorem proved above is a generalization of the classical Cantor
inequality κ < 2κ, which, in fact, easily follows from the König inequality (put in
the König theorem κi = 1 and λi = 2 for all i ∈ κ).

Let κ and λ be two infinite cardinal numbers. We say that λ is cofinal with κ if
there exists a transfinite sequence (αζ)ζ∈λ of ordinals such that

αζ < κ (ζ < λ),

supζ(αζ) = κ.

We say that a cardinal number λ is the cofinality of κ (and write λ = cf(κ)) if
λ is the least cardinal cofinal with κ. Of course, the inequality cf(κ) ≤ κ holds.

It is easy to show that λ = cf(κ) if and only if λ is the least cardinal number
such that there exists a family of sets (Xi)i∈λ satisfying the following relations:⋃

i∈λ

Xi = κ,

(∀i)(i ∈ λ→ card(Xi) < κ).

Theorem 1.5 For any infinite cardinal κ we have cf(2κ) > κ.
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Proof. Suppose that cf(2κ) ≤ κ. Let λ = cf(2κ) and let (Xα)α∈λ be a family
of subsets of 2κ such that ⋃

α∈λ

Xα = 2κ

and card(Xα) < 2κ for each α ∈ λ. Then, by the König inequality, we have

2κ ≤
∑
α∈λ

card(Xα) <
∏
α∈λ

2κ ≤ (2κ)κ = 2κ,

so we get a contradiction.

Similar arguments show that λ < λcf(λ), for each infinite cardinal λ. Moreover,
λ < cf(κλ) for any κ ≥ 2. If we apply Theorem 5 to the cardinal ω, then we get
cf(2ω) > ω, so the real line R cannot be covered by a countable union of sets of
cardinality less than 2ω.

Notice that cf(ω) = ω and cf(ωω) = ω, too. On the other hand, from the
equality κ · κ = κ, for infinite cardinals κ, we can easily deduce that cf(κ+) = κ+.
Hence, for example, cf(ω1) = ω1 and cf(ω2) = ω2. Those cardinal numbers κ for
which we have cf(κ) = κ are called regular cardinals, and those for which we have
cf(κ) < κ are called singular.

One of the simplest and the most natural questions which appear during the
discussion of infinite cardinal numbers is the question about the size of 2ω. How
large is this cardinal? Since we know that 2ω > ω, the first possible candidate for
2ω is ω1. The statement

2ω = ω1

is called the Continuum Hypothesis and is usually denoted by CH. Gödel showed
that theory (ZFC) & (CH) is consistent, since it is valid in the Constructible
Universe. On the other hand, Cohen showed that theory (ZFC) & (¬CH) is
consistent, too. Hence, the sentence CH is independent of theory ZFC.

A stronger form of the Continuum Hypothesis is the Generalized Continuum
Hypothesis, denoted by GCH, which says that

(∀κ ≥ ω)(2κ = κ+).

Gödel also showed that theory (ZFC) & (GCH) is consistent, because it is valid
in the Constructible Universe. The Generalized Continuum Hypothesis essentially
simplifies cardinal arithmetic. Namely, if GCH holds, then for any infinite cardinals
κ and λ we have

κλ =

 κ if λ < cf(κ),
κ+ if cf(κ) ≤ λ < κ,
λ+ if κ ≤ λ.

Now we change the subject of our discussion. We pay attention to the Boolean
algebras, ideals and filters.

A Boolean algebra is an algebraic system

(B,∧,∨,′ , 0, 1),

where B is a basic set, ∧ and ∨ are binary operations on B, ′ is an unary operation
on B and 0,1 are two distinguished elements of B. These operations satisfy the
following conditions:

1) x ∧ y = y ∧ x; x ∨ y = y ∨ x;
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2) x ∧ (y ∧ z) = (x ∧ y) ∧ z; x ∨ (y ∨ z) = (x ∨ y) ∨ z;

3) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z); x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

4) x ∧ 1 = x; x ∨ 0 = x;

5) x ∧ x′ = 0; x ∨ x′ = 1.

These conditions imply, for example, that

x ∧ x = x, x ∨ x = x, (x′)′ = x,

(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′

and so on.
The simplest example of a Boolean algebra is an algebra of the form

(P (E),∩,∪,′ , ∅, E).

Here E is any basic set and ′ denotes the complement operation on the family of
all subsets of E, i.e.

X ′ = E \X (X ⊆ E).

Such Boolean algebras are called power set Boolean algebras.
This example can be generalized in the following way. A non-empty family A of

subsets of a basic set E is an algebra of subsets of E if

1) {X,Y } ⊆ A → X ∩ Y ∈ A;

2) X ∈ A → E \X ∈ A.

Note that if A is an algebra of subsets of E and X,Y ∈ A, then X ∪ Y ∈
A. In other words, we can say that algebras are closed under finite unions, finite
intersections and complement.

If A is any algebra of subsets of E, then the structure

(A,∩,∪,′ , ∅, E)

is a Boolean algebra. We shall show below that any Boolean algebra is isomorphic
with such an algebra of sets.

Let B = (B,∧,∨,′ , 0, 1) be a Boolean algebra. We define a partial ordering �
on B by the formula

x � y ←→ x ∧ y = x.

It is easy to see that
x � y ←→ x ∨ y = y.

The element 0 is the least element of B and 1 is the largest element of B in the
just defined order. It is worth remarking here that in power set Boolean algebras
the relation � is the standard inclusion of sets.

An element b ∈ B is called an atom if 0 ≺ b and for every c ≺ b we have c = 0.
If P (E) is a power set algebra, then elements of the form {x}, where x ∈ E, are
atoms. The Boolean algebra B is atomless if it has no atoms at all.

A non-empty set F ⊆ B is called a filter in B if

1) (a ∈ F & a � b)→ (b ∈ F );

2) (a ∈ F & b ∈ F )→ (a ∧ b ∈ F ).
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A dual notion to filter is the notion of an ideal. A non-empty set I ⊆ B is an
ideal in B if

1) (a ∈ I & a � b)→ (b ∈ I);

2) (a ∈ I & b ∈ I)→ (a ∨ b ∈ I).

If I is an ideal in B, then the family

I ′ = {a′ : a ∈ I}

is a filter in B, called the dual filter to the ideal I. Conversely, if F is a filter in
B, then the family

F ′ = {a′ : a ∈ F}

is an ideal in B, called the dual ideal to the filter F .
A filter F ⊆ B is called principal if there exists b ∈ B such that F = Fb, where

Fb = {x ∈ B : b � x}.

Similarly, we say that the ideal I ⊆ B is principal if the dual filter I ′ is principal.
A filter F ⊆ B is proper if F 6= B (equivalently, if 0 6∈ F ), and F is an

ultrafilter if F is maximal (with respect to inclusion) among proper filters in B.
A standard application of the Zorn lemma shows us that any proper filter in a

Boolean algebra B can be extended to an ultrafilter. Moreover, let a and b be two
elements of B such that ¬(a � b). Then it is not difficult to prove that there exists
an ultrafilter F ⊆ B satisfying the relations:

a ∈ F, b 6∈ F.

From this fact we immediately obtain that any two distinct elements of a Boolean
algebra can be separated by an ultrafilter in this algebra.

In the next theorem we give a simple characterization of ultrafilters.

Theorem 1.6 Let F be a proper filter in a Boolean algebra

B = (B,∧,∨,′ , 0, 1).

Then the following three conditions are equivalent:

1) F is an ultrafilter;

2) (∀a, b ∈ B)(if a ∨ b ∈ F then a ∈ F or b ∈ F );

3) (∀a ∈ B)(a ∈ F or a′ ∈ F ).

Proof. Implications 2) → 3) and 3) → 1) are trivial. Let us prove implication
1) → 2). Assume that 1) holds and suppose that 2) is false. Hence, there are
elements a, b ∈ B such that

a ∨ b ∈ F, a 6∈ F, b 6∈ F.

Let us consider the set

S = {x ∈ B : (∃y ∈ F )(a ∧ y � x)}.

Then S is a filter in B such that F ⊆ S and a ∈ S. Hence, S is not proper, so
0 ∈ S. Therefore, for some y ∈ F we get a ∧ y = 0. But then we have

b ∧ y = ((a ∨ b) ∧ y) ∈ F,
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so b ∈ F . Hence, we obtain a contradiction, and the theorem is proved.

For any Boolean algebra B = (B,∧,∨,′ , 0, 1) we define the Stone set for B by
the formula

St(B) = {F ⊆ B : F is an ultrafilter in B}

and the Stone mapping
stB : B → P (St(B))

by the formula
stB(b) = {F ∈ St(B) : b ∈ F}.

Finally, let us put
C(B) = {stB(b) : b ∈ B}.

Theorem 1.7 (Stone) Every Boolean algebra B = (B,∧,∨,′ , 0, 1) is isomorphic
with an algebra of subsets of some set.

Proof. From Theorem 6 we easily deduce that for any two elements a ∈ B and
b ∈ B the following equalities hold :

stB(a′) = St(B) \ stB(a),

stB(a ∧ b) = stB(a) ∩ stB(b),

stB(a ∨ b) = stB(a) ∪ stB(b).

These equalities imply that C(B) is an algebra of subsets of the set St(B) and
that the mapping stB is an isomorphism between B and the Boolean algebra

(C(B),∩,∪,′ , ∅, St(B)).

Example 1.2 Let B = (B,∧,∨,′ , 0, 1) be any finite Boolean algebra. Since every
filter in B is closed under finite multiplication, we see that the product of all elements
from the filter belongs to this filter, too. So, every filter in a finite Boolean algebra
is principal. Let F be an ultrafilter in B and let b ∈ B be such that F = Fb. Then
b must be an atom of the algebra B, since otherwise F would not be maximal. Let

At(B) = {b ∈ B : b is an atom in B}.

Then we see that
card(St(B)) = card(At(B))

and after identification of St(B) with At(B) we have

C(B) = P (At(B)).

This gives us the complete description of all finite Boolean algebras. Namely, any
finite Boolean algebra is isomorphic with the power set Boolean algebra of some
finite set.

Example 1.3 Let F be a proper filter in the power set Boolean algebra P (ω) and
let F extend the filter dual to the ideal [ω]<ω. Then F is non-principal. Hence,
there are non-principal ultrafilters in this case. In fact, there are non-principal
ultrafilters in any infinite Boolean algebra (see exercises after this Chapter).
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Let B = (B,∧,∨,′ , 0, 1) be a Boolean algebra. The binary operation

(a, b)→ (a ∧ b′) ∨ (a′ ∧ b)

defined on B is a generalization of the standard operation of the symmetric differ-
ence between two sets and has the same properties as the symmetric difference.

Let I be an ideal in a Boolean algebra B. We define a binary relation ∼ on B
by the formula

a ∼ b←→ (a ∧ b′) ∨ (a′ ∧ b) ∈ I.

It is easy to see that the relation ∼ is an equivalence relation on the set B. It
is also routine to check that the following definitions of operations on the quotient
set B/ ∼ are correct :

[a]∼ ∨ [b]∼ = [a ∨ b]∼;

[a]∼ ∧ [b]∼ = [a ∧ b]∼;

([a]∼)′ = [a′]∼.

Note that [0]∼ = I and [1]∼ = I ′. The structure

(B/ ∼,∧,∨,′ , [0]∼, [1]∼)

is a Boolean algebra, too. It is denoted by B/I and is called the quotient Boolean
algebra (with respect to the given ideal I). The canonical surjection φ : B → B/I
defined by the formula

φ(b) = [b]∼ (b ∈ B)

is a homomorphism of Boolean algebras and

Ker(φ) = {b ∈ B : φ(b) = [0]∼} = I.

Example 1.4 Let us consider the quotient Boolean algebra

C = P (ω)/([ω]<ω).

This is an atomless Boolean algebra. It is interesting to note that this algebra has
completely different properties than the power set algebra P (ω). For example, any
countable decreasing sequence of non-zero elements of C has a non-zero lower bound
in C. Indeed, suppose that

c0 � c1 � . . . � cn � . . .

are non-zero elements of C. Let cn = [Cn]. We may assume that

C0 ⊇ C1 ⊇ . . . ⊇ Cn ⊇ . . .

since otherwise we may consider the family

{C0, C0 ∩ C1, C0 ∩ C1 ∩ C2, · · ·}.

From cn 6= cn+1 we get that Cn \ Cn+1 is non-empty (in fact, infinite). Let Z ⊆ ω
be a set such that

card(Z ∩ (Cn \ Cn+1)) = 1

for every n ∈ ω. Then Z is infinite and card(Z \Cn) < ω for any n ∈ ω. This shows
us that [Z] � 0 and [Z] ≺ cn for every n ∈ ω.
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Let E be a non-empty basic set and let I be a proper ideal in the power set
Boolean algebra P (E). In this case we simply say that I is an ideal on E, or that
I is an ideal of subsets of E. Suppose that [E]<ω ⊆ I.

We define four cardinal numbers connected with the ideal I. These cardinal
numbers describe important properties of I:

1) add(I) = min{card(D) : D ⊆ I &
⋃
D 6∈ I};

2) cov(I) = min{card(D) : D ⊆ I &
⋃
D = E};

3) non(I) = min{card(X) : X ⊆ E & X 6∈ I};

4) cof(I) = min{card(D) : D ⊆ I & (∀X ∈ I)(∃Y ∈ D)(X ⊆ Y )}.

The cardinal numbers defined above are respectively called additivity (or com-
pleteness), covering number, nonuniformity number and cofinality of the ideal
I. It is easy to prove that for any ideal I on E such that [E]<ω ⊆ I the following
diagram holds :

cov(I)
↗ ↘

ω → add(I) cof(I) → 2card(E)

↘ ↗
non(I)

,

where an arrow κ → λ denotes the inequality κ ≤ λ between cardinal numbers κ
and λ. It can also easily be shown that

add(I) ≤ cf(non(I)),

add(I) ≤ cf(cof(I)).

An ideal I is called a σ-ideal, or σ-complete ideal if add(I) > ω.

Example 1.5 Let κ be an infinite cardinal number and let I = [κ]<ω. Then we
have

add(I) = non(I) = ω,

cov(I) = cof(I) = κ.

Let J = [R]≤ω. Then we have

add(J) = non(J) = ω1,

cov(J) = cof(J) = 2ω.

Let γ be a limit ordinal. We say that a set A ⊆ γ is unbounded in γ if for
each ξ < γ there is η ∈ A such that ξ < η. We say that a set A ⊆ γ is closed in γ
if for each limit ordinal δ < γ we have

sup(A ∩ δ) = δ → δ ∈ A.

Let κ be an infinite cardinal, for which cf(κ) > ω. We define

CUBκ = {X ⊆ κ : (∃Y ⊆ κ)(Y is closed and unbounded in κ & Y ⊆ X)}.

It is easy to check that CUBκ is a filter of subsets of κ and

add ((CUBκ)′) = cf(κ).
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We say that a set A ⊆ κ is a stationary subset of κ if

(∀X)(X ∈ CUBκ → A ∩X 6= ∅).

The filters of closed unbounded subsets of regular cardinal numbers will play an
important role in our further considerations.

The following simple proposition is true.

Theorem 1.8 Suppose that κ is an infinite regular cardinal number. Let f :
[κ]<ω → [κ]<ω. Then the set

{ξ < κ : (∀a ∈ [ξ]<ω)(f(a) ⊆ ξ)}

is a closed and unbounded subset of κ.

We leave the easy proof of this theorem to the reader.

Let E be a basic set. A family S ⊆ P (E) is called σ-algebra in E if S is
an algebra of subsets of E and for any countable family (Xn)n∈ω ⊆ S the union⋃

n∈ω Xn belongs to S. We say in this case that S is closed under countable
unions. It is easy to see that σ-algebra S is closed under countable intersections,
too.

If I is an ideal of subsets of E, then I∪I ′ is an algebra of subsets of E. Moreover,
if I is a σ-ideal (i.e. ideal closed under countable unions) then I ∪ I ′ is a σ-algebra.
It is obvious that the intersection of any family of algebras (σ-algebras) in E is an
algebra (σ-algebra) in E. Hence, if A is any family of subsets of E, then⋂

{S ⊆ P (E) : A ⊆ S & S is an algebra (σ − algebra)}

is the smallest algebra (σ-algebra) of subsets of E which contains the family A.
This algebra (σ-algebra) is called the algebra (σ-algebra) generated by the family
A. The σ-algebra generated by the family A sometimes is denoted by the symbol
σ(A).

Theorem 1.9 If A ⊆ P (E) and card(A) > 1, then we have

card(σ(A)) ≤ (card(A))ω.

Proof. For any family B ⊆ P (E) let us put

Bσ = {
⋃
D : D ∈ [B]≤ω},

Bc = {E \X : X ∈ B} ∪B.

Note that card(Bσ) ≤ (card(B))ω and card(Bc) ≤ 2 · card(B). We define by
transfinite recursion of length ω1 a sequence of subsets of P (E) in the following
way:

1) S0 = A,

2) Sα = ((
⋃
{Sβ : β < α})σ)c if 1 ≤ α < ω1.

Then it is clear that
β < α→ Sβ ⊆ Sα.

Let us put
S =

⋃
α<ω1

Sα.
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By induction we can prove that

card(Sα) ≤ (card(A))ω (α < ω1).

Hence, we have
card(S) ≤ ω1 · (card(A))ω = (card(A))ω.

It is clear that S is closed under complements. Suppose now that T ⊆ S and
card(T ) ≤ ω. Using the regularity of ω1 we can find an ordinal α < ω1 such that
T ⊆ Sα. Then

⋃
T ∈ Sα+1, so S is closed under countable unions. Hence, we see

that S = σ(A) and the theorem is proved.

We would like to remark here that in further considerations we shall often deal
with various σ-algebras of measurable sets (with respect to some measures) and
various σ-algebras of sets having the Baire property (in some topological spaces).

In many modern mathematical constructions, especially in measure theory and
general topology, a specific kind of partial ordering, called a tree, is used. So let us
recall the definition of this important notion.

A partial ordering (T,�) is called a tree if T has the least element and for each
y ∈ T the set {x ∈ T : x � y} is well-ordered by �. The least element of T is called
the root of T . For any ordinal number α the α-th level of T is the set

Tα = {y : {x ∈ T : x ≺ y} has order type α}.

The height of a tree T is the least ordinal α such that the α-th level of T is empty.
Let A be a non-empty set and let α be an ordinal. The complete A-ary tree of

height α, which consists of all functions from
⋃

β<αA
β and is ordered by inclusion,

is denoted by A<α. If A = {0, 1}, then the complete A-ary trees are called binary
trees.

Any linearly ordered subset of a tree (T,�) is called a branch in T. A subset
P of T is called a path through the tree T if P is a branch and contains exactly
one element from each non-empty level of T .

Example 1.6 Any tree of the form A<α has a path. Similarly, any tree of a
successor height has a path. But there are trees with no paths at all. Let us
consider the tree (T,⊆), where

T = {f ∈ ω<ω : f is strictly decreasing}.

Then T has height ω but it has no paths, since there are no infinite strictly decreasing
sequences of natural numbers.

Example 1.7 Let ({0, 1}<ω,⊆) be the complete binary tree of height ω. Note that
card({0, 1}<ω) = ω. For every f ∈ {0, 1}ω let us put

Af = {f |n : n ∈ ω}.

Then Af is a path through the tree {0, 1}<ω. If f, g ∈ {0, 1}ω and f 6= g, then

card(Af ∩Ag) < ω.

This shows us that in the algebra P (ω)/([ω]<ω) there exists a family of cardinality
2ω of non-zero elements such that the product of any two of these elements is zero.
Obviously, ω cannot be partitioned into more that ω pairwise disjoint non-empty
sets. So this example gives us the second essential difference between the Boolean
algebras P (ω) and P (ω)/([ω]<ω).
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Next theorem, although quite simple, is very important and has a lot of appli-
cations in many branches of mathematics. It is called the König Lemma. Notice
that it has stimulated the development of set theory and infinitary combinatorics
(some useful facts from infinitary combinatorics are discussed in Appendix A of this
book).

Theorem 1.10 (König) Suppose that (T,�) is a tree of height ω such that all
levels of T are finite. Then there exists a path through T .

Proof. Let x0 be the root of T . For each n ∈ ω \ {0} we can recursively pick an
element xn ∈ Tn such that xn � xn−1 and the set

{y ∈ T : xn ≺ y}

is infinite. This is possible, since every level Tn of T is finite. Then (xn)n∈ω is a
path through T .

It is worth remarking that the obvious generalization of the König lemma to
the trees of height ω1 is false. It is possible to construct a tree (T,�) of height ω1

such that all levels Tα (α < ω1) are countable, but there is no path through T (see
exercises to this Chapter). Such a tree is called an ω1-Aronszajn tree.

Several kinds of trees are particularly used in constructions of different models
of set theory, which show the consistency or independence of various set-theoretic
statements.

From the moment when it turned out that the Continuum Hypothesis was inde-
pendent of ZFC, the issue of adding new axioms became really unbalanced. While
the Continuum Hypothesis is a very powerful assertion, perhaps even too strong,
its negation is rather weak. Hence, there appeared a natural necessity to find an
appropriate axiom which even in the absence of the Continuum Hypothesis could
give tools efficient enough for mathematical constructions. Martin’s Axiom turned
out a very good candidate to fill up this place.

In fact, Martin’s Axiom has many equivalent forms. It can be expressed in the
partial order form, the Boolean algebra form, the topological form etc.

The partial order form is favored by set–theorists and seems to be most useful.
To formulate it we need some notations and definitions.

Let (P,�) be a partially ordered set. We say that a set D ⊆ P is coinitial in
P if for each p ∈ P there is q ∈ D with q � p. In other words, D ⊆ P is coinitial in
P if it is cofinal in the partially ordered set (P,�).

A non-empty set G ⊆ P is called a filter in (P,�) if

(∀p ∈ G)(∀q ∈ P )(p � q → q ∈ G),

(∀p ∈ G)(∀q ∈ G)(∃r ∈ G)(r � p & r � q).
Notice that this definition resembles the definition of a filter in a Boolean algebra.

Two elements p and q of P are called inconsistent if there is no r ∈ P such
that r � p and r � q. We say that a set A ⊆ P is totally inconsistent if any
two distinct elements of A are inconsistent. Finally, we say that (P,�) satisfies the
countable chain condition (or simply c.c.c.) if each totally inconsistent subset
of P is at most countable.

Martin’s Axiom, denoted usually by MA, is the following statement:

if (P,�) is a partially ordered set satisfying c.c.c. and D is a family
of coinitial subsets of P with card(D) < 2ω, then there exists a filter
G ⊆ P which intersects every element of D, i.e.

(∀A ∈ D)(A ∩G 6= ∅).
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The Continuum Hypothesis easily implies Martin’s Axiom. Indeed, let us assume
CH. Let (P,�) be any partially ordered set and let (Dn)n∈ω be any sequence of
coinitial subsets of P . Then we can recursively construct a decreasing sequence
(pn)n∈ω of elements of P such that pn ∈ Dn for each n ∈ ω. Now, put

G = {p ∈ P : (∃n ∈ ω)(pn � p)}.

Evidently, G is a filter in P which intersects every Dn.
Martin and Solovay proved that the statement (MA) & (¬CH) is consistent

with ZFC. The size of 2ω is not determined precisely by MA. For example, each
of the statements

(MA)&(2ω = ω2),

(MA)&(2ω = ω3)

is consistent with ZFC.
In the formulation of Martin’s Axiom the restriction to family D of coinitial

subsets with card(D) < 2ω is not accidental. To see this let us consider the complete
binary tree P = {0, 1}<ω ordered by the reverse inclusion. Let D be the family
consisting of all sets of the form

An = {p ∈ P : n ∈ dom(p)},

Df = {p ∈ P : ¬(p ⊆ f)}

for n < ω and f ∈ 2ω. It is easy to see that card(D) = 2ω and each set from D is
coinitial in P . Suppose that G is a filter in P which intersects every set D ∈ D.
Then

g =
⋃
G

is a function. Since G ∩An 6= ∅ for each n < ω, we see that dom(g) = ω. Thus, we
have

g : ω → {0, 1}.

But we also have G∩Df 6= ∅ for any f ∈ 2ω. So g 6= f for every f ∈ 2ω and this is
an absurd.

The restriction to c.c.c. partial ordering is also matured (see exercises after this
Chapter).

Here we give only one example of applications of Martin’s Axiom. Other appli-
cations will be given later. Here we examine the structure of the set of all functions
from ω into ω. For this purpose we define the following relation � on ωω:

f � g ←→ (∃n ∈ ω)(∀m ≥ n)(f(m) ≤ g(m)).

If f � g, then we say that function g dominates function f . Of course, the relation
� is not a partial ordering on ωω ( in fact, it is a partial pre-ordering).

If we identify any two functions f, g ∈ ωω for which

card({n ∈ ω : f(n) 6= g(n)}) < ω,

then we obtain a partial ordering on the set of equivalence classes. For this partial
ordering we shall use the same symbol �.

Let us define two important cardinal numbers:

b = min{card(F ) : F ⊆ ωω & ¬(∃g ∈ ωω)(∀f ∈ F )(f � g)},

d = min{card(F ) : F ⊆ ωω & (∀g ∈ ωω)(∃f ∈ F )(g � f)}.
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Obviously, we have b ≤ d ≤ 2ω. It is easy to check that ω < b. Indeed, let (fn)n∈ω

be any sequence of elements of ωω. Put

f(n) = max{fi(n) : i ≤ n} (n ∈ ω).

Then f is a function such that fn � f for every n ∈ ω. So we see that any countable
subset of ωω can be dominated by one function. Thus ω < b.

We also see that CH implies the equalities

b = d = 2ω.

On the other hand, it can be shown that the statement

(2ω = ω2) & (b = d = ω1)

is consistent with ZFC. We shall discuss an appropriate axiom of set theory for
showing this in the second Part of the book. However, Martin’s Axiom decides about
the value of these two cardinal numbers similarly to the Continuum Hypothesis.

Theorem 1.11 If MA holds, then b = d = 2ω.

Proof. Let P = ω × ωω. We introduce a partial order � on P putting

(n, f) � (m, g)←→ (n ≥ m) & (f |m = g|m) & (∀k ≥ m)(f(k) ≥ g(k)).

It is not difficult to check that any uncountable subset of P has two distinct
consistent elements. Hence, (P,�) satisfies c.c.c., so in this case we may apply
Martin’s Axiom.

Suppose that F ⊆ ωω and card(F ) < 2ω. For every f ∈ F and every n ∈ ω
define the set

Df,n = {(m, g) : n ≤ m & (∀k ≥ m)(g(k) ≥ f(k))}.

Notice that the set Df,n is coinitial in P . Using MA we see that there exists a filter
G ⊆ P which intersects each set Df,n. Let us put

h =
⋃
{g|m : (m, g) ∈ G}.

Note that h ∈ ωω. Moreover, if f ∈ F , then f is dominated by h. This shows us
that F is dominated by a single function from ωω, so b = 2ω.

Exercises

Exercise 1.1 Prove that for any ordinal number α we have

α = {β : β < α}.

Exercise 1.2 Define by transfinite recursion the exponention αβ for arbitrary ordi-
nal numbers α and β. Prove some algebraic properties of this operation, for example,
such as

αβ+γ = αβ · αγ , αβ·γ = (αβ)γ .

Show also that for the exponention ωω we have

card(ωω) = ω

.
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Exercise 1.3 Prove, in theory ZF, that any countable linearly ordered set is iso-
morphic to some subset of (Q,≤), where Q is the set of all rational numbers linearly
ordered by the standard order. This is the classical Cantor theorem.

Exercise 1.4 Let (P,�) be a partially ordered set. We say that (P,�) is complete
if for any set X ⊆ P there exists sup(X) in P . Prove that (P,�) is complete if
and only if for any set X ⊆ P there exists inf(X) in P . Suppose that (P,�) is
complete and let f : P → P be an increasing mapping, i.e.

x � y → f(x) � f(y) (x, y ∈ P ).

Prove that there exists an invariant point for f, i.e.

(∃x ∈ P )(f(x) = x).

This result is due to Tarski.

Exercise 1.5 Let X, Y be any two sets and let

f : X → Y, g : Y → X

be arbitrary mappings. Show, in theory ZF, that there exist sets X1, X2, Y1 and Y2

such that

X = X1 ∪X2, X1 ∩X2 = ∅, Y = Y1 ∪ Y2, Y1 ∩ Y2 = ∅,

f(X1) = Y1, g(Y2) = X2.

The above result generalizes the Banach theorem presented in this Chapter.

Exercise 1.6 Prove, in theory ZF, the equivalence between the Axiom of Choice
and the Zorn Lemma.

Exercise 1.7 Let (P,�) be any partial ordering. Prove that there exists a linear
ordering on P, extending the order �. This result is due to Marczewski.

Exercise 1.8 Let ((Pi,�i))i∈I be a family of partially ordered sets. The product of
these sets is the partially ordered set (P,�), where P =

∏
i∈I Pi and � is defined

by the formula
x � y ←→ (∀i ∈ I)(xi �i yi) (x, y ∈ P ).

Prove that any partially ordered set is isomorphic to a subset of some product of
linearly ordered sets.

Exercise 1.9 Let (X,�) be an infinite set of real numbers linearly ordered by the
standard order. Prove, in theory ZF, the existence of a partition {X0, X1} of X,
such that the sets X0 and X1 are also infinite. Does the analogous result hold in
ZF for any infinite linearly ordered set (P,�)?

Exercise 1.10 Let κ and λ be arbitrary infinite cardinal numbers. Show that the
following Hausdorff formula is true:

(κ+)λ = κ+ · κλ.

Exercise 1.11 Let (B,∧,∨,′ , 0, 1) be a Boolean algebra. Let us consider the binary
operation

a+ b = (a ∧ b′) ∨ (a′ ∧ b)
defined on B. Show that an algebraic system (B,+,∧, 0, 1) is an unitary ring in the
usual algebraic sense. In this ring + is addition and ∧ is multiplication. For any
a ∈ B we have

a+ a = 0, a ∧ a = a.
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Exercise 1.12 Show that any proper filter in a Boolean algebra can be extended to
an ultrafilter.

Exercise 1.13 Show that in an infinite Boolean algebra there exists a non-principal
ultrafilter.

Exercise 1.14 Prove that if X is an infinite set, then card(St(P (X))) = 22card(X)
.

Exercise 1.15 Let A be an arbitrary non-empty family of subsets of a basic set E
and let B be an algebra of subsets of E, generated by A. Prove that the following
inequality holds :

card(B) ≤ ω · card(A).

Exercise 1.16 Let I be an ideal on an infinite set X such that [X]<ω ⊆ I. Prove
all inequalities contained in the diagram presented in this Chapter and describing
relations between the cardinal coefficients

add(I), cov(I), non(I), cof(I)

. Show also that

add(I) ≤ cf(non(I)), add(I) ≤ cf(cof(I)).

Moreover, show that no other inequality between these coefficients can be proved in
general.

Exercise 1.17 Prove that add ((CUBκ)′) = cf(κ) for any infinite cardinal number
κ with cf(κ) > ω.

Exercise 1.18 Prove Theorem 8 from this Chapter.

Exercise 1.19 The Countable form of the Axiom of Choice is the following
statement:

if (Xn)n∈ω is an arbitrary countable family of non-empty pairwise dis-
joint sets, then there exists a family (xn)n∈ω ∈

∏
n∈ω Xn.

The Axiom of Dependent Choices is the following statement :

if S(x, y) is a binary relation on a non-empty set X such that

(∀x ∈ X)(∃y ∈ X)S(x, y),

then there exists a sequence (xn)n∈ω ⊆ X such that

(∀n ∈ ω)S(xn, xn+1).

The Axiom of Dependent Choices is usually denoted by DC. It can be said that the
Axiom DC is a safe form of AC which is completely sufficient for most branches
of classical mathematics: geometry of the Euclidean spaces, mathematical analysis,
real function theory, etc. On the other hand, it is worth noticing here that in a
lot of domains of contemporary mathematics several uncountable forms of AC are
frequently used as a necessary tool in proving interesting and strong results.

Show, in theory ZF, that

1) DC implies the countable form of AC;

2) the countable form of AC is enough to prove the equivalence of Cauchy and
Heine definitions of continuous function f : R→ R;

30



3) the countable form of AC implies that the union of a countable family of
countable sets is also countable.

4) the countable form of AC implies that any infinite set contains a countable
subset.

Exercise 1.20 Prove, in theory ZF, the equivalence of the following two proposi-
tions:

1) the König theorem on ω-trees ;

2) for any countable family (Xn)n∈ω of non-empty finite pairwise disjoint sets
there exists a family (xn)n∈ω ∈

∏
n∈ω Xn.

Exercise 1.21 Prove the equivalence (in ZFC) of the following two propositions:

1) the Continuum Hypothesis;

2) for any partially ordered set (P,�) and for any family D of coinitial subsets
of P with card(D) < 2ω there exists a filter G ⊆ P which intersects every
element of D.

This result shows us that in the formulation of Martin’s Axiom c.c.c. is essential if
we want to have an axiom strongly weaker than CH.

Exercise 1.22 Using the method of the transfinite recursion construct an ω1–A-
ronszajn tree as a subtree of (ω<ω1 ,⊆).

Exercise 1.23 Let {A,B} be a partition of the real line R such that there exists a
bijection f : A→ B. Prove, in theory ZF, that there exists a bijection g : A→ R.

Exercise 1.24 Prove, in theory ZF, that there exists a partition {Xα : α < ω1} of
the real line R. Deduce from this fact (in ZF) that the set of all subsets of the real
line cannot be represented as the union of a countable family of countable sets.

Notice in connection with this result that there are some models of theory ZFin
which the real line R can be represented as the union of a countable family of count-
able sets. On the other hand, show that R cannot be represented as the union of a
countable family of finite sets.

Exercise 1.25 Prove, in theory ZF, that for every linearly ordered set X there
exists a linearly ordered set Y such that card(X) < card(Y ). Moreover, if X is a
well ordered set, then Y can also be taken as a well ordered set.

In particular, there exists (in ZF) a linearly ordered set E such that card(E) >
card(R). On the other hand, the existence of a well ordered set of the cardinality
continuum cannot be proved in ZF
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Chapter 2

Elements of General
Topology

Let E be a basic set (we assume in general that E is infinite) and let T be a
topological structure on E, i.e. a topology on E. As a rule, the pair (E, T ) is
called a topological space. If the topology T = T (E) is clear in the context, then
we shall simply say that E is a topological space. In this Chapter we consider
some facts from general topology which we need in the sequel. We assume, of
course, that the reader knows some elementary facts and notions from this area of
mathematics, for instance such notions as: continuous mapping, a nowhere dense
set, separation axioms and the corresponding to them classes of topological spaces
(Hausdorff spaces, regular spaces, completely regular spaces, normal spaces etc.),
quasi-compactness, metrizability of topological space, completeness for metric spaces
and others.

For our further purposes it is quite enough to consider only such topological
spaces, in which any singleton is a closed set. We shall assume (as a rule) that
every topological space under our considerations satisfies this condition.

The notion of quasi-compactness is one of the most important of the topological
notions listed above. Let us recall that the topological space E is quasi-compact
if every open covering of E contains a finite subcovering of E. The space E is called
compact if it is Hausdorff and quasi-compact at the same time. There are a lot
of remarkable theorems connected with the notion of quasi-compactness. The main
one is, of course, the classical Tychonoff theorem.

Theorem 2.1 (Tychonoff) The topological product of an arbitrary family of
quasicompact spaces is a quasi-compact space. Conversely, if the topological product
of the family of non-empty spaces is quasi-compact, then each of these spaces is
quasi-compact.

Proof. The simplest proof of this theorem can be done with the use of ultrafilters.
Let us recall that a topological space is quasi-compact if and only if every ultrafilter
in this space is convergent. Let (Ei)i∈I be any family of non-empty quasi-compact
topological spaces and let E =

∏
i∈I Ei be the topological product of these spaces.

Let us consider any ultrafilter Φ in the space E. For each i ∈ I denote by

pri : E → Ei

the canonical projection which corresponds to the index i. Since pri is a surjection
the family of sets pri(Φ) is an ultrafilter in the space Ei. Hence, from the quasi-
compactness of Ei, the ultrafilter pri(Φ) converges to some point ei ∈ Ei. It is
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easy to prove, directly starting from the definition of the product topology, that the
ultrafilter Φ converges to the point (ei)i∈I .

The proof of the second part of the theorem follows immediately from quasi-
compactness of continuous images of quasi-compact spaces.

The Tychonoff theorem has a lot of applications in many branches of mathe-
matics (some of such applications are given in exercises to this Chapter).

Another important theorem for all mathematics also connected with the no-
tion of quasi-compactness is the classical Baire theorem. This theorem is usually
formulated in the following way.

Theorem 2.2 (Baire) Let E be a non-empty topological space which satisfies one
of the following two conditions:

1) E is locally compact, i.e. E is Hausdorff and every point of E has a compact
neighbourhood;

2) E is metrizable by a complete metric.

Then the complement of the union of any countable family of nowhere dense subsets
of E is dense in E. In particular, E is not the union of such a family of subsets
(in other words, E is not a first category space).

Proof. The proof in each of cases 1) and 2) is standard and classical. Let (Fn)n∈ω

be any countable family of nowhere dense subsets of E and let V ⊆ E be any
non-empty open set. By recursion we construct a sequence

V0 ⊇ cl(V1) ⊇ . . . ⊇ cl(Vn) ⊇ . . . ,

where, as usual, cl(Vn) denotes the closure of the set Vn and

a) V0 = V ,

b) Vn is non-empty and open in E,

c) Fn ∩ cl(Vm) = ∅ if m > n,

d) if condition 2) holds for E, then diam(Vn) < 1
n for n ≥ 1.

Let e be any point of the non–empty intersection of the family (cl(Vn))n∈ω.
Then it is clear that e ∈ V \

⋃
n∈ω Fn. Hence, the Baire theorem is proved.

Now we introduce an important notion. A topological space is a Baire topo-
logical space if each of its non-empty open subspaces is not a first category space.
From the proof of the Baire theorem it follows that any locally compact topological
space and any complete metric space are the Baire spaces.

It is worth remarking here that in every topological space there exists a biggest
(with respect to the inclusion) open first category subspace. In order to show this
we need to prove the famous Banach theorem about open first category sets.

Theorem 2.3 (Banach) Let E be any topological space and let (Vi)i∈I be any
family of open first category subsets of E. Then the union V =

⋃
i∈I Vi is an open

first category set, too.

Proof. Let (Pj)j∈J be a maximal (with respect to inclusion) disjoint family of
non-empty open subsets of E such that

(∀j ∈ J)(∃i ∈ I)(Pj ⊆ Vi).
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The existence of such a family follows from Zorn’s lemma. Now, from the maximality
of (Pj)j∈J we deduce that the closed set cl(V ) \

⋃
j∈J Pj is nowhere dense in E.

Hence, it is sufficient to show that the union
⋃

j∈J Pj is a first category set. Indeed,
we have

Pj =
⋃
n∈ω

Xj,n,

where Xj,n are nowhere dense subsets of E. For each n ∈ ω we put

Xn =
⋃
j∈J

Xj,n.

Using the disjointness of the family (Pj)j∈J we can deduce that for any n ∈ ω the
set Xn is also nowhere dense in E. But⋃

j∈J

Pj =
⋃
n∈ω

Xn,

hence, the Banach theorem is proved.

From this theorem we immediately obtain the following result.

Theorem 2.4 Any topological space E can be represented as the union

E = E1 ∪ E2,

where the set E1 is an open first category subspace of E, the set E2 is a closed
Baire subspace of E and E1 ∩ E2 = ∅. Similarly, any topological space E can be
represented as the union

E = E∗1 ∪ E∗2 ,
where the set E∗1 is a closed first category subspace of E, the set E∗2 is an open Baire
subspace of E and E∗1 ∩ E∗2 = ∅.

In order to avoid misunderstandings let us notice that the closed set E∗1 may
not be nowhere dense in E.

The result formulated in Theorem 4 gives us in many cases the possibility to
restrict our considerations only to the class of Baire topological spaces.

Now we shall introduce a definition which plays one of the main roles in this
book.

Let E be any topological space and let X be a subset of E. We say that the set
X has the Baire property (in E) if X can be represented in the form

X = (V ∪ Y ) \ Z,

where V is an open subset of E, and Y and Z are first category subsets of E.
It is easy to see that we obtain an equivalent definition if we change the above
representation by the following one:

X = (V \ Y ) ∪ Z,

with the same V , Y and Z. It is also easy to see that a set X ⊆ E has the Baire
property if and only if there exists an open set V ⊆ E and a first category set
P ⊆ E such that

X = V M P.

The class of first category subsets of E will be denoted by the symbol K(E)
and the class of all sets which have the Baire property in E will be denoted by the
symbol B̄(E). We shall also call members of the class K(E) meager subsets of E
and their complements to E comeager (or residual) subsets of E. It is easy to
prove the following theorem.
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Theorem 2.5 The class B̄(E) is a σ–algebra of subsets of E. This σ–algebra is
generated by the union T (E) ∪K(E), where T (E) is the topology of the space E.

Let us recall that the Borel σ–algebra of a topological space E is the σ–algebra
generated by the topology T (E). The Borel σ–algebra of a topological space E will
be denoted by the symbol B(E). It is clear that the inclusion

B(E) ⊆ B̄(E)

always holds. Normally, the above inclusion is proper. But there are very inter-
esting examples of such uncountable topological spaces E for which the equality
B(E) = B̄(E) holds. It is worth noticing that this situation may occur with some
uncountable subsets E of the real line R (here, of course, E is equipped with the
induced topology from R). We shall discuss such a situation later on, in Chapter 8
of the book.

Another nontrivial question: does there exist a non-first category topological
space E dense in itself such that B̄(E) = P (E), where P (E) is the family of all
subsets of E? It turns out that such a situation is possible, too.

The next result shows the transitivity of the Baire property.

Theorem 2.6 Let E2 be a subspace of a topological space E1 and let E3 be a sub-
space of a topological space E2. If the set E2 has the Baire property in the space
E1 and the set E3 has the Baire property in the space E2, then the set E3 has the
Baire property in the space E1.

The proof of this theorem is not difficult and we leave it to the reader as a useful
exercise.

Let E be any topological space and X be a subset of this space. We say that
X has the Baire property in the restricted sense if for each subspace E1 of E
the set X ∩ E1 has the Baire property in the space E1. It is clear that the class of
all subsets of E with the restricted Baire property is a σ–algebra in E contained in
the σ–algebra B̄(E).

The following fact holds.

Theorem 2.7 For every topological space E and every subset X of E the subsequent
three conditions are equivalent:

1) the set X has the Baire property in the restricted sense;

2) for each closed set F ⊆ E the intersection X ∩F has the Baire property in F ;

3) for each perfect set P ⊆ E the intersection X ∩ P has the Baire property in
P .

We leave the proof of this theorem to the reader, too.

Example 2.1 Let R be the real line and let F be any non-empty perfect nowhere
dense subset of R (for instance, F can be the classical Cantor discontinuum in
R). Later we will see that there exists a set X ⊆ F which does not have the Baire
property in F . On the other hand, the same set X is nowhere dense in R and hence,
it has the Baire property in R. So, we see that the set X has the Baire property in
R and at the same time does not have the Baire property in the restricted sense.

Example 2.2 Let E be an arbitrary topological space and let X be an arbitrary
Borel subset of E. It is easy to check that for each subspace E1 of E the following
equality holds:

B(E1) = {Y ∩ E1 : Y ∈ B(E)}.
Hence, the intersection X ∩ E1 is a Borel subset of the space E1. Therefore, any
Borel subset of the space E has the Baire property in the restricted sense.
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Let E1 and E2 be two topological spaces and let f be a mapping from E1 into
E2. Let us recall that the mapping f is a Borel mapping if

(∀Z)(Z ∈ B(E2)→ f−1(Z) ∈ B(E1)).

It is clear that a sufficient condition for f to be a Borel mapping is the following:

(∀Z)(Z ∈ T (E2)→ f−1(Z) ∈ B(E1)).

We say that a mapping
f : E1 → E2

has the Baire property if for each open set V ⊆ E2 the set f−1(V ) has the Baire
property in the space E1. It is easy to show that the following proposition is true.

Theorem 2.8 If E1 and E2 are topological spaces and if f is a mapping from E1

into E2 then the next three sentences are equivalent:

1) the mapping f has the Baire property;

2) for any closed set Z ⊆ E2 the set f−1(Z) has the Baire property in the space
E1;

3) for any Borel set Z ⊆ E2 the set f−1(Z) has the Baire property in the space
E1.

In particular, any Borel (hence, any continuous) mapping f : E1 → E2 has the
Baire property.

There exists a certain analogy between mappings with the Baire property and
mappings measurable with respect to various measures (for instance, with respect
to the classical Lebesgue measure). In particular, it is well known that all Lebesgue
measurable real functions have the so called Luzin C-property (see, for example,
Chapter 4 of this book). An analogous result for mappings with the Baire property
is the following proposition.

Theorem 2.9 Let E1 and E2 be two topological spaces such that E2 satisfies the
second countability axiom (i.e. there exists a countable base for T (E2)). Let f be a
mapping from E1 into E2 . Then the next two sentences are equivalent :

1) the mapping f has the Baire property;

2) there exists a first category set Z ⊆ E1 such that the restriction of the mapping
f to the set E1 \ Z is continuous.

Proof. Let f : E1 → E2 be a mapping which has the Baire property and let (Vi)i∈I

be any countable base for the space E2. Every set f−1(Vi) has the Baire property
in the space E1, so we can write

f−1(Vi) = (Ui \Xi) ∪ Yi,

where Ui is an open set in the space E1 and Xi and Yi are first category subsets of
E1 . Let us put

Z =
⋃
i∈I

(Xi ∪ Yi).

It is clear that Z is a first category subset of E1. Let A = E1 \ Z. We show that
the mapping g = f |A is continuous. Let us take any open subset V of E2 . There
exists J ⊆ I such that

V =
⋃
j∈J

Vj .
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Using the definition of the set A we get the following equalities:

g−1(V ) =
⋃
j∈J

(f−1(Vj) ∩A) =

⋃
j∈J

Uj

 ∩A,
which give us the continuity of the mapping g.

Conversely, let f be a mapping from E1 into E2 such that there exists a first
category set Z ⊆ E1 for which a mapping g = f |(E1 \ Z) is continuous. We put,
as above, A = E1 \ Z. Let V be any open subset of the space E2. Then the set
g−1(V ) is open in A, i.e. there exists an open set U ⊆ E1 such that

g−1(V ) = U ∩A = U \ (U ∩ Z).

From this we immediately obtain

f−1(V ) = g−1(V ) ∪ (f−1(V ) ∩ Z) = (U \ (U ∩ Z)) ∪ (f−1(V ) ∩ Z),

hence, the mapping f has the Baire property.
Let us remark that in the second part of the proof we did not use the assumption

that the topological space E2 satisfies the second countability axiom. But in the
first part of the proof this assumption is essential. This can be shown by the next
example.

Example 2.3 Let R be the set of all real numbers equipped with the standard
Euclidean topology. Let us denote by T the class of all sets Y ⊆ R which can be
represented in the form

Y = V \D,
where V is an open subset of R and D is at most countable subset of R. It can be
checked that the class T is a topology on R which properly extends the Euclidean
topology on R. The set R with the introduced topology T is denoted by the symbol
R∗ . It is evident that the space R∗ is not separable (i.e. does not contain a
countable dense subset). Hence, this space does not satisfy the second countability
axiom. It is also easy to check that

B(R) = B(R∗),

i.e. that the σ–algebras of Borel subsets of these two topological spaces coincide.
Let f be a mapping from the space R into the space R∗ defined by the formula

f(x) = x (x ∈ R).

It is clear that f is a Borel mapping from R into R∗ (moreover, f is a Borel isomor-
phism between these two spaces). Hence, we see that the mapping f has the Baire
property. Finally, we leave to the reader the proof that there is no first category
subset Z of R such that f |(R \ Z) is continuous.

We can introduce, in a natural way, the notion of the mapping with the Baire
property in the restricted sense. Let E1 and E2 be two topological spaces and let
f be a mapping from E1 into E2. We say that the mapping f has the Baire
property in the restricted sense if, for each open subset V of the space E2 ,
the set f−1(V ) has the Baire property in the restricted sense in the space E1. The
class of all mappings with the Baire property and the class of all mappings with the
Baire property in the restricted sense are quite similar. We suggest that the reader
should think for a while about possible analogies between these classes. Of course,
there are also some essential differences between them.

We know that any Borel mapping has the Baire property in the restricted sense.
Next example shows us that there exist mappings with the restricted Baire property
which are very far from the Borel mappings.
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Example 2.4 Looking slightly forward and using in this example the notion of the
classical Lebesgue measure on R we will show (with the help of Martin’s Axiom)
that there exists a function

f : R→ R

which is non-measurable in the Lebesgue sense and, at the same time, has the Baire
property in the restricted sense. Let us assume Martin’s Axiom. Then by means of
the method of transfinite recursion one can construct a set X ⊆ R which satisfies
the following two conditions :

1) for any non-empty perfect subset F of R the intersection X ∩ F is a first
category set in the topological space F ;

2) for any closed subset F of R with strictly positive Lebesgue measure the
intersection X ∩ F is non-empty.

A detailed construction of such set X will be considered in Chapter 8 of this
book. We assume here that such X really exists in R. From condition 1) it follows
that the set X has the Baire property in the restricted sense. From condition 2)
we obtain that X has full outer Lebesgue measure on the real line R. So both
conditions 1) and 2) give us that X is not a Lebesgue measurable subset of R. Let
f be a characteristic function (indicator) of the set X. Then the function f has
the Baire property in the restricted sense but at the same time is not Lebesgue
measurable. So, of course, f is not a Borel mapping from R into R.

It is impossible to omit the famous Kuratowski-Ulam theorem if we discuss
some analogies between the Baire property and measurability. This theorem is a
direct topological analogue of the well known Fubini theorem from abstract measure
theory.

Theorem 2.10 (Kuratowski-Ulam) Let E1 and E2 be two topological spaces and
let E2 have a countable base. Let E1 × E2 be a topological product of these spaces
and let Z ⊆ E1 × E2 . The following sentences hold:

1) if Z is a first category set in the space E1 × E2 then for almost every (in the
category sense) x ∈ E1 the set

Z(x) = {y ∈ E2 : (x, y) ∈ Z}

is a first category subset of the space E2;

2) if Z has the Baire property in the space E1×E2, then for almost every x ∈ E1

the set Z(x) has the Baire property in the space E2;

3) if Z has the Baire property in the space E1×E2 and if for almost every x ∈ E1

the set Z(x) is a first category subset of the space E2 , then the set Z is a first
category subset of the space E1 × E2.

Proof. All sentences 1), 2) and 3) can be proved by one schema. We shall show
here only the proof of 1) and the remaining parts we leave to the reader (only once
the reader must apply the Banach theorem on a first category open sets). Notice
now that it is sufficient to prove 1) only for closed nowhere dense subsets Z of the
space E1 × E2. So, let F be a closed nowhere dense set in the space E1 × E2. We
shall show that for almost every x ∈ E1 the set F (x) is closed and nowhere dense
in E2. Let us put

G = (E1 × E2) \ F.
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We see that G is an open dense subset of the space E1 × E2. Let (Vi)i∈I be any
countable base for the space E2. For each index i ∈ I let us denote the set

{x : (∃y)(y ∈ Vi & (x, y) ∈ G)}

by the symbol Gi. It is easy to check that the equality

Gi = pr1(G ∩ (E1 × Vi))

holds. Hence, we conclude that the set Gi is open and dense in the space E1. Thus,
the intersection of the family (Gi)i∈I is the complement of a first category subset
of the space E1. It is clear from the above that for each element x ∈

⋂
i∈I Gi the

set
F (x) = E2 \G(x)

is closed and nowhere dense in the space E2 (because the set G(x) is open and dense
in the same space). Hence, we have proved sentence 1).

Let us remark that in the Kuratowski-Ulam theorem the assumption that the
space E2 has a countable base can be weakened (see exercises after this Chapter).

Now we want to introduce some simple cardinal-valued functions describing
various properties of topological spaces. Let E be any topological space. We put

w(E) = inf {card(B) : B is a base of T (E)}+ ω;
c(E) = sup {card(B) : B is a family of pairwise

disjoint non-empty open sets in E}+ ω;
d(E) = inf {card(X) : X is a dense subset of E}+ ω;
πw(E) = inf {card(B) : B ⊆ T (E) \ {∅} and B is coinitial

in (T (E) \ {∅},⊆)}+ ω.

These functions are called usually:

w(E) − the weight of a space E;
c(E) − the Suslin number of a space E;
d(E) − the density of a space E;
πw(E) − the π−weight of a space E.

We say that a topological space E satisfies the Suslin condition (or the count-
able chain condition - c.c.c) if c(E) = ω.

We say that a family B ⊆ T (E) \ {∅} is a π-base of the topological space E if
B is a coinitial subset of (T (E) \ {∅},⊆).

The following inequalities are obvious:

c(E) ≤ d(E) ≤ πw(E) ≤ w(E).

It is not difficult to prove that for a metric space E all these inequalities become
equalities.

It is also easy to prove that the inequality

card(E) ≤ 22d(E)

holds for any Hausdorff topological space E.

Example 2.5 Let κ be any infinite cardinal. Let us consider the space Rκ equipped
with the product topology. It can be shown that this space satisfies the Suslin
condition, i.e. c(Rκ) = ω. Moreover, if κ = 2ω, then it can be shown that the space
Rκ is separable, i.e. d(Rκ) = ω. Indeed, in this case the space Rκ can be identified
with the space R[0,1], consisting of all real functions defined on [0, 1], equipped with
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the pointwise convergence topology. Using, for instance, the classical Weierstrass
theorem on approximation we deduce that the countable set of all polynomials on
[0, 1] with rational coefficients is dense in the space R[0,1].

If κ > 2ω, then the topological space Rκ is not separable but, as noticed above,
this space always satisfies the Suslin condition.

We say that a topological space E satisfies the first countability axiom if every
point in E has a countable local base at this point (i.e. there exists a countable
fundamental system of neighbourhoods of this point). For instance, any metrizable
topological space satisfies the first countability axiom.

A metric space is called topologically complete if its topology is metrizable
by a complete metric. It is clear that any closed subset of a topologically complete
metric space is also topologically complete. It is not so trivial that the same fact
holds for any open subset of a topologically complete metric space, either. Indeed,
we have the following result.

Theorem 2.11 Let E be a topologically complete metric space and let G be any
open subset of E. Then G is topologically complete, too.

Proof. Let us consider the topological product R×E, where R is the real line.
This product is topologically complete. Let us put

Z = {(t, x) ∈ R× E : t · ρ(x,E \G) = 1},

where ρ is a metric in E. It is clear that Z is a closed subset of R × E. So Z is a
topologically complete metric space. Let us consider the canonical projection

pr2 : R× E → E,

which is a continuous and open mapping. It is clear also that the mapping

pr2|Z : Z → G

is a bijection. Hence, this mapping is a homeomorphism and G is topologically
complete.

Now, we shall establish one result of metamathematical character which will be
used in the sequel.

Theorem 2.12 Suppose that we have some notion of completeness for the class of
all Hausdorff topological spaces and suppose that the following conditions hold:

1) completeness is preserved under homeomorphisms;

2) completeness is preserved under taking closed subspaces;

3) for some fixed cardinal number κ the topological product of any family of car-
dinality κ of complete spaces is complete, too.

Then the completeness is preserved under taking intersections of any families of
cardinality κ of complete subspaces of a given Hausdorff topological space.

Proof. Let (Ei)i∈I be a family of complete topological spaces such that

card(I) ≤ κ, (∀i)(i ∈ I → Ei ⊆ E),

where E is a Hausdorff topological space. Then the topological product
∏

i∈I Ei is
complete, too. Let us consider the intersection

X =

(∏
i∈I

Ei

)
∩ diag(EI),
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where diag(EI) denotes the diagonal in the topological product EI . Since diag(EI)
is closed in the space EI , the set X is closed in the space

∏
i∈I Ei, and hence X

is complete. But it is evident that X is homeomorhpic to the intersection of the
family (Ei)i∈I . So this intersection is complete, too.

The next classical result can be obtained as an immediate application of Theo-
rems 11 and 12.

Theorem 2.13 (Alexandrov) In every complete metric space any Gδ–subset (i.e.
an intersection of a countable family of open sets) is topologically complete.

Notice that there is a result which, in a certain sense, is a converse version of
Theorem 13 (see exercises after this Chapter).

Now, we shall introduce one notion which is important for our purposes and
plays a remarkable role in the classical descriptive set theory.

A topological space E is a Polish space if E is homeomorphic to a complete
separable metric space.

It follows from Theorem 13 that any Gδ-subset of a Polish space is a Polish
space, too. It is also clear that any compact metric space is a Polish space. In
particular, the Cantor discontinuum {0, 1}ω (where the set {0, 1} is equipped
with discrete topology) is a Polish space. The space ωω = Nω , where N is equipped
with the discrete topology, is another standard example of a Polish space. The
space Nω is usually called the canonical Baire space. It is not difficult to prove
that Nω is homeomorphic to the set of all irrational numbers in R.

Theorem 2.14 The following three sentences hold:

1) any non-empty Polish space is a continuous image of the space Nω;

2) any non-empty compact metric space is a continuous image of the Cantor
discontinuum {0, 1}ω;

3) any separable metric space is topologically contained in the Hilbert cube [0, 1]ω.

Proof. Let us remark that proofs of 1) and 2) can be done by one schema in which
countable systems of countable (or finite) closed coverings of given spaces are used.
These constructions are not difficult. So, we shall prove here only sentence 3).

Let (E, ρ) be any separable metric space. We may assume that the range of the
metric ρ is contained in the segment [0, 1] (because, if we need, we may replace the
original metric by a topologically equivalent metric bounded from above by 1). Let
(en)n<ω be any sequence of points of E which is dense everywhere in E. We define
a mapping

f : E → [0, 1]ω

by the formula
f(e) = (ρ(e, en))n<ω (e ∈ E).

It is easy to see that f is injective and continuous and that the converse mapping

f−1 : f(E)→ E

is continuous, too. Hence, the topological space E can be homeomorphically em-
bedded into the Hilbert cube [0, 1]ω.

Let E be any Hausdorff topological space. By Comp(E) we denote the space of
all non-empty compact subsets of E, i.e.

Comp(E) = {X ∈ P (E) \ {∅} : X is compact}
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equipped with the Vietoris topology, generated by the family of sets of the form

{F ∈ Comp(E) : F ∩ U 6= ∅}, {F ∈ Comp(E) : F ⊆ U},

where U are open subsets of the space E. So the basic open sets in Comp(E) are
of the form

{F ∈ Comp(E) : F ⊆ U1 & F ∩ U2 6= ∅ & · · · & F ∩ Un 6= ∅},

where U1, U2, · · ·Un are open sets in E.
If E is a metric space, then the space Comp(E) is metrizable, too. One of its

metrics is the so called Hausdorff metric ρ defined by the formula

ρ(A,B) = inf{ε > 0 : (∀x ∈ A)(ρ(x,B) ≤ ε) & (∀y ∈ B)(ρ(y,A) ≤ ε)}.

If E is a complete metric space, then Comp(E) is also a complete metric space.
If E is a compact space, then Comp(E) is a compact space, too.

Notice that the set of all finite subsets of the space E is dense everywhere
in Comp(E). Notice also that the set of all finite subsets of an arbitrary count-
able dense subset of the space E is a countable dense subset of Comp(E). Hence,
Comp(E) is a Polish topological space, whenever E is a Polish topological space.

Theorem 2.15 Let E and F be any two Polish topological spaces. Then the fol-
lowing sentences hold:

1) the family of all perfect subsets of E is a Gδ-set in Comp(E);

2) the function
Φ : Comp(Comp(E))→ Comp(E),

given by the formula Φ(L) =
⋃
L, is continuous;

3) the function
Φ : Comp(E)× Comp(E)→ Comp(E),

given by the formula Φ(A,B) = A ∪B, is continuous;

4) if the function f : E → F is continuous, then the function

f∗ : Comp(E)→ Comp(F ),

given by the formula f∗(A) = f(A), is continuous, too.

We leave the proof of this theorem to the reader. In connection with Theorem
15 we only remark here that the function

g : Comp(E)× Comp(E)→ Comp(E),

defined by the formula
g(A,B) = A ∩B,

is not necessarily continuous. However, if A is a closed and open subset of E, then
the mapping

h : Comp(E)→ Comp(E),

given by the formula
h(B) = A ∩B,

is continuous.
At this point we shall finish our short review of topological notions and facts

which will be used further in the text of this book.
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Exercises

Exercise 2.1 Let X and Y be any two sets and let f : X → Y be an arbitrary
mapping. For every set Z ⊆ X let us put

cl(Z) = f−1(f(Z)).

Prove that the operator cl is the closure operator in the sense of Kuratowski and
hence, it defines a certain topology T on the set X. Investigate the properties of
this topology. In particular, prove that T is discrete if and only if the mapping f is
an injection.

Exercise 2.2 Prove, in theory ZF, that the Tychonoff theorem about products of
quasi-compact topological spaces is equivalent to the Axiom of Choice. Moreover,
show in ZFthat the following very weak version of the Tychonoff product theorem
is also equivalent to the Axiom of Choice : the topological product of any family of
spaces (Ei)i∈I , where

(∀i)(i ∈ I → card(T (Ei)) ≤ 3),

is quasi-compact.

Exercise 2.3 Let I be any set of indices, let (Xi)i∈I be a family of finite sets and
let Φ be a family of partial functions from I into

⋃
i∈I Xi. Assume that the following

conditions hold:

a) for any φ ∈ Φ and i ∈ dom(φ) we have φ(i) ∈ Xi;

b) for any finite set J ⊆ I there exists a function φ ∈ Φ such that J ⊆ dom(φ)
(in particular, all sets Xi (i ∈ I) are non-empty).

Prove that there exists a function

f : I →
⋃
i∈I

Xi

which satisfies the following relations:

c) (∀i ∈ I)(f(i) ∈ Xi);

d) for each finite set J ⊆ I one can find φ ∈ Φ such that φ|J = f |J .

The formulated result is due to Rado. Its special case, when card(I) = ω, is
equivalent to the König theorem on ω-trees.

Exercise 2.4 Let I be any set of indices, again, and let (Xi)i∈I be a family of finite
sets. Show that the following two sentences are equivalent:

a) there exists an injective family (xi)i∈I such that

(∀i ∈ I)(xi ∈ Xi);

b) for every finite set J ⊆ I the inequality

card(
⋃
i∈J

Xi) ≥ card(J)

holds.
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This result is due to Hall and is usually called ”the theorem about systems
of pairwise different representatives”.

Exercise 2.5 Let X be a quasi-compact space. Show that for every topological space
Y the mapping

pr1 : Y ×X → Y

is closed (i.e. the images of closed sets are closed). Does this property characterize
quasi-compact spaces in the class of all topological spaces ?

Exercise 2.6 Let C[0, 1] be the set of all continuous real functions defined on the
segment [0, 1]. Let us consider in C[0, 1] the topology of uniform convergence on
this segment. Then C[0, 1] becomes a separable Banach space. Let us put

Φ = {φ ∈ C[0, 1] : φ is nowhere differentiable on [0, 1]}.

Prove that the set Φ is a comeager subset of the space C[0, 1].
This classical result is due to Banach.

Exercise 2.7 Let Γ be any topological group. Show that one of the following two
sentences holds:

a) Γ is a first category topological space;

b) Γ is a Baire topological space.

Exercise 2.8 Let E be a topological space. For every set Z ⊆ E let int(Z) be the
set of all interior points of Z. A set X ⊆ E is called regular open (respectively,
regular closed), if there exists a closed set F ⊆ E (respectively, an open set
V ⊆ E), for which X = int(F ) (respectively, X = cl(V )). Prove that

a) a set X ⊆ E is regular open if and only if X = int(cl(X));

b) a set X ⊆ E is regular closed if and only if X = cl(int(X));

c) the intersection of two regular open sets is regular open, too;

d) the union of two regular closed sets is regular closed, too;

e) a set Y ⊆ E has the Baire property if and only if there exists a regular open
set V ⊆ E and a first category set P ⊆ E, such that

Y = V M P.

Moreover, prove that if E is a Baire space, then for any set Y ∈ B̄(E) there exists
exactly one pair (V, P ) of sets satisfying the above conditions.

Exercise 2.9 Let E be an arbitrary topological space. Prove that E can be repre-
sented in the form

E = X ∪ Y,

where the sets X and Y satisfy the following relations:

a) X ∩ Y = ∅;

b) X is a perfect subset of E;

c) Y does not contain a non-empty dense in itself subset.

This is the classical Cantor-Bendixson theorem. In particular, if E has a countable
base, then the set Y is at most countable.
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Exercise 2.10 Let E be a topological space and suppose that a set Y ⊆ E does not
contain a non-empty dense in itself subset. Prove that the boundary of the set Y is
a nowhere dense subset of E. Conclude from this fact that the set Y has the Baire
property in E.

Exercise 2.11 Let E be a topological space and let X and Y be some subsets of E.
Suppose that X ⊆ cl(Y ) and X has the Baire property in cl(Y ). Show that the set
X ∩ Y has the Baire property in Y .

Exercise 2.12 Prove Theorem 6 from this Chapter.

Exercise 2.13 Prove Theorem 7 from this Chapter.

Exercise 2.14 Show that the Kuratowski-Ulam theorem remains true under a
weaker assumption about the space E2, namely if E2 has a countable π-base (i.e.
πw(E2) = ω). Show also that the Kuratowski-Ulam theorem, in general, is not true
without some assumptions on the space E2.

Exercise 2.15 Prove that if a topological space E is Hausdorff, then the following
inequality holds:

card(E) ≤ 22d(E)
.

Check that this inequality is not true for the class of all topological spaces. Finally,
for any infinite cardinal number κ construct a compact topological space E such that

d(E) = κ, card(E) = 22κ

.

Exercise 2.16 Let κ be any infinite cardinal number and let (Ei)i∈I be a family of
topological spaces such that

d(Ei) ≤ κ (i ∈ I).

Show that
c(
∏
i∈I

Ei) ≤ κ.

In particular, the topological product of any family of separable spaces satisfies the
Suslin condition. This classical result is due to Marczewski.

Exercise 2.17 Let (Ei)i∈I be a family of non-empty topological spaces. Prove that
the following two sentences are equivalent:

a) the topological product
∏

i∈I Ei satisfies the Suslin condition;

b) for each finite set J ⊆ I the topological product
∏

i∈J Ei satisfies the Suslin
condition.

Exercise 2.18 Let (E, T ) be a topological space and let RO(T ) be a family of all
regular open sets in E. Prove that the inequality

card(RO(T )) ≤ 2d(E)

holds. Conclude from this fact, that for every regular topological space E the in-
equality

w(E) ≤ 2d(E)

holds. Deduce also from the last inequality that the topological space Rκ is non-
separable whenever k > 2ω.
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Exercise 2.19 Let κ be an infinite cardinal number and let E be a topological space
such that c(E) ≤ κ. Let (Xi)i∈I be an arbitrary family of pairwise disjoint subsets
of E which have the Baire property and are not first category sets. Prove that the
inequality

card(I) ≤ κ
holds.

Exercise 2.20 Let E be a metric space and let X be a topologically complete sub-
space of E. Show that X is a Gδ-set in E.

Exercise 2.21 A topological space E is called an isodyne if for each non-empty
open set V ⊆ E we have the equality

card(V ) = card(E).

Show that in any topological space the class of all non-empty open isodyne subsets
is a π-base.

Exercise 2.22 Let κ be an infinite cardinal number. We say that a topological
space E is κ-inexhaustible if E cannot be represented in the form

E =
⋃
i∈I

Xi,

where card(I) ≤ κ and every Xi (i ∈ I) is a first category subset of E. In particular,
a space E is ω-inexhaustible if and only if E is not a first category space.

Suppose that the Generalized Continuum Hypothesis holds and let E be any κ-
inexhaustible isodyne Hausdorff topological space. Prove that

(card(E))κ = card(E).

Exercise 2.23 Show that the definition of Hausdorff metric is correct. Show also
that if E is a Polish topological space, then the space Comp(E) is a Polish topological
space, too.

Exercise 2.24 Prove Theorem 15 from this Chapter.

Exercise 2.25 Let (E, ρ) be a metric space. Let us define the Hausdorff metric ρ1

on the class E1 of all non-empty closed bounded subsets of the space E. Show that
if (E, ρ) is complete then (E1, ρ1) is complete, too.

Exercise 2.26 We say that a topological space E is totally disconnected if each
point in E has a local base consisting of closed and open (at the same time) subsets
of E.

Prove that any Boolean algebra is isomorphic to the algebra of all closed and
open (at the same time) subsets of some compact, totally disconnected topological
space (this is a topological version of the Stone theorem on the representations of
Boolean algebras).

Exercise 2.27 Prove that Martin’s Axiom is equivalent to the following statement:

if E is a compact topological space with c(E) ≤ ω, then E is κ-
inexhaustible for any κ < 2ω.

Exercise 2.28 Let E1 be a topological space satisfying the first countability axiom
such that every closed subset of E1 is Gδ-set in E1. Let E2 be a complete metric
space. Finally, let X be a subset of E1 and let f : X → E2 be a continuous mapping.
Prove that there exist a set X∗ ⊆ E1 and a continuous mapping f∗ : X∗ → E2 with
the following properties:
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a) X ⊆ X∗ ⊆ cl(X);

b) X∗ is a Gδ–set in E1;

c) f∗ is an extension of f .

Exercise 2.29 Let E1 and E2 be two complete metric spaces. Let X ⊆ E1, Y ⊆
E2 and let

f : X → Y

be an arbitrary homeomorphism between X and Y . Show that there exist some sets
X∗ ⊆ E1, Y ∗ ⊆ E2 and a mapping

f∗ : X∗ → Y ∗

with the following properties:

a) X ⊆ X∗ and X∗ is a Gδ–set in E1;

b) Y ⊆ Y ∗ and Y ∗ is a Gδ–set in E2;

c) f∗ is a homeomorphism between X∗ and Y ∗;

d) f∗ is an extension of f .

This classical result is due to Lavrent’ev and is known as the Lavrent’ev theorem
on extensions of homeomorphisms.

Exercise 2.30 Show that there exist a subset X of the segment [0, 1] and an in-
jective continuous mapping f : X → [0, 1] such that f cannot be extended to an
injective continuous mapping acting from a Borel subset of [0, 1] into [0, 1].

Exercise 2.31 Let E be an arbitrary locally compact topological space. Prove that
there exists a compact topological space E∗ such that for some point e ∈ E∗ the
space E∗ \ {e} is homeomorphic with the space E. Prove also that the space E∗ is
unique with exactness to homeomorphism.

The mentioned space E∗ is called the Aleksandrov compactification of the
original space E.

Exercise 2.32 Let us equip the first uncountable ordinal ω1 with its order topology
(generated by the natural ordering in ω1). Prove that

a) the space ω1 is locally compact and locally separable;

b) ω1 satisfies the first countability axiom;

c) there exists a closed subset of ω1 which is not a Gδ-set in ω1.

d) c(ω1) = w(ω1) = ω1.

Exercise 2.33 Using the Tychonoff theorem on products of quasi-compact topolog-
ical spaces prove the following generalization of the König lemma:

Let (T,�) be any tree all levels of which are finite. Then there exists a
path through T .
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Chapter 3

Elements of Descriptive Set
Theory

In this Chapter we discuss some fundamental notions of the classical descriptive set
theory in Polish topological spaces. We confine ourselves to Borel and analytic sets.
A more general notion of a projective set will be thoroughly considered in Part 2 of
the book.

Let E be an arbitrary topological space. As we know, the Borel σ-algebra B(E)
is the σ-algebra of subsets of E generated by the family of all open subsets of E.
The elements of the σ-algebra B(E) are called Borel sets in E.

In some particular but important for applications cases it is possible to give a
description of the σ-algebra B(E) only in terms of countable unions and countable
intersections.

A topological space E is called perfect if any closed subset of E is a Gδ-set in
E (or, equivalently, if any open subset of E is an Fσ-set in E). It is not difficult to
prove that for perfect topological spaces the following result holds.

Theorem 3.1 Let E be a topological space and let B∗(E) be the smallest (with
respect to inclusion) class of subsets of E containing all open subsets of E and
closed under the operations of countable unions and countable intersections. If E is
a perfect topological space then the equality

B(E) = B∗(E)

holds.

For any topological space E we can describe the class B∗(E) in a more concrete
way. Indeed, we can write

B∗(E) = B∗
0(E) ∪ · · · ∪B∗

ξ (E) · · · (ξ < ω1),

where the classes B∗
ξ (E) (ξ < ω1) are defined by transfinite recursion:

1. B∗
0(E) is the class of all open subsets of E;

2. B∗
ξ (E) is the class of all countable intersections of arbitrary elements of the

class
⋃

ζ<ξ B
∗
ζ (E), if ordinal ξ is odd;

3. B∗
ξ (E) is the class of all countable unions of arbitrary elements of the class⋃
ζ<ξ B

∗
ζ (E), if ordinal ξ > 0 is even.
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It is evident that for any topological space E we have

B∗(E) ⊆ B(E).

There are examples of topological spaces E such that

B∗(E) 6= B(E).

But for perfect topological spaces E, by the preceding theorem, the equality
B∗(E) = B(E) holds and in many cases makes it easier to prove the properties
of Borel subsets of E by the method of transfinite induction. We note here that the
class of perfect topological spaces is wide enough for a lot of applications. In par-
ticular, this class contains in itself the class of all metrizable topological spaces. In
what follows we mainly restrict our considerations to the class of perfect topological
spaces.

The following auxiliary proposition is often applied in the theory of Borel sets.

Lemma 3.1 Let E be an arbitrary perfect topological space. Then the Borel σ-
algebra B(E) of this space is the smallest (with respect to inclusion) class K such
that

1) all open subsets of E belong to K;

2) K is closed under countable intersections;

3) K is closed under countable unions of its pairwise disjoint elements.

Proof. One can prove this lemma by the method of transfinite induction. But here
we give another, simpler argument. At first it is clear that K ⊆ B(E). Let us put

H = {X ⊆ E : X ∈ K & E \X ∈ K}.

Then, for the class H, it is not difficult to check that

1) all open subsets of E belong to H;

2) H is closed under countable intersections;

3) H is closed under countable unions of its pairwise disjoint elements.

By the definition of the class K, we have K = H. Thus, we see that K is a
σ-algebra of subsets of E containing all open subsets of E. So B(E) ⊆ K, and
finally, B(E) = K, as required.

A more general operation than that of countable unions and countable inter-
sections is the so called (A)-operation which was introduced by Alexandrov and
Hausdorff and which is defined in the following way.

Let E be a basic set (in general, not equipped with any topology) and let Φ be
a class of subsets of E. Let us consider an arbitrary system of sets

(Xs)s∈N<ω ,

where N<ω denotes the complete N-ary tree of height ω, i.e. the set of all finite
sequences of elements of N, and every set Xs belongs to the class Φ. The result of
(A)-operation applied to the system of sets mentioned above is the set of the form

X =
⋃

f∈Nω

⋂
k

Xf |k.
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This set is also sometimes denoted by

X = (A) ((Xs)s∈N<ω ) .

The set X is also called an analytic set (over the original class Φ) corresponding
to the system (Xs)s∈N<ω . The family of analytic sets over the class Φ, corresponding
to all systems (Xs)s∈N<ω ⊆ Φ, is denoted by (A)(Φ) and is called the analytic class
over Φ. It is clear that always Φ ⊆ (A)(Φ).

If s = (s1, . . . , sn) and t = (t1, . . . , tk) are arbitrary sequences from N<ω then
by s ∗ t we denote the concatenation of sequences s and t, i.e. a sequence from N<ω

defined by the equality

s ∗ t = (s1, . . . , sn, t1, ..., tk).

If s ∈ N<ω and k ∈ N then we put

s ∗ k = s ∗ (k).

We denote the empty sequence by the symbol (). For any s ∈ N<ω let lh(s) be
the length of s.

Let (Yk)k∈N be an arbitrary countable family of sets belonging to the original
class Φ. Let us consider the system (Xs)s∈N<ω where

Xs = Ylh(s).

Then, evidently, we have

(A)((Xs)s∈N<ω ) =
⋂
k

Yk.

Now let us consider the system (Xs)s∈N<ω where

Xs = Ys1 .

Then we obviously get
(A)((Xs)s∈N<ω ) =

⋃
k

Yk.

Thus, we see that (A)-operation is a generalization of usual operations of count-
able unions and countable intersections. The following theorem shows us that (A)-
operation is idempotent.

Theorem 3.2 For any basic set E and for any class Φ of subsets of E the equality

(A)((A)(Φ)) = (A)(Φ)

holds. In particular, the class (A)(Φ) is closed under countable unions and countable
intersections.

We leave a non-trivial proof of this result to the reader as a very useful exercise.
Notice that from this theorem we can easily conclude that if E is a perfect topo-
logical space and Φ(E) is either the class of all open subsets of E or the class of all
closed subsets of E, then

B(E) ⊆ (A)(Φ(E)).

Now, let E be an arbitrary topological space. We define analytic sets in E to
be the sets from the class (A)(F (E)), where F (E) is the class of all closed subsets
of E. The class (A)(F (E)) will be denoted simply by A(E). By the above remark
in any perfect topological space E every Borel set is also an analytic one.

The following easy proposition quite often appears to be useful in technical
aspect.
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Theorem 3.3 Let E be a basic set and let Φ be a class of subsets of E closed under
finite intersections. Then, the analytic class (A)(Φ) coincides with the class of sets
of the form

X =
⋃

f∈Nω

⋂
k

Xf |k,

where system (Xs)s∈N<ω is regular, i.e.

Xs∗i ⊆ Xs

for every s ∈ N<ω and every i ∈ N.

In particular, when we deal with analytic subsets of a topological space E then
without loss of generality we may consider only such analytic sets which are gener-
ated by regular systems of closed subsets of E.

Another purely technical proposition is also very useful in many situations.

Theorem 3.4 Let E be a basic set with a given system

(Xs)s∈N<ω

of its subsets. If this system is regular and additionally satisfies the condition

(lh(s) = lh(t) & s 6= t)→ Xs ∩Xt = ∅ (s, t ∈ N<ω)

then the following equality holds:

(A)((Xs)s∈N<ω ) =
⋂
k

⋃
lh(s)=k

Xs.

In other words, in this case the (A)-operation reduces itself to countable unions
and countable intersections.

The proof of Theorem 4 relies on direct checking of the equality above, and
therefore is left to the reader.

Let E be a basic set, let Φ be a class of subsets of E and let (Xs)s∈N<ω be a
system of sets from the class Φ. Let us define by transfinite recursion over ξ < ω1

the sets

1) X0
s = Xs,

2) Xξ+1
s = Xξ

s ∩ (
⋃

n∈N X
ξ
s∗n),

3) Xξ
s =

⋂
ζ<ξ X

ζ
s for limit ordinal ξ < ω1.

It is easy to show by transfinite induction that for ζ ≤ ξ we have

Xξ
s ⊆ Xζ

s .

Now, for ξ < ω1 let us put

1) Yξ =
⋃

nX
ξ
n,

2) Tξ =
⋃

s(X
ξ
s \Xξ+1

s ),

3) Zξ = Yξ \ Tξ.

Let us notice here that all the sets defined above:

Xξ
s , Yξ, Tξ, Zξ

belong to the σ-algebra (and more precisely to the σ-ring) of sets generated by the
original class Φ. The following important result was obtained by Sierpiński.
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Theorem 3.5 For any system of sets

(Xs)s∈N<ω

the following equalities hold:

(A)((Xs)s∈N<ω ) =
⋂

ξ<ω1

Yξ =
⋃

ξ<ω1

Zξ.

Proof. At first we prove the inclusion⋃
ξ<ω1

Zξ ⊆ (A)((Xs)s∈N<ω ). (3.1)

Let z ∈
⋃

ξ<ω1
Zξ. Then for some ξ < ω1 we have

z ∈ Yξ, z 6∈ Tξ.

Thus for some n0 we have z ∈ Xξ
n0

and at the same time

z 6∈ Xξ
n0
\Xξ+1

n0
,

whence we obtain that z ∈ Xξ+1
n0

. But then, remembering that

Xξ+1
n0
⊆
⋃
n

Xξ
n0n,

we obtain that for some n1 we have z ∈ Xξ
n0n1

. Continuing this process by recursion
we see that for some sequence

f = (n0, n1, n2, . . .) ∈ Nω,

the element z belongs to the intersection⋂
k

Xξ
f |k ⊆ (A)((Xs)s∈N<ω ).

Thus, the required inclusion (3.1) is established. Now we verify that the inclusion

(A)((Xs)s∈N<ω ) ⊆
⋂

ξ<ω1

Yξ (3.2)

is true. For this purpose we notice at first that for every ξ < ω1, every r ∈ N and
all f ∈ Nω we have the inclusion ⋂

k

Xf |k ⊆ Xξ
f |r,

which can easily be obtained by transfinite induction on ξ. Thus, if ξ < ω1, the
following relations hold: ⋂

k

Xf |k ⊆ Xξ
f(0) ⊆

⋃
n

Xξ
n = Yξ,

from which we immediately obtain (3.2). Now we verify the equality⋂
ξ<ω1

Tξ = ∅. (3.3)
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Suppose that x ∈
⋂

ξ<ω1
Tξ. Then for any ordinal ξ < ω1 we can find a sequence

s ∈ N<ω, depending on ξ, such that

x ∈ Xξ
s \Xξ+1

s .

Thus, there are two distinct indices ξ and ζ, for instance ξ < ζ, with the same
corresponding s ∈ N<ω. But in this case we obtain that

x ∈ Xζ
s ⊆ Xξ+1

s ,

which is impossible. Finally, taking into account all three formulas (3.1), (3.2) and
(3.3) we come to the required result.

As a trivial consequence of the theorem proved above we obtain the following
proposition.

Theorem 3.6 Let E be a topological space and let X be a subset of E which is
either an analytic set or the complement of an analytic set. Then we have

X =
⋃

ξ<ω1

Xξ,

where all the sets Xξ (ξ < ω1) are pairwise disjoint and Borel in the space E.

We notice here that the above representation of the set X as the union of ω1-
sequence of pairwise disjoint Borel sets was obtained effectively, i.e. without the
help of the Axiom of Choice.

So far we have considered the (A)-operation in a basic set E, which, in general,
is not equipped with any topology. But it should be noticed that the most content
theory of this operation may be developed when E is a topological space and the
(A)-operation is applied to the class Φ = F (E) of all closed subsets of E. From the
point of view of applications to other domains of mathematics the most important
case is when E is a Polish topological space. As we have said above, we denote the
class of all analytic subsets of a Polish space E by the symbol A(E). Since every
Polish space E is a perfect topological space, we have the inclusion

B(E) ⊆ A(E).

We want to remark here that if E is an uncountable space, then this inclusion is
proper (see exercises after this Chapter).

Theorem 3.7 Let E be a Polish space. Then the class A(E)\∅ can be described as
the class of all subsets of the space E which are continuous images of the canonical
Baire space Nω.

Proof. Let s be an arbitrary finite sequence of natural numbers. Let us put

Nω(s) = {z ∈ Nω : (∀i)(i < lh(s)→ z(i) = s(i)}.

It is obvious that the system of sets

(Nω(s))s∈N<ω

forms a base of the space Nω such that all elements of this base are non-empty,
open and closed subsets of Nω.

Now, let E be an arbitrary non-empty Polish topological space. Then it is not
difficult to construct a regular system

(Fs)s∈N<ω

of closed subsets of E such that

54



1) limk(diamF(n1,...,nk)) = 0,

2) E = (A)((Fs)s∈N<ω ).

From the existence of such a system it follows among other things that a given space
E is a continuous image of the Baire space Nω. Now, let us suppose that for some
set X ⊆ E we have

X = (A)((Xs)s∈N<ω ),

where the sets (Xs)s∈N<ω are closed in E and form a regular system. Taking into
account what we have just said about the space E and by the existence of the
canonical isomorphism between Nω and Nω × Nω we may assume without the loss
of generality that

lim
k
diam(X(n0,...,nk)) = 0.

Now let us put
Z = {f ∈ Nω :

⋂
k

Xf |k 6= ∅}.

It is not difficult to check that the set Z is closed in the space Nω. So Z is a Polish
space. Let us define a mapping

Φ : Z → E,

putting at f ∈ Z the value Φ(f) equal to the unique point which belongs to the
intersection

⋂
k Xf |k. Then it is easy to see that the mapping Φ is continuous and

Φ(Z) = X. Further, if X 6= ∅, then Z 6= ∅, too. Therefore, in this case there exists
a continuous mapping from the space Nω onto Z. Thus, if the set X is non-empty,
then it is a continuous image of the space Nω. In this way we have shown that any
non-empty set from the class A(E) is a continuous image of the Baire space Nω.

Conversely, let Y ⊆ E be such that there exists a continuous surjection

Φ : Nω → Y.

Then for every element f ∈ Nω we can write

{Φ(f)} ⊆
⋂
k

Φ(Nω(f | k)) ⊆
⋂
k

cl(Φ(Nω(f | k))).

By the virtue of the continuity of the mapping Φ we have

lim
k
diam (cl(Φ(Nω(f | k)))) = 0.

Thus, we obtain that
{Φ(f)} =

⋂
k

cl(Φ(Nω(f | k))).

Whence it could immediately be seen that

Y = (A)((Xs)s∈N<ω ),

where the system of sets (Xs)s∈N<ω is defined by the formula

Xs = cl(Φ(Nω(s))),

i.e. Y ∈ A(E). This completes the proof of Theorem 7.
Since for any Polish topological space E we have the inclusion

B(E) ⊆ A(E),

from Theorem 7 it follows that in the space E every non-empty Borel subset is a
continuous image of the Baire space Nω. The next result strengthens Theorem 7 in
the case of Borel subsets of a Polish space.
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Theorem 3.8 . Let E be a Polish topological space. Then every Borel subset of E
is an injective continuous image of some Polish space.

Proof. Evidently, the assertion of the theorem is true for any open subset of E,
since open subsets of E are Polish spaces. Now let (Xi)i∈I be an arbitrary countable
family of pairwise disjoint subsets of the space E such that there exist a countable
family (Pi)i∈I of Polish topological spaces and a countable family

Φi : Pi → Xi (i ∈ I)

of bijective continuous mappings. Then it is obvious that there exists a bijective
continuous mapping

Φ : P →
⋃
i∈I

Xi,

where P denotes the topological sum of the family of the spaces (Pi)i∈I . Of course,
P is a Polish topological space,too.

Now, let (Yi)i∈I be any countable family of subsets of E such that there exist a
countable family (Qi)i∈I of Polish topological spaces and a countable family

Ψi : Qi → Yi (i ∈ I)

of bijective continuous mappings. It is clear that the topological product
∏

i∈I Qi

is a Polish topological space. Analogically, the topological product EI may also be
considered as a Polish space. Let us take the continuous mapping

Ψ :
∏
i∈I

Qi → EI

defined by the formula

Ψ(q) = (Ψi(qi))i∈I (q ∈
∏
i∈I

Qi).

Obviously, the mapping Ψ is injective and continuous. Let us put

Q = Ψ−1(diag(EI)),

where diag(EI) is the diagonal of the space EI . Clearly, the set Q is closed in the
Polish space

∏
i∈I Qi, so Q is a Polish space, too. Besides, it is evident that the

mapping
Ψ|Q : Q→ (

∏
i∈I

Yi) ∩ diag(EI)

is bijective. Now it remains to notice that the set (
∏

i∈I Yi)∩diag(EI) is homeomor-
phic to the intersection of the family of sets (Yi)i∈I , thus there exists a continuous
bijection from the space Q onto the set

⋂
i∈I Yi. Resuming the above ideas and

applying Lemma 1 we immediately obtain the assertion of the present theorem.
Taking into account that there exists the canonical continuous bijection from

the Baire space Nω onto the Hilbert cube [0, 1]ω and using the fact that any Polish
space is topologically contained (as a Gδ-subset) in the Hilbert cube [0, 1]ω we can
deduce from Theorem 8 that every Borel subset of a Polish topological space is an
injective continuous image of some Polish subspace of the Baire space Nω.

Lemma 3.2 Let E be an arbitrary non-empty complete metric space without iso-
lated points. Then there exists a subset of E which is homeomorphic to the Cantor
discontinuum {0, 1}ω.
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The proof of this well-known result does not present any difficulties. It is carried
out by a standard method of constructing a dyadic system of non-empty closed
subsets of a given space E. Combining this simple result with Theorem 8, we
immediately obtain that every uncountable Borel subset of a Polish topological
space contains in itself some set homeomorphic to the Cantor discontinuum (this
classical result is due to Alexandrov and Hausdorff). So, we see that Borel subsets
of Polish topological spaces realize in a sense the Continuum Hypothesis: they are
either countable or they are of the cardinality continuum. An analogous result for
analytic subsets of Polish spaces will be established below.

Lemma 3.3 Let E be an arbitrary separable metric space and let g be a continuous
mapping from the space E onto some uncountable Hausdorff topological space. Then
there exist non-empty open sets U ⊆ E and V ⊆ E such that

1) both sets g(cl(U)) and g(cl(V )) are uncountable;

2) g(cl(U)) ∩ g(cl(V )) = ∅.

The proof of Lemma 3 is also quite simple and we leave it to the reader.

Theorem 3.9 Let E be a Polish topological space, let Y be an uncountable analytic
subset of some (possibly different from E) Polish space and let a mapping

g : E → Y

be surjective and continuous. Then there exists a set X ⊆ E homeomorphic to the
Cantor discontinuum {0, 1}ω and such that the mapping

g|X : X → g(X)

is a homeomorphism.

Proof. In the view of the result of Lemma 3 by the method of mathematical
recursion it is easy to construct a dyadic system

(Fs)s∈{0,1}<ω

of closed balls in the space E, so that for any s ∈ {0, 1}<ω they satisfy the following
relations:

1) Fs∗0 ∪ Fs∗1 ⊆ Fs;

2) g(Fs∗0) ∩ g(Fs∗1) = ∅;

3) g(Fs) is an uncountable set;

4) diam(Fs) < 1
lh(s)+1 .

Having constructed this system of balls we put

X =
⋂
k

⋃
lh(s)=k

Fs.

Then a direct checking shows us that the set X is homeomorphic to the Cantor
discontinuum and that the mapping g|X is injective. Hence, from the compactness
of the set X it follows that the mapping g|X is a homeomorphism between X and
g(X).

As an immediate consequence of the theorem proved above we obtain that every
analytic subset of a Polish topological space is either countable or contains in itself
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a set homeomorphic to the Cantor discontinuum (in the latter case, of course, the
cardinality of the analytic subset will be equal to the cardinality continuum).

Let E be an arbitrary topological space and let X and Y be some subsets of
E. We say that the sets X and Y can be separated by Borel sets if in the space E
there exist Borel sets X1 and Y1 such that

X ⊆ X1, Y ⊆ Y1, X1 ∩ Y1 = ∅.

The following auxiliary proposition may be easily proved using the closedness of
the class of all Borel sets in E under countable unions and countable intersections.

Lemma 3.4 Let E be a topological space, let X and Y be subsets of E and let

X =
⋃
n∈N

Xn, Y =
⋃
n∈N

Yn.

If the sets X and Y cannot be separated by Borel sets, then there exists a pair
of indices (n,m) such that the sets Xn and Ym cannot be separated by Borel sets,
either.

The classical result given below is due to Luzin and is called the principle of
separation for analytic sets.

Theorem 3.10 Let E be a Polish topological space and let X and Y be two disjoint
analytic sets in E. Then X and Y can be separated by Borel sets.

Proof. Assume otherwise that X and Y cannot be separated by Borel sets. Let

ϕ : Nω → X, ψ : Nω → Y

be surjective continuous mappings which define the sets X and Y . Using the nota-
tion from the proof of Theorem 7, we can write

X =
⋃
n

ϕ(Nω(n)), Y =
⋃
n

ψ(Nω(n)).

Whence, by the preceding lemma, we conclude that there exists a pair of indices
(n0,m0) for which the sets ϕ(Nω(n0)) and ψ(Nω(m0)) cannot be separated by Borel
sets. Repeating this process recursively, we construct two sequences of natural
numbers

x = (n0, . . . , nk, . . .), y = (m0, . . . ,mk, . . .)

such that for every k the sets

ϕ(Nω(x|k)), ψ(Nω(y|k))

cannot be separated by Borel sets. But since the mappings ϕ and ψ are continu-
ous this leads immediately to contradiction, as with a sufficiently large k the sets
ϕ(Nω(x|k)) and ψ(Nω(y|k)) lie in disjoint open neighbourhoods of the points

ϕ(x) ∈ X, ψ(y) ∈ Y.

The obtained contradiction completes the proof of this theorem.

From the theorem proved above we immediately get that if X is an analytic
subset of a Polish space E, such that its complement E \X is also analytic, then
the set X is a Borel subset of E. This classical result is due to Suslin.
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Theorem 3.11 Suppose that (Xn)n∈ω is an arbitrary family of pairwise disjoint
analytic subsets of some Polish topological space E. Then there exists a family
(Yn)n∈ω of pairwise disjoint Borel subsets of E such that

Xn ⊆ Yn (n ∈ ω).

Proof. From the previous theorem we deduce that for any pair (n,m) of distinct
indices there exists a Borel set Pnm ⊆ E such that

Xn ⊆ Pnm ⊆ E \Xm.

We put by recursion
Y0 =

⋂
m≥1

P0m,

Yn = (
⋂

m∈ω\{n}

Pnm) \ (Y0 ∪ . . . ∪ Yn−1) (n ≥ 1).

It is easy to check that (Yn)n∈ω is the required family.

For future needs we shall give one abstract topological characterization of the
canonical Baire space Nω. Evidently, this space is homeomorphic with the set
Z of all irrational numbers of the real line R. But obviously the set Z has the
following properties : it is non-empty, zero-dimensional (i.e. any of its points has
a fundamental system consisting of closed and open neighbourhoods), it is a dense
Gδ-subset of R and its complement is dense in R, too. It is easy to see that these
properties topologically characterize the space Nω. In other words, the following
easy lemma holds.

Lemma 3.5 Let E be any zero-dimensional Polish topological space and let Z be
a dense Gδ-subset of E such that its complement is dense in E, too. Then Z is
homeomorphic with the space Nω.

We leave details of the proof of this lemma to the reader. He must only check
that the properties of Z mentioned above imply that this set can be obtained by
(A)-operation applied to some regular system

(Fs)<ω
s∈N

consisting of non-empty, closed and open sets which are pairwise disjoint (when
lh(s) is fixed) and the diameters of which converge to zero when lh(s) converges to
infinity.

The following auxiliary proposition is an easy corollary from Lemma 5.

Lemma 3.6 Any uncountable zero-dimensional Polish topological space E can be
represented in the form

E = Z ∪D,

where Z ∩D = ∅, the set Z is homeomorphic to the Baire space Nω and the set D
is at most countable.

Proof. Let P be the set of condensation points of the space E. Then P is non-
empty, perfect and E \P is at most countable. Let C be any countable subset of P
dense in P . Then Z = P \C is a dense Gδ-subset of P such that its complement to
P is dense, too. Hence, the previous lemma implies that the set Z is homeomorphic
to the space Nω. It suffices to put D = (E \ P ) ∪ C.
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Theorem 3.12 Let E1 and E2 be two Polish spaces, let X be a Borel subset of E1

and let a mapping
g : X → E2

be injective and continuous. Then the set g(X) is a Borel subset of E2.

Proof. The last lemma states that each uncountable zero-dimensional Polish topo-
logical space after removing from it at most countable subset is homeomorphic to
the space Nω. The remark made after the proof of Theorem 8 says that any Borel
subset of a Polish topological space is an injective continuous image of some Polish
subspace of the zero-dimensional Baire space Nω. So it is sufficient to prove that
for each injective continuous mapping g from Nω into a Polish topological space E
the set g(Nω) is a Borel subset of E. Let us prove this assertion.

If a natural index k is fixed then the analytic sets

g(Nω(s)) (s ∈ Nk)

are pairwise disjoint since the mapping g is injective. Hence, it follows from the
separation principle for analytic sets that there are pairwise disjoint Borel sets

Bs (s ∈ Nk)

in the space E such that
g(Nω(s)) ⊆ Bs.

We define by recursion the following sets:

B∗
(n0)

= B(n0) ∩ cl(g(N
ω((n0)))),

B∗
s∗n = Bs∗n ∩ cl(g(Nω(s ∗ n))) ∩B∗

s .

From this definitions, using the induction on length of s, we can immediately check
the inclusion

g(Nω(s)) ⊆ B∗
s ⊆ cl(g(Nω(s))).

Hence, for any z ∈ Nω we get

g(z) =
⋂
k

B∗
z|k.

Therefore, we have
g(Nω) =

⋃
z∈Nω

⋂
k

B∗
z|k,

where the sets B∗
(n0,...,nk) are Borel and pairwise disjoint when k is fixed. Finally,

we apply Theorem 4 to the system of sets

(B∗
s )s∈N<ω

and get that the set g(Nω) is a Borel subset of the space E.

Comparing the theorem proved above to Theorem 8 we see that Borel subsets
of Polish topological spaces can be characterized as injective continuous images of
Gδ-subsets of the canonical Baire space Nω.

The following result generalizes the preceding theorem.
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Theorem 3.13 Let E1 and E2 be any two Polish topological spaces, let X be a
Borel subset of E1 and let

g : X → E2

be some injective Borel mapping. Then the set g(X) is a Borel subset of the space
E2.

Proof. In the topological product X × E2 we consider a graph of the mapping g,
i.e. the set

Γ(g) = {(x, y) ∈ X × E2 : y = g(x)}.

First, let us show that this set is a Borel subset of the product X × E2 . For this
purpose let us consider the mapping

ϕ : X × E2 → R,

defined by the formula
ϕ(x, y) = ρ(g(x), y),

where ρ is any metric in the space E2 . The mapping ϕ is a composition of Borel
mappings. Hence, it is a Borel mapping, too. Thus, the set

Γ(g) = ϕ−1({0})

is a Borel subset of X × E2. Finally, let us consider the mapping

pr2|Γ(g) : Γ(g)→ E2,

which is the restriction of the canonical projection pr2 to the set Γ(g). Then we have
pr2(Γ(g)) = g(X) and it is clear that pr2|Γ(g) is an injective continuous mapping.
Hence, using the preceding theorem, we get the required result.

In such a way we see that if X and Y are some Borel subsets of Polish topological
spaces and

g : X → Y

is a bijective Borel mapping then the converse mapping

g−1 : Y → X

is a Borel mapping, too. In other words, in such a case g is a Borel isomorphism
between the sets X and Y . Using this result let us prove the following theorem.

Theorem 3.14 Let X and Y be any Borel subsets of Polish topological spaces. If
card(X) = card(Y ), then these sets are Borel isomorphic.

Proof. A Borel isomorphism between the Cantor space {0, 1}ω and the unit closed
interval [0, 1] can be constructed directly. Hence, it follows that

{0, 1}ω = ({0, 1}ω)ω

is Borel isomorphic to the Hilbert cube [0, 1]ω. From this fact and the fact that
every separable metric space is topologically contained in the Hilbert cube [0, 1]ω we
deduce that any separable metric space is Borel isomorphic with some subset of the
Cantor space {0, 1}ω. Now, let X and Y be given Borel subsets of Polish topological
spaces. Without loss of generality we may assume that both sets X and Y are
uncountable. Hence, any of these sets contains a subset which is homeomorphic to
the Cantor space {0, 1}ω. Thus, we see that X is Borel isomorphic to some Borel
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subset of Y and, conversely, that Y is Borel isomorphic to some Borel subset of
X. Now we can apply the Banach theorem, which was proved in Chapter 1, and
immediately get the required result.

The theorem proved above is of primary importance because it allows us in
many cases to consider a concrete uncountable Borel set and automatically extend
obtained results onto any other uncountable Borel set. In particular, we have that
all Polish topological spaces of the same cardinality are Borel isomorphic to each
other. We add to this result the following useful theorem.

Theorem 3.15 Let E1 and E2 be arbitrary uncountable Polish topological spaces
without isolated points. Then there exists a Borel isomorphism

g : E1 → E2,

which preserves the first category sets, i.e. for any X ⊆ E1 we have
X is first category set ←→ g(X) is first category set.

In particular, g preserves the Baire property.

Proof. After removing from both spaces E1 and E2 nowhere dense boundaries of
all balls from two countable families we get zero-dimensional Polish spaces E∗1 and
E∗2 . Now, let X1 and X2 be any two dense Gδ-subsets of E∗1 and E∗2 , respectively,
such that their complements to E∗1 and E∗2 , respectively, are dense, too. As we
know, the sets X1 and X2 are homeomorphic to the canonical Baire space Nω and
so they are homeomorphic to each other. Let

ϕ : X1 → X2

be any homeomorphism between X1 and X2. Remark that the sets E1 \ X1 and
E2\ X2 are first category Borel subsets of E1 and E2 , respectively. Let us notice
that without loss of generality we may assume that they have the same cardinality.
Finally, let

ψ : E1 \X1 → E2 \X2

be any Borel isomorphism. Then it is easy to see that the common extension of
functions ϕ and ψ is the required Borel isomorphism g.

Let us remark also that an analogous result can be formulated in terms of
measure theory. This fact will be discussed later on in the book.

Till now we have considered various properties of Borel and analytic sets. These
classes of sets are important for applications, for instance in analysis, in measure
theory, in probability theory and other branches of mathematics. But in the de-
scriptive set theory more general classes of sets are investigated, too. An example
of such a class of sets are the projective sets which were introduced by Luzin and
Sierpiński. This notion has not so many applications as Borel and analytic sets.
However, this notion occurs to be rather deep and connected with the foundations
of mathematics. Moreover, it is worth remarking that from the point of view of
projective sets many aspects and properties of Borel and analytic sets are more
clearly seen. We discuss projective sets and some of their properties in Part 2 of
this book. Here we shall only give a classical definition of these sets.

Let E be an arbitrary Polish topological space. We define the classes of sets

Pr0(E), P r1(E), . . . , P rn(E), . . . .

by recursion. Let us put
Pr0(E) = B(E).
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Suppose now that for natural number n ≥ 1 the classes Prk(E), where k < n, are
defined. If n is odd then Prn(E) is the class of all continuous images (in E) of sets
from the class Prn−1(E). If n is even then Prn(E) is the class of all complements
of the sets from the class Prn−1(E). Now we put

Pr(E) =
⋃
n

Prn(E).

Projective subsets of the topological space E are members of the class Pr(E).
Hence, we see that the Borel subsets of E (i.e. sets from the class Pr0(E)) and the
analytic subsets of E (i.e. sets from the class Pr1(E)) are only very particular cases
of projective sets. Let us notice at this place that many natural questions can be
solved for Borel and analytic subsets of Polish spaces (questions about cardinality,
measurability, Baire property etc.). Analogous questions for projective sets of higher
levels are, as a rule, undecidable by the contemporary set theory.

Exercises

Exercise 3.1 Prove Theorem 1 from this Chapter.

Exercise 3.2 Prove Theorem 2 from this Chapter.

Exercise 3.3 Let E be any non-empty topological space. Show that

card(B(E)) ≤ card(T (E))ω,

where T (E) is the topology of the space E. Show also that if E is an infinite Polish
topological space, then

card(Pr(E)) = 2ω.

Deduce from this fact that if E is an uncountable Polish space, then there are
subsets of E which are not projective (in particular, are not Borel or analytic).

Exercise 3.4 Prove Theorem 3 from this Chapter.

Exercise 3.5 Prove Theorem 4 from this Chapter.

Exercise 3.6 Show that in any Polish topological space E every uncountable set
X from the class Pr3(E) is the union of a family (Xξ)ξ<ω1 of non-empty pairwise
disjoint Borel subsets of E.

Exercise 3.7 Let C be the standard Cantor set on the unit closed interval [0, 1] and
let D be the set of all end-points of the connected components of [0, 1] \ C. Show
that the set C \D is homeomorphic to the set Z of all irrational numbers. Starting
from this fact construct two bijective, continuous mappings

g1 : Nω → [0, 1],

g2 : Nω → [0, 1]ω.

Exercise 3.8 Prove Lemma 2 from this Chapter.

Exercise 3.9 Prove Lemma 3 from this Chapter.

Exercise 3.10 Prove Lemma 4 from this Chapter.
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Exercise 3.11 Deduce directly from the separation principle for analytic sets that
if E1 and E2 are two Polish topological spaces and

g : E1 → E2

is a bijective Borel mapping, then g is a Borel isomorphism between these spaces.
Let again E1 and E2 be two Polish topological spaces and let

g : E1 → E2

be some mapping. Show that if the graph Γ(g) of the mapping g is an analytic subset
of the topological product E1×E2 , then g is a Borel mapping and hence, the graph
Γ(g) is a Borel subset of E1×E2 . Prove a more general version of this proposition
when in the place of Polish topological spaces E1 and E2 we take two arbitrary Borel
sets X1 ⊆ E1 and X2 ⊆ E2 .

Exercise 3.12 Let X be any analytic subset of a Polish topological space, let E be
any metrizable topological space and let

g : X → E

be a Borel mapping. Prove that the set g(X) ⊆ E is separable.

Exercise 3.13 Suppose that the inequality

2ω0 < 2ω1

holds (this inequality follows, for instance, from the Continuum Hypothesis). Let
E1 and E2 be any two metrical spaces such that E1 is separable and let

g : E1 → E2

be any Borel mapping from E1 into E2 . Prove that the set g(E1) ⊆ E2 is separable.
Is the assumption of metrizability of the space E2 essential here?

Exercise 3.14 Prove Lemma 5 from this Chapter.

Exercise 3.15 Let E be an arbitrary metric space and let X be a subset of E. Let

g : X → R

be a Borel mapping. Show that there exist a Borel set X∗ ⊆ E and a Borel mapping

g∗ : X∗ → R

such that X ⊆ X∗ and g∗|X = g.

Exercise 3.16 Let E be an arbitrary Polish topological space of the cardinality
continuum. Show that there exists a real function

g : E → R

such that for every set X ⊆ E of the cardinality continuum the restriction

g|X : X → R

is not a Borel mapping.
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Exercise 3.17 Let K = {0, 1}ω × [0, 1]. It is obvious that the topological space K
is compact, so the space Comp(K) is compact, too. Using the fact that there exists
a continuous surjection

g : {0, 1}ω → Comp(K),

prove that the space {0, 1}ω contains an analytic set which is not a Borel subset of
this space. Deduce also from this fact that any uncountable Polish space contains
an analytic subset which is not Borel.

Exercise 3.18 Give an example of two Polish topological spaces E1 and E2 without
isolated points and of a Borel isomorphism

g : E1 → E2

between these spaces such that g does not preserve the Baire property.
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Chapter 4

Some Facts from Measure
Theory

A measure of a set is a generalization of the notion of the length of an interval,
the area of a plane figure and the volume of a three-dimensional body. The notion
of a measurable set appeared in the real function theory during investigations and
generalizations of the concept of integral. A classical example of a measure is the
Lebesgue measure on the real line R, defined by Lebesgue in 1902. It extends the
notion of the length of an interval onto a much bigger class of subsets of R. This
class of sets contains all Borel and all analytic subsets of the real line and many
other subsets of R.

In this section we shall remind the reader of some well known basic facts from
general measure theory and then we will discuss some theorems from this domain
of mathematics which are deeper or more specific.

We suppose, of course, that the reader is familiar with some definitions and facts
from measure theory (for instance, that he knows the first chapters of the popular
Halmos book on this subject).

Let E be a non-empty basic set, let S be any algebra of subsets of E and let µ
be a function from S into the extended real line

R∗ = R ∪ {−∞,+∞}

such that
card(ran(µ) ∩ {−∞,+∞}) ≤ 1.

We say that µ is finitely additive (or additive) if for every finite family
{X1, . . . , Xn} ⊆ S of pairwise disjoint sets we have

µ(
⋃
i

Xi) =
n∑

i=1

µ(Xi).

Similarly, we say that µ is countably additive (or σ–additive) if for every
countable family (Xi)i∈N ⊆ S of pairwise disjoint sets such that

⋃
iXi ∈ S we have

µ(
⋃
i

Xi) =
∞∑

i=1

µ(Xi).

Finally, we say that a function µ : S → R∗ is a measure (defined on the algebra
S) if the following conditions hold:

a) µ(∅) = 0;
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b) (∀X ∈ S)(µ(X) ≥ 0);

c) µ is σ–additive.

A measure space is a triple (E,S, µ), where E is a non–empty basic set, S is
an algebra of subsets of E and µ is a measure on S.

A measure µ is called σ–finite if there exists a countable family (Xn)n∈N of
subsets of S such that⋃

n

Xn = E, (∀n ∈ N)(µ(Xn) < +∞) .

We remark here that the measures met most frequently are σ–finite, and we
shall mainly deal with σ–finite measures in the sequel.

A measure µ is called finite if

(∀X ∈ S)(µ(X) < +∞).

Since S is an algebra of subsets of E, the last relation is equivalent to the relation
µ(E) < +∞.

We say that a measure µ is a probability measure if µ(E) = 1.
We say that a measure µ is complete if for every X ∈ S with µ(X) = 0 we

have
(∀Y )(Y ⊆ X → Y ∈ S).

A measure µ is called diffused (or continuous) if

(∀x ∈ E)({x} ∈ S & µ({x}) = 0).

For any non–zero measure µ we denote

L(µ) = {X : (∃Y )(X ⊆ Y & Y ∈ S & µ(Y ) = 0)}.

It is clear that the class L(µ) is a σ–ideal of subsets of E. Moreover, one can
see that the measure µ is complete if and only if L(µ) ⊆ S.

The members of the class L(µ) are called µ-measure zero sets or µ-negligible
sets.

The following fact is fundamental for the whole measure theory.

Theorem 4.1 (Caratheodory) Let µ be a measure on an algebra S of subsets of
a basic set E. Then there exists a measure extending the original measure µ onto
the σ–algebra generated by the algebra S. If the original measure µ is σ–finite, then
this extension is unique.

So we see that in the class of σ–finite measures we can consider only such mea-
sures which are defined on σ–algebras.

We shall remind the reader of some details of the construction of the extension
of a measure from an algebra to the σ–algebra generated by this algebra.

Suppose that µ is a measure on an algebra S of subsets of E. We define a real
function µ∗ on the class P (E) by the formula

µ∗(X) = inf{
∑
n∈N

µ(Yn) : (Yn)n∈N ⊆ S & X ⊆
⋃
n∈N

Yn}.

This function is called the outer measure associated with µ.
We say that a subset Z of E is µ∗–measurable if for any set X ⊆ E the following

Caratheodory condition holds :

µ∗(X ∩ Z) + µ∗(X ∩ (E \ Z)) = µ∗(X).
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It can be shown that the class of all µ∗–measurable sets Z ⊆ E is a σ–algebra
of subsets of E which contains the original algebra S. Moreover, the function
µ∗ considered only on the class of all µ∗–measurable sets is σ–additive, so it is
a measure. It extends also the original measure µ and is complete. These facts
immediately imply Theorem 1.

It is sometimes useful to consider with the outer measure its dual notion - the
inner measure. Recall here that if the original measure µ is defined on a σ–algebra
S, then the inner measure associated with µ is a function µ∗ defined on the class
P (E) by the formula

µ∗(X) = sup{µ(Y ) : Y ∈ S & Y ⊆ X}.

A set X ⊆ E is called µ–massive (or a set with full outer measure with
respect to µ) if the equality

µ∗(E\X) = 0

holds. It is easy to see that when we have a finite measure µ, a set X ⊆ E is
µ–massive if and only if

µ∗(X) = µ(E).

Notice that the complements of µ–massive subsets of E may be successfully applied
to various problems connected with extensions of measures.

During the discussion about extensions of measures it is impossible to omit one
construction frequently met.

Let S be any σ–algebra of subsets of a basic set E and let I be any σ–ideal of
subsets of E. Let us put

S(I) = σ(S ∪ I),

where σ(S ∪ I), as usual, denotes the σ–algebra generated by the class S ∪ I. It is
easy to check that

S(I) = {X M Y : X ∈ S & Y ∈ I}.

Theorem 4.2 Let (E,S, µ) be a measure space and let I be a σ–ideal of subsets of
E such that

(∀Y )(Y ∈ I → µ∗(Y ) = 0).

Then the formula
ν(X M Y ) = µ(X) (X ∈ S, Y ∈ I)

correctly defines a measure ν on the σ–algebra S(I) which extends the original mea-
sure µ.

Proof. Let us check that the function ν is well defined. Suppose hence that

X1, X2 ∈ S, Y1, Y2 ∈ I, X1 M Y1 = X2 M Y2.

Then we have
X1 M X2 = Y1 M Y2,

so X1 M X2 ∈ I and µ(X1 M X2) = 0. Therefore, µ(X1) = µ(X2). In the same
way it may be checked that the function ν is σ–additive. Finally, it is clear that ν
extends the original measure µ.

If (E,S, µ) is not a complete measure space, then we can apply Theorem 2 to
the ideal L(µ) and extend the measure µ to a complete measure µ̄ on S(L(µ)). The
obtained space

(E,S(L(µ)), µ̄)

69



is called the measure completion of (E,S, µ).

Example 1. Let us recall the construction of the classical Lebesgue measure
λ on the real line R. Consider first the class S of subsets of R which consists of all
finite unions of half-open intervals, i.e. the class of sets of the form⋃

1≤i≤n

[ai, bi[,

where n ∈ N and

−∞ < a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn < +∞.

Note that the class σ(S) coincides with the σ-algebra B(R) of all Borel subsets of
R. We define a function λ for sets from the class S by the following formula:

λ

 ⋃
1≤i≤n

[ai, bi[

 =
n∑

i=1

(bi − ai).

The correctness of this definition and the additivity of λ can easily be checked.
Moreover, the compactness of any closed and bounded interval in R implies that
the function λ is σ–additive. Hence, by Theorem 1 λ can be extended to a measure
defined on the class σ(S) = B(R).

Lebesgue measurable sets on R are the λ∗-measurable subsets of R and the
Lebesgue measure, denoted also by λ, is the restriction of the function λ∗ to the
class of all Lebesgue measurable sets.

The class of Lebesgue measurable subsets of R is much wider than the Borel
class B(R). In order to show this let us recall the construction of the classical
Cantor subset C of R.

Let T = {0, 1}<ω be the complete binary tree of height ω, i.e. the family of all
finite sequences with ranges contained in {0, 1}. Let (Js)s∈T be a family of closed
intervals on R such that

J() = [0, 1],

and for any s ∈ T we have

a) Js∗0 ∩ Js∗1 = ∅,

b) Js∗0 ∪ Js∗1 ⊆ Js,

c) the length of Js is equal to (1
3 )lh(s),

d) the left end-point of Js∗0 coincides with the left end-point of Js and the right
end-point of Js∗1 coincides with the right end-point of Js.

For any index n ∈ N we put

Fn =
⋃
{Js : lh(s) = n}.

The Cantor set C is defined by the formula

C =
⋂
n

Fn.

Note that for each n ∈ N we have

λ(Fn) =
(

2
3

)n

,
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hence, the equality
lim
n
λ(Fn) = 0

holds. Therefore, λ(C) = 0. It is not difficult to prove that C is a nowhere dense
perfect subset of R with the cardinality continuum. It is also clear that the set C is
homeomorphic to the Cantor discontinuum {0, 1}ω. Since the Lebesgue measure is
complete we see that any subset of C is λ–measurable. Thus, there are 2c Lebesgue
measurable subsets of R. On the other hand, we know that card(B(R)) = c, so we
see that there are Lebesgue measurable sets on R which are not Borel subsets of R.

As mentioned above, the family of all Lebesgue measurable subsets of R has
the same cardinality as the family of all subsets of R. However, it can be proved
(using some uncountable forms of the Axiom of Choice) that there exist subsets of
R which are not Lebesgue measurable. In connection with this fact it is necessary
to note here that we can sometimes use Theorem 2 and obtain certain interesting
extensions of the Lebesgue measure which are defined on wider classes of sets. Some
problems of this type will be considered more deeply in Part 2 of the book.

Now we formulate and prove two simple classical facts, which are usually called
the Borel-Cantelli lemmas.

Recall that if (Xn)n∈N is any sequence of sets, then its upper limit (in the set-
theoretical sence) is defined by the formula

lim sup(Xn)n∈N =
⋂
n

( ⋃
m>n

Xm

)
.

It is easy to see that lim sup(Xn)n∈N is the set of all elements which belong to
infinitely many members of the sequence (Xn)n∈N.

Theorem 4.3 Let (E,S, µ) be a measure space and let (Xn)n∈N be a sequence of
µ–measurable subsets of E. If the series

∑
n µ(Xn) is convergent, then

µ(lim sup(Xn)n∈N) = 0.

Proof. Let us fix i ∈ N. Then we have

µ(lim sup(Xn)n∈N) ≤ µ(
⋃

m>i

Xm) ≤
∑
m>i

µ(Xm).

But since the series
∑

n µ(Xn) is convergent we have

lim
i

∑
m>i

µ(Xm) = 0.

This immediately gives us the required result.

Now suppose that (E,S, µ) is a probability measure space. A family T ⊆ S
is called µ–independent if for every finite family {X1, . . . , Xn} ⊆ T of pairwise
different sets the equality

µ(X1 ∩ . . . ∩Xn) = µ(X1) · . . . · µ(Xn)

holds. It is easy to see that if a family T ⊆ S is µ-independent, then for every finite
family {X1, ..., Xn} ⊆ T of pairwise different sets we have

µ(Y1 ∩ . . . ∩ Yn) = µ(Y1) · . . . · µ(Yn),

where
(∀i)(1 ≤ i ≤ n→ (Yi = Xi ∨ Yi = E\Xi)).
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Theorem 4.4 Let (E,S, µ) be a probability measure space. If (Xn)n∈N ⊆ S is a
sequence of µ-independent sets and the series

∑
n µ(Xn) is divergent, then

µ(lim sup(Xn)n∈N) = 1.

Proof. It is sufficient to prove that

µ(E\(lim sup(Xn)n∈N)) = 0,

i.e. to prove that
µ(
⋂
i≥n

(E\Xi)) = 0

for every n ∈ N. Let us fix n and m > n. Then we have

µ(
⋂

n≤i≤m

(E\Xi)) =
m∏

i=n

(1− µ(Xi)) ≤

m∏
i=n

exp(−µ(Xi)) = exp(−
m∑

i=n

µ(Xi)).

But since the series
∑

n µ(Xn) is divergent we have

lim
m

(exp(−
m∑

i=n

µ(Xi))) = 0.

Hence, we obtain

µ(
⋂
i≥n

(E\Xi)) = lim
m
µ(

⋂
n≤i≤m

(E\Xi)) = 0

for every n ∈ N. This ends the proof of the theorem.

Let E be an arbitrary basic set. By a real function on a set E we shall understand
a function defined on E with the range contained in the extended real line

R∗ = R ∪ {−∞,+∞}.

To avoid possible misunderstanding let us recall that R∗ is homeomorphic with
the closed interval [−1, 1]. In all further considerations we shall use the following
convention:

0 · (−∞) = 0 · (+∞) = 0.

Let E be a basic set again and let S be a σ–algebra of subsets of E. The pair
(E,S) is usually called a measurable space.

A real function f on E is called S-measurable if for every Borel set X ⊆ R∗

the set f−1(X) is in S. The simplest examples of S-measurable functions are
the characteristic functions 1Y where Y ∈ S. Any linear combination of several
characteristic functions is called a step function.

The following theorem shows that the class of all S-measurable functions is
closed under all natural algebraic operations.

Theorem 4.5 Let E be a basic set and let S be some σ–algebra of subsets of E.
Suppose that

Φ : R∗ × R∗ → R∗

is a B(R∗×R∗)–measurable function and suppose that f and g are two S-measurable
functions. Then the function h : E → R∗ defined by the formula

h(x) = Φ(f(x), g(x)) (x ∈ E)

is S-measurable, too.
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The simple proof of this theorem is left to the reader.
Let f : E → R∗ be a function. We put

f+(x) = max{f(x), 0} (x ∈ E),

f−(x) = max{−f(x), 0} (x ∈ E).

It is evident that
f+ ≥ 0, f− ≥ 0, f = f+ − f−.

From Theorem 5 we can deduce that the function f is S-measurable if and only if
both functions f+ and f− are S-measurable.

The class of S-measurable real functions is also closed under limit operations :
if (fn)n∈N is any sequence of S-measurable functions and

f = lim
n
fn, g = inf

n
fn, h = sup

n
fn,

then f, g and h are also S-measurable functions.
Let (E,S, µ) be a measure space, let X be a µ-measurable subset of E and let

f : E → R be an S-measurable and nonnegative function.
The µ-integral of the function f on the set X is defined by the formula

∫
X

fdµ = sup{
∑

n

(inf f |Xn) · µ(Xn) : (Xn)n∈N ⊆ S is a partition of the set X}.

In many cases the real number
∫

X
fdµ will be also denoted by the symbol∫

X

f(x)dµ(x).

Suppose now that f : E → R is any S-measurable function. Then we put∫
X

fdµ =
∫

X

f+dµ−
∫

X

f−dµ,

if at least one of the integrals from the right side of this equality is finite. If both
integrals from the right size of this equality are finite, then we say that the function
f is integrable on the set X and the real number

∫
X
fdµ is called the µ-integral

of f on the set X. We say that the function f is µ–integrable if it is µ–integrable
on the whole basic set E.

The class of all µ–integrable functions on E is a Banach space with respect to
the norm

||f || =
∫

E

(f+ + f−)dµ.

Of course, we identify here the functions which are equivalent with respect to the
measure µ, i.e. we identify the functions which coincide almost everywhere (with
respect to µ) on the basic set E.

We assume that the reader knows some standard facts about integrable real func-
tions such as the Lebesgue theorem on majorated convergence, the Fatou lemma,
absolute continuity of integrals etc.

Let us take a look once more at the notion of a measure space with a σ-finite
measure. Suppose that (E,S, µ) is such a space and assume that µ(E) = +∞. Let
(Xn)n∈N ⊆ S be a countable family of pairwise disjoint sets such that

⋃
nXn = E

and
0 < µ(Xn) < +∞
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for each n ∈ N. Let us consider the measure ν on the σ–algebra S defined by the
formula

ν(X) =
∑

n

1
2n+1

· µ(X ∩Xn)
µ(Xn)

(X ∈ S).

Observe that ν is a probability measure on S. If X is an arbitrary set from S, then
ν(X) > 0 if and only if µ(X) > 0. In this case we say that the measures µ and ν are
equivalent. Hence, we can conclude that if in some considerations we investigate
only the notion of ”being a strictly positive measure set”, or ”being a measure zero
set,” then we can restrict our attention from the class of σ-finite measures to the
class of probability measures. Obviously, we cannot do this replacement of measure
when we deal with the class of all integrable functions, or when we calculate the
precise value of a measure of a given set.

Let I be a non-empty set of indices and suppose that ((Ei, Si, µi))i∈I is a family
of probability spaces. We shall define the product

(E,S, µ) = ⊗i∈I(Ei, Si, µi)

of this family of spaces.
Let E =

∏
i∈I Ei be the Cartesian product of the family of basic sets (Ei)i∈I .

A subset X of E is called a rectangular set if it can be represented in the form

X =
∏
i∈I

Xi,

where Xi ∈ Si for every i ∈ I and the set

{i ∈ I : Xi 6= Ei}

is finite. The family of all rectangular subsets X of E is denoted by the symbol P0

and the family of all finite unions of rectangular sets is denoted by the symbol P .
Obviously, the family P is an algebra of subsets of E generated by P0. We define a
function

µ : P0 → R

by the formula
µ(
∏
i∈I

Xi) =
∏
i∈I

µi(Xi).

It may be checked that the function µ can be uniquely extended to a σ–additive
function on the algebra P . We shall denote this extension by the same symbol µ.
Hence, by Theorem 1 the measure µ can be extended to the uniquely determined
measure on the σ–algebra S = σ(P ). The last σ–algebra is denoted by ⊗i∈ISi. The
extended measure defined on the σ–algebra ⊗i∈ISi is denoted by ⊗i∈Iµi and it is
called the product measure of the family of measures (µi)i∈I . The product of the
family ((Ei, Si, µi))i∈I is the measure space

(
∏
i∈I

Ei,⊗i∈ISi,⊗i∈Iµi).

Notice that quite frequently the measure space corresponding to the completion of
the measure ⊗i∈Iµi is also called the product of the mentioned family of measure
spaces.

Example 2. Let I be a non-empty set. For every index i ∈ I we put Ei = {0, 1},
Si = P (Ei). Then we define the measure µi on Si by the formula

µi(X) =
card(X)

2
.
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It is clear that ((Ei, Si, µi))i∈I is a family of probability spaces. By the symbol

({0, 1}I ,⊗i∈ISi,⊗i∈Iµi)

we shall denote the product probability space of this family. Of course, we can
treat each set Ei as a topological space with the discrete topology, so {0, 1}I can be
treated as a product topological space, called the generalized Cantor discontin-
uum. It is worth remarking here that the σ–algebra B({0, 1}I) of all Borel subsets
of the space {0, 1}I is, in general, bigger than the σ–algebra generated by all rect-
angular subsets of the Cartesian product {0, 1}I . These two σ–algebras coincide if
card(I) ≤ ω.

In the previous example the special case when I = N is rather important. Let
f be a function from {0, 1}N into [0, 1] defined by the following formula:

f(x) =
∑
n∈N

x(n)
2n+1

(x ∈ {0, 1}N).

This function is not a bijection but it is a surjection and its restriction to the set

D = {x ∈ {0, 1}N : (∀n)(∃m > n)(x(m) = 1)}

is a bijection onto ]0,1]. The complement of D to {0, 1}N is countable, hence there
exists a bijection

g : {0, 1}N → [0, 1]

such that
card({x ∈ {0, 1}N : f(x) 6= g(x)}) = ω.

This bijection gives us an isomorphism between the product measure space

({0, 1}N, B({0, 1}N), µ)

and the probability space
([0, 1], B([0, 1]), λ),

where λ is the restriction of the Lebesgue measure to the class of all Borel subsets
of the closed unit interval [0,1].

The construction of the product of probability measure spaces described above
can be carried for σ-finite measure spaces in the case when the set of indices I is
finite. In particular, the n-dimensional Lebesgue measure space can be defined as
the product of n copies of the measure space (R,dom(λ), λ), where λ is the Lebesgue
measure on R.

Let us denote this product measure space by the symbol

(Rn,dom(λn), λn).

Let us also sketch another, more direct, construction of the n-dimensional Lebesgue
measure λn. An n-dimensional rectangular parallelepiped in the space Rn is a set
of the form

T =
∏

1≤i≤n

[ai, bi[

for some real numbers

−∞ < a1 < b1 < +∞, . . . ,−∞ < an < bn < +∞.
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The n-dimensional volume of T is the real strictly positive number

vol(T ) =
n∏

i=1

(bi − ai).

Let Sn denote the algebra generated by all n-dimensional rectangular paral-
lelepipeds in Rn. There exists a unique extension of the volume function vol to
an additive function on Sn. This unique extension is a σ-additive function on Sn.
Hence, we may use the Caratheodory theorem and extend this function to a mea-
sure on the σ–algebra σ(Sn) = B(Rn). Finally, the n-dimensional Lebesgue measure
may be defined as the completion of thus obtained measure.

From this explicit construction of the Lebesgue measure we can easily deduce
the following simple formulas for the outer measure (λn)∗ and the inner measure
(λn)∗ canonically associated with the Lebesgue measure λn:

(λn)∗(X) = inf{λn(U) : U is open in Rn & X ⊆ U},

(λn)∗(X) = sup{λn(F ) : F is closed in Rn & F ⊆ X},

where X is an arbitrary subset of the space Rn.
From the last property of the inner n-dimensional Lebesgue measure (λn)∗ we

obtain
λn(X) = sup{λn(K) : K is compact in Rn & K ⊆ X}

for every Lebesgue measurable subset X of Rn. One of the direct applications of
this observation is the Luzin characterization of λn-measurable real functions, which
shows us some analogy between the notions of a measurable function and a function
with the Baire property (see Chapter 2).

Theorem 4.6 (Luzin) Suppose that a function f : Rn → R is given. Then the
following two sentences are equivalent:

1) the function f is λn-measurable;

2) the function f has C-property, i.e. for every ε > 0 there exists a closed set
F ⊆ Rn such that f |F is continuous on F and λn(Rn \ F ) < ε.

Proof. Let f satisfy condition 1). Since the extended real line R∗ is homeomor-
phic to the closed interval [−1, 1] we may assume that ran(f) ⊆] − 1, 1[. Let us
consider the sequence (fn)n≥1 of step real functions defined by the formula

fn =
i=n−1∑
i=−n

i

n
· 1f−1([ i

n , i+1
n [).

This sequence uniformly converges to the function f . For every n ≥ 1 we can
find a closed set Fn ⊆ Rn such that fn|Fn is continuous on Fn and

λn(Rn \ Fn) <
ε

2n
.

Then the set F =
⋂

n Fn is also closed in Rn, the function f |F is continuous on F
and λn(Rn \ F ) < ε. So, we see that the function f satisfies condition 2).

We leave the simple proof of the converse implication 2)→ 1) to the reader.
The Luzin theorem together with the well known Urysohn theorem on extensions

of continuous real functions gives us that for any λn-measurable function f : Rn → R
and for any ε > 0 there exists a continuous function ϕ : Rn → R such that

λn({x ∈ Rn : f(x) 6= ϕ(x)}) < ε.
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The Luzin theorem also implies that if f is an arbitrary λn-measurable real
function, then there exist a subset X of Rn and a Borel function g : Rn → R such
that

a) X is a σ-compact set in Rn, i.e. X can be represented as a countable union
of compact subsets of Rn;

b) λn(Rn \X) = 0;

c) f |X = g|X.

We want to remind the reader of another classical fact from measure theory - the
well known Fubini theorem, which reduces the integration of real functions defined
on product measure space to integration on the factors.

Theorem 4.7 (Fubini) Let (E1, S1, µ1) and (E2, S2, µ2) be two measure spaces
with σ-finite measures and let

(E,S, µ) = (E1, S1, µ1)⊗ (E2, S2, µ2)

. Suppose that f : E → R is a µ-integrable function. Then

1) for µ1-almost every x ∈ E1 the function

y → f(x, y) (y ∈ E2)

is µ2-integrable;

2) for µ2-almost every y ∈ E2 the function

x→ f(x, y) (x ∈ E1)

is µ1-integrable;

3) the function

x→
∫

E2

f(x, y)dµ2(y)

is µ1-integrable and the function

y →
∫

E1

f(x, y)dµ1(x)

is µ2-integrable ;

4) the equalities ∫
E1

(
∫

E2

f(x, y)dµ2(y))dµ1(x) =

∫
E2

(
∫

E1

f(x, y)dµ1(x))dµ2(y) =

∫ ∫
E1×E2

f(x, y)d(µ1(x)⊗ µ2(y))

hold.
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The proof of the Fubini theorem is not connected with any principal difficul-
ties. At the beginning we check the validity of the assertion of this theorem for
µ-measurable step functions defined on E, and then we apply the Lebesgue theo-
rem on majorated convergence to get the thesis in the general case.

In an analogous way we can formulate and prove the Fubini theorem for a
product of finitely many measure spaces with σ-finite measures.

Let S be a given σ–algebra of subsets of a basic set E. A function

ν : S → R∗

is called a signed measure on S if

a) ν(∅) = 0;

b) card(ran(ν) ∩ {−∞,+∞}) ≤ 1;

c) ν is σ–additive.

The next result, in fact, reduces the notion of a signed measure to the usual notion
of measure.

Theorem 4.8 (Hahn) Suppose that ν is a signed measure on a σ–algebra S of
subsets of a basic set E. Then there exist two sets A ⊆ E and B ⊆ E such that

1) A ∩B = ∅, A ∪B = E;

2) A ∈ S, B ∈ S;

3) for every X ∈ S we have ν(A ∩X) ≥ 0 and ν(B ∩X) ≤ 0.

Proof. Without loss of generality we may assume that

ran(ν) ∩ {+∞} = ∅.

Let us put
S0 = {Y ∈ S : (∀Z ⊆ Y )(Z ∈ S → ν(Z) ≥ 0)}.

Then it is clear that
δ = sup{ν(Y ) : Y ∈ S0}

is a finite real number and there exists a set A ∈ S0 such that

ν(A) = δ.

Now let us put B = E \A. Then it is not difficult to check that the partition {A,B}
of the set E satisfies conditions 1), 2) and 3).

The decomposition {A,B} of the basic set E, corresponding to the given signed
mesure ν, is called the Hahn decomposition of E with respect to ν.

We define
ν+(X) = ν(X ∩A) (X ∈ S),

ν−(X) = −ν(X ∩B) (X ∈ S).

It is obvious that ν+ and ν− are ordinary measures on the σ–algebra S. Moreover,
we have

ν = ν+ − ν−.

So, we obtain that any signed measure ν can be represented as a difference between
two ordinary measures. This representation is called the Jordan decomposition
of the signed measure ν.
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Let us notice also that the function |ν| defined by the formula

|ν| = ν+ + ν−

is a measure on the σ–algebra S and it is called the total variation of the given
signed measure ν.

We say that a signed measure ν is σ-finite if there exists a family (Xn)n∈N ⊆ S
such that

⋃
nXn = E and |ν|(Xn) < +∞ for every n ∈ N.

Suppose now that (E,S, µ) is a measure space and that ν is a signed measure
on the same σ-algebra S. We say that ν is absolutely continuous with respect
to µ if

(∀X ∈ S)(µ(X) = 0→ ν(X) = 0).

The next result which can be derived from Theorem 8 plays an important role
in modern analysis and probability theory.

Theorem 4.9 (Radon-Nikodym) Suppose that (E,S, µ) is a measure space with
a σ–finite measure and that ν is a σ–finite signed measure on S, absolutely contin-
uous with respect to µ. Then there exists a µ–measurable function f : E → R such
that for every X ∈ S we have

ν(X) =
∫

X

fdµ.

The above theorems (Fubini’s, Hahn’s and Radon-Nikodym’s) are typical results
of pure measure theory. On the other hand, in most of the situations which can be
met in modern analysis a measure does not appear separately but it is tightly con-
nected with other fundamental mathematical structures. This concerns primarily
the topological structure, which we have already noticed above on the example of
the classical Lebesgue measure (see the Luzin theorem above).

Let E be an arbitrary topological space and let B(E) be the Borel σ–algebra of
this space. We say that a measure µ is a Borel measure (on E) if the equality

dom(µ) = B(E)

holds. It is obvious that the concrete properties of the original topological space E
often imply the corresponding properties of the Borel measures on E.

Example 3. In the sequel we shall see that there exists an uncountable subspace
E of R such that any σ-finite diffused Borel measure on E is identically equal to
zero.

The following definition describes a very important class of Borel measures.
Let E be an arbitrary Hausdorff topological space and let µ be a Borel measure

on E. We say that the measure µ is a Radon measure if for each set X ∈ B(E)
we have

µ(X) = sup{µ(K) : K is compact in E & K ⊆ X}.

We say that a Hausdorff topological space E is a Radon space if every σ-finite
Borel measure on E is a Radon measure. From the last definition it immediately
follows that any Borel subset of a Radon topological space is also a Radon space.

We have already mentioned above that the classical n-dimensional Lebesgue
measure (considered only on the Borel σ–algebra B(Rn)) is a Radon measure. It
turns out that this fact is a rather particular case of the following proposition
essentially due to Ulam.
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Theorem 4.10 Any Polish topological space E is a Radon space.

Proof. Let µ be an arbitrary σ-finite Borel measure on E. Without loss of generality
we may assume that µ is a finite measure. Let X ∈ B(E). It is easy to see that

µ(X) = inf{µ(V ) : V is open in E & X ⊆ V },

µ(X) = sup{µ(F ) : F is closed in E & F ⊆ X}.

Moreover, it is easy to check that these formulas are true for any perfect topological
space E and for any Borel set X ⊆ E. Now let an arbitrary real number ε > 0 be
given. First of all, we can find a closed subset F of a Polish space E such that

F ⊆ X, µ(X \ F ) <
ε

2
.

Furthermore, since F is separable, there exists a sequence

F0, F1, . . . , Fn, . . .

of subsets of F such that

a) the set Fn is the union of a finite family of closed balls in F , the diameters of
which do not exceed 1

n+1 ;

b) µ(F \ Fn) < ε
2n+2 .

Now let us put K =
⋂

n Fn. It is clear that K is compact in E (since K is totally
bounded and closed in a complete space E). Moreover, we have K ⊆ X and

µ(X \K) = µ(X \ F ) + µ(F \K) <
ε

2
+
ε

2
= ε.

Thus, the formulated theorem is proved.

From this theorem it directly follows that any Borel subset of a Polish topological
space is a Radon space. In the sequel we shall see that the analytic subsets of a
Polish topological space and their complements are also Radon spaces. On the other
hand, it is impossible to decide in theory ZFCfor the projective sets from the class
Pr3(R) whether they are Radon spaces or not.

The next result shows us that in a separable metric space any σ–finite diffused
Borel measure is concentrated on a set of the first category.

Theorem 4.11 Let E be a topological space and let X be a subset of E satisfying
the following relations:

1) the set X is countable and everywhere dense in E;

2) for every point x ∈ X the one–element set {x} is a Gδ–subset of E.

Furthermore, let µ be an arbitrary σ-finite Borel measure on E such that

(∀x ∈ X)(µ({x}) = 0).

Then there exists a set Y ⊆ E satisfying the following relations:

a) X ⊆ Y ;

b) Y is a Gδ-subset of E;

c) µ(Y ) = 0.
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In particular, the measure µ is concentrated on the set E\Y which is a first category
Fσ-subset of E.

Proof. Without loss of generality we may assume that the measure µ is finite. Let
us put

X = {x0, x1, . . . , xn, . . .}.

From the conditions of theorem it follows that for every pair (n, k) of natural num-
bers there exists an open neighbourhood Vk(xn) of the point xn, such that

µ(Vk(xn)) <
1

2n+k
.

Now we may put
Yk =

⋃
n

Vk(xn),

Y =
⋂
k

Yk.

It is not difficult to check that the set Y is a required one.

Applying this result to the classical n-dimensional Lebesgue measure λn, we see
that λn is concentrated on a first category Fσ-subset of the space Rn. In other
words, there exists a partition {A,B} of the space Rn such that

λn(A) = 0, B ∈ K(Rn).

This fact means also that the σ-ideals L(λn) and K(Rn) are orthogonal to each
other.

Theorem 4.12 Let E1 and E2 be any two Polish topological spaces. Let µ1 be a
probability diffused Borel measure on the space E1 and let µ2 be a probability diffused
Borel measure on the space E2. Then there exists a Borel isomorphism

ϕ : (E1, B(E1))→ (E2, B(E2))

such that
(∀X ∈ B(E1))(µ1(X) = µ2(ϕ(X))).

In other words, the mapping

ϕ : (E1, B(E1), µ1)→ (E2, B(E2), µ2)

is also an isomorphism between the given measure spaces.

Proof. As we know, all uncountable Polish spaces are Borel isomorphic. Therefore,
without loss of generality we may assume that

(E1, B(E1), µ1) = ([0, 1], B([0, 1]), µ),

(E2, B(E2), µ2) = ([0, 1], B([0, 1]), λ),

where µ is a probability diffused Borel measure on the unit segment [0,1] and λ
is the restriction of the classical Lebesgue measure to the Borel σ–algebra of this
segment.

For any natural number n ≥ 1 there exists a finite sequence of closed intervals

In,1 = [an,1, bn,1], In,2 = [an,2, bn,2], . . . , In,k(n) = [an,k(n), bn,k(n)]

which satisfies the following relations:
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1) an,1 ≥ 0, bn,k(n) ≤ 1;

2) (∀j)(1 ≤ j < k(n)→ bn,j ≤ an,j+1);

3) (∀j)(1 ≤ j ≤ k(n)→ 0 < bn,j − an,j <
1
n );

4) (∀j)(1 ≤ j ≤ k(n)→ 0 < µ([an,j , bn,j ]) < 1
n );

5) µ([0, 1] \ (In,1 ∪ . . . ∪ In,k(n))) = 0.

The existence of such a sequence of closed intervals easily follows from the com-
pactness of [0, 1] and the diffuseness of the measure µ. The constructed sequence of
intervals uniquely determines another sequence of closed intervals

I ′n,1 = [a′n,1, b
′
n,1], . . . , I

′
n,k(n) = [a′n,k(n), b

′
n,k(n)]

which satisfies the following conditions:

a′n,1 = 0, b′n,k(n) = 1;

(∀j)(1 ≤ j < k(n)→ b′n,j = a′n,j+1);

(∀j)(1 ≤ j ≤ k(n)→ µ([an,j , bn,j ]) = b′n,j − a′n,j).

Moreover, without loss of generality we may assume that for any n ≥ 1 the family
of closed intervals

{In+1,1, ..., In+1,k(n+1)}
is inscribed into the family

{In,1, ..., In,k(n)}
and similarly, the family of closed intervals

{I ′n+1,1, ..., I
′
n+1,k(n+1)}

is inscribed into the family
{I ′n,1, ..., I

′
n,k(n)}.

Now let us put

In = In,1 ∪ . . . ∪ In,k(n),

I =
⋂
n

In,

D1 = {x : (∃n)(∃j)(x is an end-point of In,j)},
D2 = {x : (∃n)(∃j)(x is an end-point of I ′n,j)}.

It is clear that
card(D1) ≤ ω, card(D2) ≤ ω.

Let x be any point from I \D1. Then this point uniquely determines the sequence

I1,j(1), I2,j(2), . . . , In,j(n), . . .

of closed intervals, for which we have

x ∈ I1,j(1) ∩ I2,j(2) ∩ . . . ∩ In,j(n) ∩ . . . .

It is obvious that there exists only one point y such that

y ∈ I ′1,j(1) ∩ I
′
2,j(2) ∩ . . . ∩ I

′
n,j(n) ∩ . . . .

Taking into account these facts let us put

ψ(x) = y.

For the mapping ψ it is not difficult to check that
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a) ψ is a Borel mapping;

b) for any Borel set X ⊆ I \D1 we have µ(X) = λ(ψ(X));

c) [0, 1] \D2 ⊆ ran(ψ);

d) the restriction of ψ to the set I \ (D1 ∪ ψ−1(D2)) is an injection.

Starting with these properties and changing, if necessary, the mapping ψ on a µ–
measure zero Borel set, we shall obtain the required isomorphism ϕ.

The theorem proved above is principal and important. In particular, it shows
us that any probability diffused Borel measure on a Polish topological space is
isomorphic to the classical Lebesgue measure λ on [0, 1]. Moreover, and it is of major
importance, this isomorphism between measures is also an isomorphism between
Borel structures. From Theorem 12 we can also deduce a more general fact. Namely,
let E1 and E2 be two Borel subsets of a Polish topological space and let µ1 and µ2

be two probability diffused Borel measures on E1 and E2, respectively. Then there
exists a Borel isomorphism

ϕ : (E1, B(E1))→ (E2, B(E2)),

which is also an isomorphism between the measures µ1 and µ2. Finally, let us
consider a more general situation when two measure spaces

(E1, B(E1), µ1), (E2, B(E2), µ2)

are given, where E1 and E2 are Borel subsets of a Polish topological space and µ1

and µ2 are non-zero σ-finite diffused Borel measures on E1 and E2, respectively.
Then there exists a Borel isomorphism

ϕ : (E1, B(E1)) → (E2, B(E2)),

such that
ϕ(L(µ1)) = L(µ2).

In other words, the mapping ϕ transforms the σ-ideal of µ1-measure zero sets onto
the σ-ideal of µ2-measure zero sets. Of course, in this case ϕ need not be an
isomorphism between the given measure spaces. There can not be any isomorphisms
between those spaces when µ1 is finite and µ2 is not.

Another important mathematical structure which is tightly connected with mea-
sures is a group structure.

Let E be a basic set and let Γ be some group of transformations of this set.
Further, let D be some class of subsets of E. We say that the class D is Γ–invariant
if

(∀X ∈ D)(∀g ∈ Γ)(g(X) ∈ D).

Let S be some σ–algebra of subsets of E and let µ be a measure defined on S. We
say that the measure µ is Γ-quasi-invariant if

1) S is a Γ–invariant class of subsets of E;

2) the class L(µ) of all µ-measure zero sets is also Γ-invariant.

If instead of condition 2) the stronger condition holds

3) (∀X ∈ S)(∀g ∈ Γ)(µ(X) = µ(g(X))),
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then we say that the measure µ is a Γ-invariant measure.

Example 4. Let Γ be an arbitrary group of motions (i.e. isometric transformations)
of the n-dimensional Euclidean space Rn. Then it is obvious that the Lebesgue
measure λn is a Γ–invariant measure. If Γ is an arbitrary group of non-degenerated
affine transformations of the space Rn, then λn is a Γ-quasi-invariant measure but,
of course, in this case λn need not be a Γ-invariant measure. Similarly, if Γ is the
group of all such homeomorphisms f : R → R that f and f−1 both satisfy the
Lipschitz condition, then the Lebesgue measure λ on R is Γ–quasi–invariant, but
not Γ-invariant.

Let (Γ, ·) be an arbitrary, locally compact topological group. For such a group
we have a well-known result, due to Haar, which states the existence (and in a
certain sense the uniqueness) of a non-zero invariant Borel measure µ on Γ. More
precisely, the measure µ satisfies the following relations:

1) µ is a locally finite measure, i.e. for each point x ∈ Γ there exists an open
neighbourhood V (x) of this point such that µ(V (x)) < +∞;

2) µ is a Radon measure;

3) µ is invariant under all left translations of Γ, i.e.

(∀X ∈ B(Γ))(∀g ∈ Γ)(µ(X) = µ(g ·X)).

The measure µ is called the (left) Haar measure on the group Γ.
If the group Γ is σ–compact, then the Haar measure µ on Γ is a σ–finite measure.

If the group Γ is compact, then the Haar measure µ on Γ is a finite measure, and
we can obviously assume that in this case µ is a probability measure.

We remark here that the classical Lebesgue measure λn considered only on the
Borel σ–algebra of the Euclidean space Rn is a rather particular case of the Haar
measure.

Example 5. Let us return to the generalized Cantor space {0, 1}I , where I is
an arbitrary set of indices. As we know {0, 1}I is a compact topological space. If
we consider in the set {0, 1}I the operation of addition modulo 2, then we obtain
a compact topological group. Therefore, for this group there exists a probability
Haar measure µ. Notice here that the completion of the measure µ is an extension
of the product measure defined for the space {0, 1}I in Example 2 of this Chapter.

Exercises

Exercise 4.1 Let (E,S, µ) be a measure space with a finite measure µ. For any
sets X ⊆ E and Y ⊆ E let us put

ρµ(X,Y ) = µ∗(X∆Y )

and let us identify any two sets X ⊆ E and Y ⊆ E for which ρµ(X,Y ) = 0. Show
that

a) (P (E), ρµ) is a complete metric space;

b) (S, ρµ) is a closed subset of (P (E), ρµ) and thus is a complete metric space,
too.

The space (S, ρµ) is called the metric space canonically associated with the given
measure µ.
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The measure µ is called separable if the metric space (S, ρµ) is separable. Oth-
erwise, the measure µ is called non-separable.

Show that if the σ–algebra S is countably generated, i.e. it is generated by a
countable family of subsets of E, then the measure µ is separable. Give an example of
a separable measure µ, for which the σ–algebra S is not countably generated. Check
also that the product measure on the Cantor space {0, 1}I considered in Example 2
from this Chapter is separable if and only if card(I) ≤ ω.

Exercise 4.2 Let (E,S, µ) be a measure space with a σ-finite measure µ and let
(Xn)n∈N be an arbitrary, increasing with respect to the inclusion, sequence of subsets
of E. Prove that

µ∗(
⋃
n

Xn) = lim
n
µ∗(Xn).

On the other hand, prove that there exists a decreasing, with respect to the inclusion,
sequence (Yn)n∈N of subsets of the segment [0, 1] such that

a) λ∗(Yn) = 1 for every n ∈ N;

b)
⋂

n Yn = ∅ .

Exercise 4.3 Let (Xn)n∈N be an arbitrary sequence of sets. The lower limit (in
the set-theoretical sense) is the set

lim inf(Xn)n∈N =
⋃
n

⋂
m>n

Xm.

In other words, lim inf(Xn)n∈N is the set of those elements which belong to all,
except for finitely many, of the sets (Xn)n∈N . If the equality

lim inf(Xn)n∈N = lim sup(Xn)n∈N

holds, then we say that the sequence (Xn)n∈N converges in the set–theoretical sense
and write

lim(Xn)n∈N = lim inf(Xn)n∈N = lim sup(Xn)n∈N.

In particular, it is easy to see that any monotonic (with respect to the inclusion)
sequence of sets (Xn)n∈N converges. Namely, if (Xn)n∈N is an increasing sequence,
then we have

lim(Xn)n∈N =
⋃
n

Xn,

and if (Xn)n∈N is a decreasing sequence, then we have

lim(Xn)n∈N =
⋂
n

Xn.

Now let (E,S, µ) be a measure space with a finite measure µ and let (Xn)n∈N be an
arbitrary sequence of subsets of E. Prove that the inequality

µ∗(lim inf(Xn)n∈N) ≤ lim inf
n

µ∗(Xn)

holds. Prove also that if (Xn)n∈N ⊆ S, then the inequality

µ(lim sup(Xn)n∈N) ≥ lim sup
n

µ(Xn)

holds. Deduce from these facts that if the sequence of sets (Xn)n∈N ⊆ S is conver-
gent, then

µ(lim(Xn)n∈N) = lim
n
µ(Xn).
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Exercise 4.4 Let (E,S, µ) be a measure space with a finite separable measure µ
and let (Xξ)ξ<ω1 be an uncountable family of µ-measurable subsets of E such that

(∀ξ)(ξ < ω1 → µ(Xξ) > 0).

Show that there exists an ω-sequence of indices

ξ1 < ξ2 < . . . < ξn < . . .

such that
µ(Xξ1 ∩Xξ2 ∩ . . . ∩Xξn

∩ . . .) > 0.

Exercise 4.5 Let (Ti)i∈I be an arbitrary family of the closed triangles on the Eu-
clidean plane R2 (we suppose that they are non-degenerated, i.e. int(Ti) 6= ∅ for
each index i ∈ I). Prove that the set

⋃
i∈I Ti is measurable with respect to the

classical two–dimensional Lebesgue measure λ2.

Exercise 4.6 Prove Theorem 5 from this Chapter.

Exercise 4.7 Construct a Lebesgue measurable function f : [0, 1] → R such that
for each λ–measurable set X ⊆ [0, 1] with λ(X) = 1 the function f | X is everywhere
discontinuous on X.

Exercise 4.8 Let V be a non-empty open convex set in the Euclidean space Rn and
let f : V → R be an arbitrary convex real function. Let us put

D = {x ∈ V : there exists the derivative f ′(x)}.

Show that

a) the set D is measurable with respect to λn and λn(V \D) = 0;

b) the set V \D is a first category set in V (and, therefore, in Rn).

Exercise 4.9 Let ({0, 1}ω, B({0, 1}ω), µ) be the product measure space considered
in Example 2 from this Chapter. Let us put

X = {x ∈ {0, 1}ω : lim
n

x(0) + . . .+ x(n)
n+ 1

=
1
2
}.

Show that

a) X ∈ B({0, 1}ω);

b) µ(X) = 1;

c) X is a first category subset of the Cantor space {0, 1}ω.

Exercise 4.10 Deduce the Radon–Nikodym theorem from the Hahn theorem on a
decomposition of a basic set E with respect to a given signed measure ν.

Exercise 4.11 Let (µn)n∈N be a sequence of probability measures defined on a mea-
surable space (E,S). Suppose that for every set X ∈ S the limit limn µn(X) exists
and denote it by the symbol µ(X). Prove that µ is also a probability measure on S.
This result is known as the Vitali–Hahn–Saks theorem.

Exercise 4.12 Let E be a σ–compact locally compact topological space and let µ be
an arbitrary locally finite Borel measure on E. Show that µ is a σ–finite measure.

Let E be a Hausdorff topological space and let µ be a σ–finite Radon measure
on E. Prove that there exists a countable family (Ki)i∈I of compact sets in E such
that
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a) (∀i ∈ I)(µ(Ki) < +∞);

b) µ(E \
⋃

iKi) = 0.

Exercise 4.13 Formulate and prove an analogue of Luzin’s C-property for Radon
measures.

Exercise 4.14 Let E be an arbitrary Hausdorff topological space. Suppose that µ is
a finite, non–negative, finitely additive real function defined on the Borel σ–algebra
B(E). Suppose also that the equality

µ(X) = sup{µ(K) : K is compact & K ⊆ X}

holds for every X ∈ B(E). Show that µ is a Radon measure on E.

Exercise 4.15 Equip ω1 + 1 with the usual order topology. Prove that ω1 + 1 is
a compact topological space but it is not a Radon space.

Exercise 4.16 Let E1 and E2 be two topological spaces and let one of these spaces
have a countable base. Show that the equality

B(E1)⊗B(E2) = B(E1 × E2)

holds. Show also that

B(ω1 + 1)⊗B(ω1 + 1) 6= B((ω1 + 1)× (ω1 + 1)),

where ω1 + 1 is equipped with its order topology.

Exercise 4.17 Let E be a topological space. By the symbol Ba(E) we denote the
smallest σ–algebra of subsets of E with respect to which all continuous real functions
defined on E are measurable. It is clear that

Ba(E) ⊆ B(E).

Prove that if E is a perfectly normal topological space (i.e. E is a perfect and normal
topological space), then the equality

Ba(E) = B(E).

holds. In particular, this equality is true for any metric space E.
Let ω1 and ω1 + 1 be equipped with the order topologies. Let

g : ω1 → R

be an arbitrary continuous function. Prove that there exists an ordinal ξ < ω1 such
that

g | [ξ, ω1[ = const.

Deduce from this fact that

Ba(ω1) 6= B(ω1), Ba(ω1 + 1) 6= B(ω1 + 1).

Exercise 4.18 Let (Ei)i∈I be an arbitrary family of compact topological spaces.
Using Stone-Weierstrass theorem on approximation prove that

Ba(
∏
i∈I

Ei) = ⊗i∈IBa(Ei).
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Exercise 4.19 Let E1 and E2 be any two σ–compact locally compact topological
spaces. Show that the equality

Ba(E1)⊗Ba(E2) = Ba(E1 × E2)

holds.

Exercise 4.20 Let E be a locally compact topological space and let µ be a σ–finite
measure defined on the σ–algebra Ba(E). Prove that for any set X ∈ Ba(E) we
have

µ(X) = sup{µ(K) : K is compact Gδ −−subset of E & K ⊆ X}.

Deduce from this fact that the measure µ can be uniquely extended to a Radon
measure on E.

Exercise 4.21 Let E be a locally compact topological space. Let µ and ν be any
two σ-finite Radon measures on E. Suppose that for every continuous function

f : E → R

with a compact support the equality∫
fdµ =

∫
fdν

holds. Show that µ = ν.

Exercise 4.22 Let Γ be an arbitrary compact topological group. Let µ and ν be
any two probability Radon measures on Γ invariant under all left translations of Γ.
Using the result of the previous exercise and applying the Fubini theorem prove that
µ = ν. In fact, we have here the uniqueness theorem for the Haar measure on a
compact group.

Exercise 4.23 Let E be a separable Hilbert space. Let µ and ν be two probability
Borel measures on E such that

µ(V ) = ν(V )

for every open ball V in E. Show that µ = ν.

Exercise 4.24 Let E be a finite-dimensional vector space over R and let Γ be some
group of linear transformations of E. Prove that the following two sentences are
equivalent:

a) the group Γ has the compact closure in the space GL(E) of all linear trans-
formations of E equipped with the standard topology;

b) there exists a scalar product <,> on E for which every element g ∈ Γ is an
orthogonal transformation of (E,<,>).

Find a necessary and sufficient conditions on Γ for the uniqueness of the men-
tioned scalar product (with exactness to a constant coefficient).

Exercise 4.25 Let B(R) be the Borel σ–algebra of R. Let K(R) be the σ-ideal of
all first category subsets of R and let L(λ) be the σ-ideal of all Lebesgue measure zero
subsets of R. Show that the quotient Boolean algebras B(R)/K(R) and B(R)/L(λ)
are not isomorphic.
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Exercise 4.26 Let E be a basic set and let Φ be a family of real functions defined
on E. We say that the family Φ separates the points of E if for any two distinct
points x ∈ E and y ∈ E there exists a function ϕ ∈ Φ such that

ϕ(x) 6= ϕ(y).

By the symbol σ(Φ) we denote the smallest σ–algebra of subsets of E with respect
to which all functions from Φ are measurable.

Let E be a Polish topological space and let Φ be a countable family of Borel real
functions defined on E. Show that the following two sentences are equivalent:

a) the family Φ separates the points of E;

b) σ(Φ) = B(E).

In particular, we see that the equality

σ((Xi)i∈I) = B(E)

holds for a countable family (Xi)i∈I ⊆ B(E) if and only if the family of character-
istic functions (1Xi

)i∈I separates the points of the space E.
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Chapter 5

Choquet’s Theorem and its
Applications

In this Chapter we discuss some questions connected with a well known Choquet’s
theorem on capacities and give its applications to some problems concerning mea-
surability of various sets and functions. First of all we shall formulate and prove
this theorem. We shall do it in a general and an abstract form. Let E be a basic
set and let Φ be some class of subsets of E.

Suppose also that a function

ν : P (E)→ R

is given where P (E) denotes, as usual, the family of all subsets of the basic set E.
We shall say that the function ν is a capacity for the class Φ (or with respect to
the class Φ) if the following conditions hold:

1) if X ⊆ Y ⊆ E then we have ν(X) ≤ ν(Y );

2) if a sequence (Xn)n∈N of subsets of E is increasing by the inclusion then we
have

ν(
⋃
n

Xn) = lim
n
ν(Xn);

3) if a sequence (Xn)n∈N ⊆ Φ is decreasing by the inclusion then we have

ν(
⋂
n

Xn) = lim
n
ν(Xn).

The next example vividly shows that capacities can be frequently met in measure
theory.

Example 1. Let (E,S, µ) be a measure space with finite measure µ. We take
as Φ any class of sets contained in the σ-algebra S. Let us define the function ν by
the formula

ν(X) = µ∗(X) (X ⊆ E),

where µ∗ is the outer measure associated with the given measure µ. It is easy to
check that the function ν is a capacity with respect to the class Φ. As a rule, the
class Φ is taken in such a way that S = σ(Φ).

Theorem 5.1 (Choquet) . Let E be a basic set and let Φ be some class of subsets
of E closed under finite unions and finite intersections. Moreover, let ν be any
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capacity for the class Φ. Then for every set X from the analytic class (A)(Φ) the
following relation holds :

ν(X) = sup{ν(Y ) : Y ∈ Φδ & Y ⊆ X},

where Φδ denotes the class of all countable intersections of sets from the original
class Φ.

Proof. Let X ∈ (A)(Φ). We can write

X =
⋃

t∈Nω

(
⋂
k

Ft0...tk
),

where (Ft)t∈N<ω is some countable system of sets from the class Φ. Since the original
class Φ is closed under finite intersections we can assume that the mentioned system
of sets is regular. It is clear that

X =
⋃
n∈N

(
⋃

{t:t0≤n}

Ft),

where symbol Ft denotes the set

Ft0 ∩ Ft0t1 ∩ . . . ∩ Ft0...tk
∩ . . . .

Let us remark that the last set may not belong to the class Φ. Taking into account
properties 1) and 2) of capacity ν for any real number ε > 0 we can find a natural
index n0 such that

ν(X)− ε < ν(G0),

where symbol G0 denotes the set ⋃
{t:t0≤n0}

Ft.

Next we continue our construction by recursion. Suppose that a finite sequence

(n0, n1, . . . , nk)

of natural numbers and a finite sequence

(G0, G1, . . . , Gk)

of sets are constructed in such a way that

Gr =
⋃

{t:t0≤n0,...,tr≤nr}

Ft (r = 0, . . . , k),

and the relations
ν(X)− ε < ν(Gr) (r = 0, . . . , k)

hold. Let us consider the set Gk. We can write

Gk =
⋃
n

⋃
{t:t0≤n0,...,tk≤nk,tk+1≤n}

Ft.

From the inequality
ν(X)− ε < ν(Gk)
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and properties 1) and 2) of the capacity ν it follows that we can find a natural index
nk+1 such that for the set

Gk+1 =
⋃
n

⋃
{t:t0≤n0,...,tk≤nk,tk+1≤nk+1}

Ft.

the inequality

ν(X)− ε < ν(Gk+1)

holds, too. In this way we shall construct two infinite sequences

(n0, n1, . . . , nk, . . .),

(G0, G1, . . . , Gk, . . .).

Next, for every natural number k we put

Hk =
⋃

t0≤n0,...,tk≤nk

Ft0...tk
.

Obviously, in the above formula we use only finite unions. Therefore, Hk ∈ Φ.
Moreover, it is easy to check that the sequence (Hk)k∈N is decreasing with respect
to the inclusion and

Gk ⊆ Hk (k ∈ N).

So, condition 3) for the function ν implies that

ν(X)− ε ≤ inf
k
ν(Gk) ≤ lim

k
ν(Hk) = ν(

⋂
k

Hk).

Now, using the regularity of the system (Ft)t∈N<ω and König’s theorem on ω-trees
we get the inclusion ⋂

k

Hk ⊆ X.

So, we see that the set H =
⋂

k Hk belongs to the class Φδ and

H ⊆ X, ν(X)− ε < ν(H).

Since the real number ε > 0 was taken at the beginning of the proof arbitrarily, we
immediately obtain the thesis of Choquet’s theorem.

Choquet’s theorem is often formulated as follows : all analytic sets over the
original class Φ are capacitable with respect to any capacity for the class Φ.

Example 2. Let (E,S, µ) be a measure space with finite (or more generally, σ-
finite) measure µ and let Φ be any class of subsets of E which generates the σ-algebra
S. In Example 1 we have seen that the function µ∗ is a capacity for the class Φ.
Therefore, by Choquet’s theorem, any analytic set over class Φ is capacitable with
respect to µ∗. But, as it is easy to check, this means the following: any analytic set
over class Φ is measurable with respect to measure µ̄, which is the completion of the
original measure µ. It is also clear that if the original measure µ is complete then we
simply obtain the measurability with respect to µ of any analytic set over the class
Φ. Now, let E be an arbitrary Polish topological space, let µ be an arbitrary σ-finite
Borel measure on E and let Φ be the algebra of sets generated by the family of all
closed subsets of E. Applying the above considerations to this particular situation
we see that every analytic subset of the space E is µ̄-measurable. If E = R, then
we immediately obtain the old, classical result which says that all analytic subsets
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of the real line R are Lebesgue measurable. Hence, all complements of the analytic
subsets of R are also Lebesgue measurable. Thus, we see that analytic sets and their
complements are good from the measure-theoretical point of view. Later we shall
also check that the same sets are good from the topological point of view, because
they have the Baire property and, moreover, they have the Baire property in the
restricted sense.

Now we can give some other applications of Choquet’s theorem.

Theorem 5.2 Let (E,S, µ) be a complete probability space (or, more generally, a
complete measure space with a σ–finite measure µ). Let K be a locally compact
topological space with a countable base and let (K,B(K)) be the measurable space
canonically associated with K, i.e. the space K is equipped with its Borel σ–algebra.
Finally, let

pr1 : E ×K → E

be the canonical projection. Then for any set Z ⊆ E×K from the product σ–algebra
S ⊗B(K) the set pr1(Z) belongs to the σ-algebra S.

Proof. Let us consider the family Comp(K) of all compact subsets of the topological
space K. It is evident that the class Comp(K) is closed under finite unions and
finite intersections. It is also clear that the Borel σ-algebra B(K) is generated by
the class Comp(K). Moreover, let us consider in the product E ×K the family of
all sets of the form ⋃

1≤i≤m

(Xi × Yi),

where m is an arbitrary natural number, Xi are elements of the σ-algebra S and
Yi are members of the class Comp(K). We denote the class of sets described in
this way by the symbol Φ. The class Φ is closed under finite unions and finite
intersections, too. It is also obvious that the σ-algebra generated by the class Φ
coincides with the product σ-algebra S ⊗B(K). Let us define a real function ν on
the family of all subsets of E ×K by the formula

ν(Z) = µ∗(pr1(Z)) (Z ⊆ E ×K).

Let us check that the function ν is a capacity on the E × K with respect to the
class Φ. Indeed, it is clear that

ν(Z1) ≤ ν(Z2)

if Z1 ⊆ Z2 ⊆ E ×K. Furthermore, if (Zn)n∈N is an increasing sequence of subsets
of E ×K and

Z =
⋃
n

Zn,

then we have
pr1(Z) =

⋃
n

pr1(Zn),

ν(Z) = µ∗(pr1(Z)) = lim
n
µ∗(pr1(Zn)) = lim

n
ν(Zn).

The last equalities immediately follow from the well known properties of the outer
measure µ∗. Finally, we must check that if (Zn)n∈N is a decreasing sequence of sets
from the class Φ then

ν(
⋂
n

Zn) = lim
n
ν(Zn).
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For this aim we shall first prove the equality

pr1(
⋂
n

Zn) =
⋂
n

pr1(Zn).

It is clear that it is enough to establish the inclusion

pr1(
⋂
n

Zn) ⊇
⋂
n

pr1(Zn).

Let x ∈
⋂

n pr1(Zn). This means that for any natural number n there exists a point
yn such that

(x, yn) ∈ Xn,i × Yn,i,

where Xn,i × Yn,i is a component of the representation of the set Zn :

Zn =
⋃

1≤i≤m(n)

(Xn,i × Yn,i).

In particular, yn ∈ Yn,i and hence Yn,i 6= ∅. Moreover, since the sequence of sets
Zn(n ∈ N) is decreasing by the inclusion then, without loss of generality, we may
assume that the families of sets

(Xn+1,i)1≤i≤m(n+1), (Yn+1,i)1≤i≤m(n+1)

are respectively inscribed into the families

(Xn,i)1≤i≤m(n), (Yn,i)1≤i≤m(n).

Now, applying König’s theorem on ω-trees, we can easily find a decreasing se-
quence of sets

(Xn,i(n) × Yn,i(n))n∈N

such that all the sets Yn,i(n) are non-empty and the relation

x ∈ Xn,i(n)

holds for every n ∈ N. Since all the sets Yn,i(n) are compact, we have⋂
n

Yn,i(n) 6= ∅.

Let y be any element of the last non-empty intersection. Then it is clear that

(x, y) ∈
⋂
n

Zn,

and so we have
x ∈ pr1(

⋂
n

Zn).

Hence, the required equality is proved. Now, taking into account the µ–
measurability of all sets from the family

(pr1(Zn))n∈N,

we can write
ν(
⋂
n

Zn) = µ∗(pr1(
⋂
n

Zn)) = µ(
⋂
n

pr1(Zn)) =
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= lim
n
µ(pr1(Zn)) = lim

n
ν(Zn).

In this way we have checked that the function ν is a capacity with respect to the
class Φ. Choquet’s theorem implies now that any set from the class (A)(Φ) is
capacitable with respect to ν. But, since K is a locally compact topological space
with a countable base, it is easy to see that the following inclusion holds:

S ⊗B(K) ⊆ (A)(Φ).

Therefore, for any set Z ∈ S ⊗B(K), we have

ν(Z) = sup{ν(D) : D ∈ Φδ & D ⊆ Z}.

In other words, we have

µ∗(pr1(Z)) = sup{µ(pr1(D)) : D ∈ Φδ & D ⊆ Z},

which immediately gives us the measurability of the set pr1(Z) with respect to the
original measure µ.

The theorem proved above is sometimes called the theorem on measurable pro-
jection.

Now, let us consider one application of Choquet’s theorem to the question about
the existence of some measurable selectors. First we introduce one definition and
prove one auxiliary assertion.

Let (E,S, µ) be a complete probability space (or, more generally, a complete
measure space with a σ-finite measure µ) and let (K,B(K)) be a measurable topo-
logical space where, as above, K is a locally compact space with a countable base
and B(K) is the Borel σ-algebra of K. Now, let Z be a subset of the Cartesian
product E× K. We say that the set Z is a measurable graph if

a) Z ∈ S ⊗B(K);

b) for every e ∈ E the section Z(e) contains at most one point.

The next result gives us the characterization of measurable graphs in terms of
measurable mappings from E into K.

Theorem 5.3 Let Z ⊆ E ×K. Then the following relations are equivalent:

1) the set Z is a measurable graph in E ×K ;

2) there exist a set X ∈ S and a measurable (with respect to the σ–algebras S
and B(K)) mapping

g : X → K,

such that the equality

Z = {(x, y) ∈ X ×K : g(x) = y}

holds.

Proof. First we prove implication 2)→ 1). Let condition 2) hold and let us consider
the mapping

ψ : X ×K → K ×K

defined by the formula
ψ(x, y) = (g(x), y).
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Let us observe that the mapping ψ is measurable with respect to the σ-algebras

(S | X)⊗B(K), B(K)⊗B(K),

where S | X is the restriction of the σ-algebra S onto the set X, i.e.

S | X = {X ∩ Y : Y ∈ S}.

Taking into account that the topological space K has a countable base and is Haus-
dorff, we see that the diagonal set diag(K ×K) is measurable with respect to the
σ-algebra B(K)⊗B(K). Hence, the set

ψ−1(diag(K ×K))

is measurable with respect to the σ-algebra (S|X)⊗B(K). But it is obvious that

ψ−1(diag(K ×K)) = {(x, y) ∈ X ×K : g(x) = y} = Z.

This immediately shows us that Z is a measurable graph in the product E ×K.
Now, we shall prove implication 1)→ 2). Suppose that condition 1) holds. Let

us put
X = pr1(Z).

The preceding theorem about measurable projection says that the set X is measur-
able with respect to the σ-algebra S. Let us define the mapping g from the set X
into the topological space K putting for every x ∈ X the value g(x) equal to the
unique point from the intersection

Z ∩ ({x} ×K).

Let us check that this mapping is measurable with respect to the σ-algebras S | X
and B(K). Let D be any Borel subset of the topological space K. Then we can
write

g−1(D) = pr1(Z ∩ (E ×D)).

But it is clear that the set Z ∩ (E ×D) is measurable with respect to the product
σ-algebra S ⊗ B(K). Using the theorem about measurable projection once more
we get that the set g−1(D) is measurable with respect to the σ-algebra S, so the
measurability of the mapping g is established.

For various applications of theorems proved above most important is the case
when the topological space K coincides with the real line R or with the positive
half-line

R+ = {x ∈ R : x ≥ 0}.

We notice here that the last case can be frequently met in the random processes
theory. It is convenient to formulate the results given below for the topological space
R+. But taking into account the existence of a Borel isomorphism between R+ and
any uncountable Polish topological space K, it can easily be seen that analogous
results may be proved for K, too.

As usual, we assume that the half-line R+ is equipped with its Borel σ-algebra
B(R+). Let (E,S, µ) be any complete probability space (or, more generally, a
complete measure space with a σ-finite measure µ). Let Z be a subset of the
Cartesian product E × R+ such that

pr1(Z) = E.
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Let us call a debut of the set Z the real function

φZ : E → R+

defined by the formula

φZ(e) = inf{t ∈ R+ : (e, t) ∈ Z}.

The following easy proposition is true.

Theorem 5.4 Let (E,S, µ) be a complete probability space (or, more generally, a
complete measure space with a σ-finite measure µ) and let Z be a subset of the
Cartesian product E×R+ which is measurable with respect to the product σ-algebra
S ⊗B(R+). Suppose also that

pr1(Z) = E.

Then the debut φZ of the set Z is a real function measurable with respect to the
σ-algebras S and B(R+).

Proof. Indeed, for any real number t > 0 the set

φ−1
Z ([0, t[) = {e ∈ E : φZ(e) < t}

is an image of the set
Z ∩ (E × [0, t[)

by the projection pr1. Since the last set is measurable with respect to the σ-algebra
S⊗B(R+) then, by the theorem about measurable projection, the set φ−1

Z ([0, t[) is
measurable with respect to S. Hence, the function φZ is measurable.

The next result is connected with a large group of the so called uniformization
theorems or theorems about measurable selectors. We shall discuss some of these
theorems later on in our book.

Theorem 5.5 Let (E,S, µ) be any complete probability space (or, more generally,
a complete measure space with a σ-finite measure µ) and let Z be a subset of the
Cartesian product E×R+ which is measurable with respect to the product σ-algebra
S ⊗B(R+). Suppose also that

pr1(Z) = E.

Then there exists a real function

g : E → R+

measurable with respect to the σ-algebras S and B(R+) such that its graph is con-
tained in the given set Z.

Proof. It is sufficient to show that for every real number ε > 0 there exist a set
Xε ∈ S and a measurable real function

gε : Xε → R+,

such that the following conditions hold :

a) µ(E\Xε) < ε ;

b) the graph of the function gε is contained in the given set Z .
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It is clear that if we prove this fact then the rest of the proof will be evident: after
finding a set Xε and a function gε we move to the measure space

(E\Xε, S|(E\Xε), µ|(S|(E\Xε)))

and to the set
Z ∩ ((E\Xε)× R+)

and continue analogous process for the real number ε
2 , the new measure space and

the new set. After a countable number of steps we can fill the space E (except,
may be, for to a µ–measure zero set) with a countable family of constructed µ–
measurable sets and obtain the required function g from the functions of type gε

and a function defined on a µ–measure zero set.
So let ε be any strictly positive real number. Let us consider the class Comp(R+)

of all compact subsets of the real half-line R+. Moreover, let us consider the class
Φ of all sets Z ⊆ E × R+ which can be represented in the form

Z =
⋃

1≤i≤m

(Xi × Yi),

wherem is an arbitrary natural number, Xi are members of S and Yi are members of
Comp(R+). It is clear that the class Φ generates the product σ-algebra S ⊗B(R+)
and that the same class Φ is closed under finite unions and finite intersections.
Finally, it is easy to see that

S ⊗B(R+) ⊆ A(Φ).

Using the same arguments as in the proof of the theorem about measurable projec-
tion, we can find for the given ε and the set Z a set

Z∗ ⊆ Z

from the class Φδ (i.e. from the class of all countable intersections of members of
the class Φ) such that

µ(pr1(Z) \ pr1(Z∗)) = µ(E \ pr1(Z∗)) < ε.

Let φZ∗ be a debut of the set Z∗ considered only on the set pr1(Z∗) which is
measurable with respect to the σ-algebra S. Notice now that for each element
x ∈ pr1(Z∗) the section

Z∗(x) = {t ∈ R+ : (x, t) ∈ Z∗}

is a non-empty compact subset of R+ (because it is an intersection of some countable
family of compact subsets of R+). So we have

inf(Z∗(x)) ∈ Z∗(x).

From this fact it follows that the graph of the function φZ∗ is contained in the set
Z∗, so it is contained in the original set Z, too. It remains to remember that the
function φZ∗ is measurable with respect to the σ-algebras S and B(R+). So we can
put

Xε = pr1(Z∗), gε = φZ∗ .

Thus, theorem 5 is proved.

It is obvious that the notion of the debut of a given set lying in the Cartesian
product E ×R+ can be generalized to such subsets of E ×R+, the first projections
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of which are not necessarily the whole space E. After this generalization it will be
clear that if the given set Z ⊆ E × R+ is measurable with respect to the product
σ-algebra S ⊗ B(R+) then its debut is a measurable function from the set pr1(Z)
into R+. From this fact it is also clear how to generalize Theorems 4 and 5 to any
set Z ⊆ E × R+ measurable with respect to the product σ-algebra S ⊗B(R+).

Using the same arguments as in the proof of Theorem 5 we can obtain the
following classical result.

Theorem 5.6 Let E be a Polish topological space and let Z be an analytic subset of
the topological product E ×R+. Suppose that a Borel finite (or, more generally, σ-
finite) measure µ on E is given and let µ̄ be the standard completion of the measure
µ. Then there exists a real function

g : pr1(Z)→ R+

such that

1) g is measurable with respect to the σ-algebras dom(µ̄) and B(R+);

2) the graph of g is contained in the set Z.

Now, let P be an arbitrary uncountable Polish topological space. As we know
there exists a Borel isomorphism

ϕ : (R+, B(R+))→ (P,B(P )).

It is easy to see that for this isomorphism the equality

ϕ(A(R+)) = A(P )

holds. Taking into account this remark, we can immediately deduce the following
result from Theorem 6.

Theorem 5.7 Let E1 and E2 be two Polish topological spaces and let Z be an
analytic subset of the topological product E1 × E2. Suppose also that a Borel finite
(or σ-finite) measure µ on E1 is given and let µ̄ be the standard completion of the
measure µ. Then there exists a mapping

g : pr1(Z)→ E2

such that

1) g is measurable with respect to the σ-algebras dom(µ̄) and B(E2);

2) the graph of g is contained in the set Z.

In many cases the theorem formulated above is sufficient for various applications.
But sometimes we need more subtle formulations of theorems of this type. Let us
remark that in Appendix C of this book we shall consider some much stronger
results than Theorem 7.

We have shown in this Chapter that all analytic subsets of the real line R are
Lebesgue measurable. This classical fact was first proved by Luzin. Since there
exists a deep analogy between the Lebesgue measurability and the Baire property
on the real line, one can formulate the following natural question: do the analytic
subsets of R have the Baire property? It has turned out that the answer to this
question is positive. Moreover, the stronger result is true: all analytic subsets of
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R have the Baire property in the restricted sense. This classical result, in fact, is
due to Luzin and Sierpiński. We decided to prove mentioned Luzin–Sierpiński’s
theorem in this Chapter, too. Of course, we cannot base the proof of their result on
Choquet’s theorem, which in some sense is of an approximation type (actually, the
Baire property cannot be approximated downward by compact sets). In our proof
we will use Sierpiński’s theorem about representation of analytic sets (see Theorem
5 of Chapter 3).

Theorem 5.8 Let E be any topological space which satisfies the Suslin condition.
Then the family of all sets in E with the Baire property is invariant under the
(A)–operation.

Proof. Let
(Xs)s∈N<ω

be any family of sets in E with the Baire property. As we know

X = (A)((Xs)s∈N<ω ) =
⋂

ξ<ω1

Yξ =
⋃

ξ<ω1

Zξ,

where

1) Yξ =
⋃

nX
ξ
n,

2) Tξ =
⋃

s(X
ξ
s \Xξ+1

s ),

3) Zξ = Yξ \ Tξ.

and the sets
Xξ

s (ξ < ω1, s ∈ N<ω)

are defined in Chapter 3 by the transfinite recursion on the index ξ. There we notice
also that all sets

Xξ
s , Yξ, Tξ, Zξ

belong to the σ-algebra of sets generated by the original family (Xs)s∈N<ω . There-
fore, all the mentioned sets have the Baire property, too. Let us put

Dξ
s = Xξ

s \Xξ+1
s (ξ < ω1, s ∈ N<ω).

Since for every s ∈ N<ω and ζ ≤ ξ < ω1 we have

Xξ
s ⊆ Xζ

s ,

we see that
(Dξ

s)ξ<ω1

is a family of pairwise disjoint sets for every fixed s ∈ N<ω. Moreover, all sets
Dξ

s have the Baire property. Since the space E satisfies the Suslin condition, there
exists ξ(s) < ω1 such that for any ξ > ξ(s) the set Dξ

s is a first category set in E.
But the family N<ω is countable, so there exists some ordinal α < ω1 such that

(∀s ∈ N<ω)(ξ(s) < α).

Hence, all sets of the family
(Dα

s )s∈N<ω

are of the first category. Notice now that

Tα =
⋃
s

Dα
s .
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Therefore, Tα is also a first category set in E. Moreover, it is easy to see that the
following inclusions hold:

X \ Zα ⊆ Yα \ Zα ⊆ Tα,

hence, the set X \ Zα is also a first category subset of E. But it is obvious that

X = (X \ Zα) ∪ Zα,

and we obtain that the set X has the Baire property.

In the same way we can prove that in every topological space E which hered-
itarily satisfies the Suslin condition (i.e. any subspace of E satisfies the Suslin
condition) the family of all sets with the Baire property in the restricted sense is
invariant under (A)–operation. Indeed, it is sufficient to consider a system of sets

(E′ ∩Xs)s∈N<ω ,

where E′ is any subspace of E and all sets Xs (s ∈ N<ω) have the Baire property
in the restricted sense. Applying the previous theorem to this system of sets we get
a required result.

Notice now that any subspace of a Polish topological space evidently satisfies
the Suslin condition (and, moreover, is separable). Hence, we obtain the following
proposition:

Theorem 5.9 In every Polish topological space E all analytic subsets of E have
the Baire property in the restricted sense.

Let us remark at the end of this Chapter that the last results about the Baire
property of analytic subsets of the topological spaces are true also for spaces which
do not satisfy the Suslin condition. However, the proof of this fact requires another
method which will be considered in Part 2 of this book.

Exercises

Exercise 5.1 Let E be any basic set and let Φ be some class of subsets of E. We
say that Φ is a quasi-compact class (in the sense of Marczewski) if for every
countable family

(Zn)n∈N ⊆ Φ

the relation
⋂

n Zn = ∅ implies that there exists a finite subfamily of (Zn)n∈N with
empty intersection, too. For instance, if E is an arbitrary Hausdorff topological
space and Φ is the class of all compact subsets of E, then it is easy to see that Φ is
a quasi-compact class of sets.

Now, let Φ be any quasi-compact class of subsets of the basic set E and let Φ∗

be the class of all finite unions of elements from the class Φ. Prove that the class
Φ∗ is also a quasi-compact class.

Exercise 5.2 Give generalizations of some results presented in this Chapter to the
case when the locally compact topological space K with a countable base is replaced
by a basic set F with a quasi-compact class Φ ⊆ P (F ).

Exercise 5.3 Show that any locally compact topological space with a countable base
is homeomorphic to such a subset of a compact metric space the complement of
which is a singleton. In particular, deduce from this fact that any locally compact
topological space with a countable base is a Polish space.
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Exercise 5.4 Let (E,S, µ) be an arbitrary measure space with a σ-finite measure
µ and let X be a subset of E. We say that the set X has the uniqueness property
with respect to the measure µ if the following two conditions hold:

a) there exists a measure ν extending the measure µ such that

X ∈ dom(ν);

b) for any two measures ν1 and ν2 which extend µ and satisfy the relation

X ∈ dom(ν1) ∩ dom(ν2)

we have the equality
ν1(X) = ν2(X).

Let us denote by the symbol Un(µ) the class of all subsets of the basic set E which
have the uniqueness property with respect to the original measure µ. Let µ̄ be, as
usual, the completion of the measure µ. Prove that the following equality holds:

Un(µ) = dom(µ̄).

Exercise 5.5 Let (E,S, µ) be a measure space with a σ–finite measure µ and let X1

be any subset of E. Prove that there exists a measure µ1 defined on some σ–algebra
of subsets of E such that

a) µ1 is an extension of µ;

b) X1 ∈ dom(µ1).

Deduce from this fact that for an arbitrary finite family {X1, . . . , Xn} of subsets of
the basic set E there exists a measure ν defined on some σ-algebra of subsets of E
such that

c) ν is an extension of µ;

d) {X1, . . . , Xn} ⊆ dom(ν).

In the further considerations we will see that an analogous result is not longer
true if we deal with a countable family {X1, . . . , Xn, . . .} of subsets of E.

Now, let µ be a σ-finite complete measure on E, let S(µ) = dom(µ) and let I(µ)
be the σ-ideal of all µ-measure zero subsets of E. Thus, we have a measure Boolean
algebra A(µ) = S(µ)/I(µ) canonically associated with µ. Let X be an arbitrary
subset of E non–measurable with respect to µ. Prove that there exists a measure ν
on E such that

a) ν is an extension of µ;

b) X is measurable with respect to ν;

c) the canonical embedding of the Boolean algebra A(µ) into the Boolean algebra
A(ν) is not a surjection, i.e. A(µ) is a proper subalgebra of A(ν).

Exercise 5.6 Starting with the fact that there are two disjoint sets in R which are
complements of analytic sets and are not separated by any two Borel subsets of R,
prove the following proposition: there exists a Borel set Z ⊆ R2 such that

a) pr1(Z) = R;

b) there is no Borel function f : R → R the graph of which is contained in the
set Z.
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This classical result is due to Luzin and Novikov and shows us that in the class
of all Borel subsets of the plane R2 the uniformization problem, in general, has a
negative solution. This fact also explains why in Theorem 5 of this Chapter we
consider measurable, but not Borel, functions. The result of Luzin and Novikov will
be proved in Part 2 of this book.

Exercise 5.7 Let (E,S) be a measurable space and let X be a subset of E. We
say that X is absolutely measurable with respect to the σ–algebra S if for each
σ–finite measure µ defined on S the following relation holds:

X ∈ dom(µ̄),

where µ̄, as usual, is the completion of the measure µ. Deduce from Choquet’s
theorem that all members of the analytic class (A)(S) are absolutely measurable
with respect to the σ–algebra S.

Moreover, let us consider the particular case when

(E,S) = (R, B(R)).

In this case give an example of a Lebesgue measurable subset of R which is not
absolutely measurable with respect to the Borel σ–algebra B(R).

Exercise 5.8 Let E be an arbitrary Hausdorff topological space and let X be a
subset of E which is a Radon space with respect to the induced topology. Show that
the set X is absolutely measurable with respect to the Borel σ–algebra B(E).

Exercise 5.9 Let E be an arbitrary Radon topological space and let X be a subset
of E which is absolutely measurable with respect to the Borel σ-algebra B(E). Show
that the set X equipped with the induced topology is a Radon topological space. In
particular, every analytic subset of a Polish topological space is a Radon space. The
same is true for the complement of any analytic subset of a Polish space.

Exercise 5.10 Does there exist a subset of the real line R which is absolutely mea-
surable with respect to the Borel σ-algebra B(R) and which has not the Baire property
in R ?

Exercise 5.11 Starting with Choquet’s theorem prove directly Alexandrov–Hau-
sdorff theorem which states that any uncountable Borel subset of a Polish topological
space has the cardinality continuum.

Exercise 5.12 Can one deduce from Choquet’s theorem the classical Caratheodory
theorem on extensions of measures from algebras to σ–algebras?

Exercise 5.13 Let I be an arbitrary set of indices. For any index i ∈ I let us put

(Ei, Si) = (R, B(R)).

Furthermore, suppose that for every finite set {i1, . . . , in} of pairwise distinct indices
from I there is a corresponding probability Borel measure

µ{i1,...,in}

on the n-dimensional Euclidean space Ei1 × . . . × Ein .Finally, let us suppose that
for any two finite sets

{i1, . . . , in} ⊆ I, {j1, . . . , jm} ⊆ I
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such that
{i1, . . . , in} ⊆ {j1, . . . , jm}

the equality

µ{i1,...,in}(X) = µ{j1,...,jm}({x ∈ Ej1 × . . .× Ejm
: (xi1 , . . . , xin

) ∈ X})

holds, whatever X ∈ B(Ei1×. . .×Ein
) is taken. Prove that there exists a probability

measure µ defined on the σ-algebra

S = ⊗i∈ISi

and such that for every finite set {xi1 , . . . , xin
} ⊆ I we have

µ({x ∈
∏
i∈I

Ei : (xi1 , . . . , xin
) ∈ X}) = µ{i1,...,in}(X),

whatever X ∈ B(Ei1 × . . .× Ein
) is taken.

This classical result is due to Kolmogorov.

Exercise 5.14 Generalize the result of the previous exercise to the case when for
any index i ∈ I we have

(Ei, Si) = (Ki, B(Ki)),

where Ki is a Radon topological space.

Exercise 5.15 Let E be a basic set and let Φ be a class of subsets of E. Suppose that
E ∈ Φ and Φ is closed under countable unions and under countable intersections.
Suppose also that a real function

ν : Φ→ R

is given and for any increasing or decreasing (with respect to the inclusion) sequence
of sets (Xn)n∈N ⊆ Φ we have

ν(lim
n
Xn) = lim

n
ν(Xn).

A function f : E → R is called ν-measurable if f−1(A) ∈ Φ for every Borel sub-
set A of R . Let (gn)n∈N be an arbitrary sequence of ν-measurable real functions
convergent at any point x ∈ E . Let us put

g(x) = lim
n
gn(x) (x ∈ E).

Show that the function g is also ν-measurable. Prove that for each real number ε > 0
there exists a set X ∈ Φ such that

a) ν(X) > ν(E)− ε;

b) the sequence (gn)n∈N converges uniformly to g on X.

Deduce from this fact the classical Egorov theorem from measure theory. Then as
a corollary prove the classical Lebesgue theorem stating that for any finite measure
µ the convergence almost everywhere of a sequence of µ–measurable real functions
implies the convergence in measure µ of this sequence.
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Exercise 5.16 Let us consider a measure space (R,dom(λ), λ) where λ is the clas-
sical Lebesgue measure on R. Let P be an arbitrary projective subset of R and let
B(P ) be the Borel σ–algebra of the topological space P . Let us put

S = dom(λ)⊗B(P )

and consider the canonical projection

pr1 : R× P → R.

Assuming that all projective subsets of R are Lebesgue measurable, prove that

(∀X ∈ S)(pr1(X) ∈ dom(λ)).

Similarly, let us put
T = B̄(R)⊗B(P ),

where B̄(R) is the σ–algebra of all subsets of R which have the Baire property.
Assuming that all projective subsets of R have the Baire property prove that

(∀X ∈ T )(pr1(X) ∈ B̄(R)).

Recall that the Lebesgue measurability and the Baire property of all projective subsets
of R follow from the Axiom of Projective Determinacy (see Part 2 of this book).

Exercise 5.17 Let E be any topological space. Prove that the Baire property (re-
spectively, the Baire property in the restricted sense) is preserved in E by the A–
operation.

Exercise 5.18 Use the method of the proof of Theorem 8 from this Chapter and
show that in any topological space E all analytic sets are absolutely measurable with
respect to the Borel σ–algebra B(E).

Notice also that this fact is an immediate consequence of the result of the pre-
vious exercise. Namely, if we consider the von Neumann topology (see Appendix
B) associated with the completion µ̄ of a σ–finite Borel measure µ defined on our
topological space E, then we easily obtain the required fact.

Exercise 5.19 Let X be an analytic subset of a Polish topological space, let E be
a metric space equipped with a σ-finite Borel measure µ and let f : X → E be a
Borel mapping. Show that, for every real number ε > 0, there exists a subset Y of
X such that

a) Y is a compact space;

b) the restriction of f to Y is a homeomorphism between the spaces Y and f(Y );

c) µ(f(X) \ f(Y )) < ε.
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Chapter 6

The Structure of the Real
Line

The real line R is undoubtedly a very important mathematical object. A precise
construction of real numbers from rational numbers was independently done in the
second part of the nineteenth century by Cantor, Meray, Dedekind and Weierstrass.
We assume that the reader knows the standard construction of real numbers which
starts with the set of all natural numbers, then goes on to integers, next to rational
numbers and the last step is achieved by some method of completion of the set
of all rationals. Of course, here we are not going to discuss in detail all these
constructions. The aim of this Chapter is to present some characteristic properties
of the reals.

First, let us recall several notions and definitions from the theory of partially
ordered sets. Let (E,≤) be any partially ordered set. We say that a set X ⊆ E is
upward bounded if

(∃e ∈ E)(∀x ∈ X)(x ≤ e).

Similarly, we say that a set X ⊆ E is downward bounded if

(∃e ∈ E)(∀x ∈ X)(e ≤ x).

Furthermore, we say that a set X ⊆ E has a supremum if there exists an element
e ∈ E such that

(∀x ∈ X)(x ≤ e),

(∀y ∈ E)((∀x ∈ X)(x ≤ y)→ e ≤ y).

It is easy to see that such an element e is unique and we write e = sup(X). In an
analogous way we define an infimum of a set X ⊆ E.

Now let (E,≤) be an arbitrary linearly ordered set. An ordered pair (A,B) of
subsets of the basic set E is called a Dedekind cut of (E,≤) if

A ∪B = E,

(∀a ∈ A)(∀b ∈ B)(a < b).

In particular, we see that sets A and B are disjoint. If they are also non–empty
then the pair (A,B) is called a bounded Dedekind cut of (E,≤).

We say that a linearly ordered set (E,≤) is Dedekind complete if for every
bounded Dedekind cut (A,B) of E there exists an element e ∈ E such that

(∀a ∈ A)(a ≤ e) & (∀b ∈ B)(e ≤ b).
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Of course, the last notion is fundamental in the theory of linearly ordered sets. This
notion gives us a possibility to prove an important theorem (due to Dedekind) on
embedding a linearly ordered set (E,≤) into a Dedekind complete linearly ordered
set. The most interesting case is obtained when the initial linearly ordered set
(E,≤) is a dense linearly ordered set. Since we will need this notion in the
sequel, we recall it now.

We say that a subset X of E is dense in (E,≤) if for any non–empty open
interval ]a, b[⊆ E we have

]a, b[ ∩ X 6= ∅.

In other words, X is dense in (E,≤) if and only if X is a dense subset of the basic
set E equipped with its order topology generated by all open intervals in E. Finally,
we say that (E,≤) is a dense linearly ordered set if for any two elements a ∈ E and
b ∈ E such that a < b we have

]a, b[ 6= ∅.

Now, let us denote by D(E) the set of all Dedekind cuts of a dense linearly
ordered set (E,≤). The set D(E) is also linearly ordered by the following relation:

(A,B) ≤∗ (A′, B′)←→ A ⊆ A′.

It is easy to see that the mapping

Φ : (E,≤)→ (D(E),≤∗)

defined by the formula

Φ(e) = ({x ∈ E : x ≤ e}, {x ∈ E : x > e})

is a monomorphism from the linearly ordered set (E,≤) into the linearly ordered
set (D(E),≤∗). Moreover, it is not difficult to check that the set ran(Φ) is a
dense subset of (D(E),≤∗) and that (D(E),≤∗) is a complete linearly ordered set
(in particular, Dedekind complete linearly ordered set). Taking into account these
facts we formulate the following definition. If the inital linearly ordered set (E,≤)
has neither the least element, nor the largest element (shortly, has not end–points),
then the linearly ordered set

(D(E) \ {(∅, E), (E, ∅)},≤∗)

is called a Dedekind completion of the initial linearly ordered set (E,≤ ).
For example, the real line R equipped with its standard ordering is the Dedekind
completion of the set of all rational numbers Q also equipped with the standard
ordering.

Of course, the standard linear ordering is one of the fundamental structures
on the real line R. There are also two fundamental binary algebraic operations
defined on R: addition and multiplication. As we know, the real line is an algebraic
(commutative) field with respect to these operations. The connection between the
ordering structure and the algebraic operations converts R into an ordered field.
Let us recall that the structure

K = (K,+, ·, 0, 1,≤)

is a linearly ordered field (or simply ordered field) if (K,+, ·, 0, 1) is a field and ≤
is a linear ordering of the basic set K such that the following two properties hold:

(∀x, y, z ∈ K)(x ≤ y → x+ z ≤ y + z);

(∀x, y ∈ K)((0 ≤ x & 0 ≤ y)→ 0 ≤ x · y).
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We assume that the reader knows some simple consequences of these properties.
For example, it is easy to check that

0 ≤ x2

for every element x ∈ K.
As stated above, the field of all real numbers is the canonical and very important

example of an ordered field. Obviously, any subfield of R (in particular, the field Q)
is an ordered field. There are also some natural examples of ordered fields which
extend the field of all real numbers.

Example 1. Let R[x] denote the field of all rational functions of a real variable x
with real coefficients. In other words, any element of R[x] can be represented in the
form

x 7→ p1(x)
p2(x)

(x ∈ R),

where p1 and p2 are some polynomials with the real coefficients. Of course, we have
a canonical injection

φ : R→ R[x]

defined by the formula
φ(a)(x) = a (x ∈ R)

for every a ∈ R. This injection is a monomorphism from the field R into the field
R[x]. Using this monomorphism we may identify R with φ(R). Now let us define a
binary relation ≤∗ on the field R[x] by the following formula:

f ≤∗ g ←→ (∃x ∈ R)(∀y ∈ R)(x ≤ y → f(y) ≤ g(y)).

It is easy to check that ≤∗ is a linear ordering of R[x] and the tuple

(R[x],+, ·, 0, 1,≤∗)

is a linearly ordered field. In this ordered field we have the inequalities

0 ≤∗ . . . ≤∗
1
xn
≤∗ . . . ≤∗

1
x2
≤∗

1
x
≤∗ 1,

1 ≤∗ 2 ≤∗ . . . ≤∗ x ≤∗ x2 ≤∗ . . . ≤∗ xn ≤∗ . . . .

Now we want to formulate and prove the first characterization of the real line
in terms of ordered fields.

Theorem 6.1 Suppose that

K = (K,+K , ·K , 0K , 1K ,≤K)

is an ordered field such that one of the following two conditions holds :

1) any non-empty upward bounded subset of K has a supremum in K (the Weier-
strass Axiom);

2) (K,≤K) is Dedekind complete (the Dedekind Axiom).

Then K is isomorphic with the structure (R,+, ·, 0, 1,≤).
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Proof. First let us observe that 0K <K 1K . Indeed, if we assume otherwise then
from the inequality 1K <K 0K we would get

0K = 1K + (−1K) <K 0K + (−1K) = −1K ,

0K = 0K · 0K <K (−1K) · (−1K) = 1K .

So we obtain a contradiction. Therefore, the inequality 0K <K 1K holds. Hence,
for any strictly positive natural number n ∈ N we have

0K ≤K n · 1K .

In particular, our field K has the characteristic zero. Let us put

F = { n · 1K

m · 1K
: n ∈ Z & m ∈ N \ {0}},

where Z denotes the set of all integers. It is not difficult to check that F is some
subfield of the field K. Moreover, the function

Φ : Q→ F

defined by the formula

Φ(
n

m
) =

n · 1K

m · 1K
(
n

m
∈ Q)

is the canonical isomorphism between the structure

(Q,+, ·, 0, 1,≤)

and the structure
(F,+F , ·F , 0F , 1F ,≤F ).

Now, suppose that for our initial structure K the Weierstrass Axiom is valid.
Let us try to extend the function Φ to such a bijection

Φ̄ : R→ K

which preserves the algebraic operations and ordering. For this purpose let us put

Φ̄(x) = sup{Φ(q) : q ∈ Q & q < x} (x ∈ R).

It is clear that Φ̄ is an injection. We want to establish that the function Φ̄ is also a
surjection. Take any z ∈ K. We assert that

z = sup{q · 1K : q ∈ Q & q · 1K <K z}.

Indeed, suppose that this equality is not true and let

z′ = sup{q · 1K : q ∈ Q & q · 1K <K z}.

Then we have z − z′ > 0. Furthermore, it is not difficult to check that

]0, z − z′[ ∩ {q · 1K : q ∈ Q} = ∅.

Let us put

a =
1K

z − z′
.
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Obviously, the relation

{x ∈ K : a <K x} ∩ {q · 1K : q ∈ Q} = ∅

holds. In particular, this relation implies that the set

{n · 1K : n ∈ N}

is upward bounded. Let
t = sup{n · 1K : n ∈ N}.

Let m be such a natural number that

t− 1K

2 · 1K
<K m · 1K ≤K t.

Then we have the relation
t <K (m+ 1) · 1K ,

which gives us a contradiction. Hence, any element z ∈ K is equal to

sup{q · 1K : q ∈ Q & q · 1K <K z}.

From this fact it immediately follows that the mapping Φ̄ is a surjection and thus it
is a bijection. Since the mapping Φ preserves algebraic operations and ordering it
is easy to see that the mapping Φ̄ also preserves algebraic operations and ordering.
Therefore, Φ̄ is an isomorphism between these ordered fields.

Finally, it remains to prove that the Dedekind Axiom implies the thesis of the
theorem, too. For this aim it is sufficient to establish the implication

the Dedekind axiom → the Weierstrass axiom.

Assume that the Dedekind axiom holds for the ordered field K. Let X ⊆ K be a
non-empty upward bounded set. Let us put

A = {a ∈ K : (∃x ∈ X)(a ≤K x)}.

B = K \A.

Then both sets A and B are non-empty and

(∀a ∈ A)(∀b ∈ B)(a <K b)

Hence, (A,B) is a bounded Dedekind cut in (K,≤K). Let z ∈ K be such that

(∀a ∈ A)(a ≤ z) & (∀b ∈ B)(z ≤ b).

Then it is easy to see that z is the supremum of the set X. So the Weierstrass
axiom holds for the ordered field K, and Theorem 1 is proved.

It is worth remarking here that the theorem proved above is closely connected
with the next important result about countable linearly ordered sets.

Theorem 6.2 (Cantor) Any countable linearly ordered set (E,≤E) can be
monomorphically imbedded into the linearly ordered set (Q,≤) of all rational num-
bers. Moreover, if (E,≤E) is non–empty dense and has neither the least nor the
largest elements then (E,≤E) is isomorphic with (Q,≤).
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Proof. Suppose that (E,≤E) is a countable linearly ordered set. Hence we can
write the basic set E in the form

E = {e1, e2, . . . , en, . . .}.

We shall define the required monomorphism

Φ : (E,≤E)→ (Q,≤)

by mathematical recursion. Let us suppose that k ∈ N and that we have already
defined an injective partial mapping

Φk : {e1, . . . , ek} → Q

which preserves ordering. Let us consider the element ek+1. Of course, we can find
a permutation φ of the set {1, . . . , k} such that

eφ(1) <E eφ(2) <E . . . <E eφ(k).

There are only three possible cases:

1) ek+1 < eφ(1),

2) eφ(k) < ek+1,

3) eφ(i) < ek+1 < eφ(i+1) for some index i from the set {1, . . . k − 1}.

It is clear that using the density of (Q,≤) and the fact that there are neither the
least nor the largest elements in (Q,≤) in any of these three cases we can find an
extension

Φk+1 : {e1, . . . , ek+1} → Q

of the mapping Φk which preserves ordering. In this way we construct an increasing
by the inclusion sequence

(Φk)k≥1

of partial monomorphisms. At the end we put

Φ =
⋃
k

Φk.

It is not difficult to check that Φ is the required monomorphism from (E,≤E ) into
(Q,≤). If our basic linearly ordered set (E,≤E) is non–empty and does not have
the least and the largest elements, then a simple modification of the construction
of the monomorphism Φ will give us a surjection from E onto Q and hence, the
resulting mapping Φ will be an isomorphism between (E,≤E) and (Q,≤). Thus,
the Cantor theorem is proved.

Despite its simplicity, the theorem proved above is a very important result which
has a lot of generalizations (see exercises to this Chapter) and has a lot of appli-
cations. The next result, also due to Cantor, is an immediate application of this
theorem.

Theorem 6.3 (Cantor) Suppose that (E,≤E) is a non–empty dense Dedekind
complete linearly ordered set without end-points containing some countable dense
subset. Then (E,≤E) is order isomorphic with (R,≤).
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Proof. Let D be a countable dense subset of E. According to the previous theorem,
there exists an isomorphism

φ : (D,≤E)→ (Q,≤).

For every element e ∈ E let us put

Φ(e) = sup{φ(x) : x <E e}.

Now it is easy to check that Φ is a required isomorphism between (E,≤E) and
(R,≤).

So we see that Theorem 3 gives us another characterization of the real line R.
This characterization is formulated only in terms of the theory of linearly ordered
sets and does not touch the algebraic structure on R. Namely, let us write once
more the properties of a partially ordered set (P,≤P ) which ensure the existence of
an isomorphism between (P,≤P ) and (R,≤). These properties are as follows:

1) P is non–empty;

2) (P,≤P ) is a Dedekind complete dense linear ordering;

3) P has no end–points;

4) P has a countable dense subset.

As we know the last property means that the order topology on P is a topology
of a separable space. We also know that every separable topological space satisfies
the Suslin condition (i.e. countable chain condition). Let us replace property 4) by
the following, weaker property:

4’) P satisfies the Suslin condition.

In 1920 in the first volume of the journal Fundamenta Mathematicae, the young
Russian mathematician (the disciple of Luzin), M. Suslin posed the problem whether
properties 1), 2), 3) and 4’) also give an isomorphism between structures (P,≤P )
and (R,≤). This problem played a prominent role in the further development of
set theory and was an object of intensive investigations.

The following definition is important for our further considerations. We say
that (P,≤P ) is a Suslin line if it satisfies properties 1), 2), 3) and 4’) but does not
contain in itself a countable dense subset. Thus, we see that Suslin’s question can
be reformulated as follows : does a Suslin line exist?

The Suslin Hypothesis is the following assertion: there is no Suslin line. After
many years of developments it turned out that the Suslin Hypothesis, similarly to
the Continuum Hypothesis, is undecidable on the basis of the usual axioms of set
theory. Now we discuss this problem more thoroughly.

Suppose that (S,�∗) is a Suslin line. We may obviously assume that S ∩R = ∅.
Let us define the ordering �+ on the set S ∪ R as follows:

x �+ y ←→ (x ∈ S & y ∈ R) ∨

(x ∈ S & y ∈ S & x �∗ y) ∨ (x ∈ R & y ∈ R & x ≤ y).

It is easy to see that the linearly ordered set (S∪R,�+) is a Suslin line, too. Hence,
we conclude that a Suslin line may contain subintervals which are similar to the real
line R. However, from such a Suslin line we can construct another one which does
not contain subintervals of the type R (i.e. subintervals which contain countable
dense subsets). Indeed, let (S,�) be an arbitrary Suslin line. Let us consider the
maximal (with respect to the inclusion) family D of pairwise disjoint non–empty

113



open intervals in S such that any interval from this family contains a countable
dense subset. Since (S,�) satisfies the countable chain condition, we have

card(D) ≤ ω.

Let us put
D =

⋃
D.

Then D contains a countable dense subset, too. Denote this subset by the symbol
D0. We claim that there are elements a, b ∈ S such that

a ≺ b, ]a, b[ ∩ D0 = ∅.

This fact holds because otherwise the set D0 would be a dense subset of (S,�). Let
K =]a, b[. No non-empty open subinterval of K has a countable dense subset since
otherwise we would obtain a contradiction with maximality of the family D. Hence,

(K,� |K×K)

is a regular Suslin line, i.e. such a Suslin line that no non-empty open subinterval
of it contains a dense countable subset.

A first proposition presented here and connected with a question on the existence
of a Suslin line gives a positive result concerning the Suslin Hypothesis. Namely, it
turns out that set theory with the Suslin Hypothesis is consistent.

Theorem 6.4 If Martin’s Axiom and the negation of the Continuum Hypothesis
hold, then there is no Suslin line.

Proof. Suppose that Martin’s Axiom and the negation of the Continuum Hypoth-
esis hold. Let (S,�) be a Suslin line. Without loss of generality we may assume
that (S,�) is a regular Suslin line.

We shall define an ω1–sequence

(]aα, bα[)α<ω1

of non–empty open subintervals of S such that

1) (∀α, β < ω1)(α < β → (Iα ∩ Iβ = ∅ ∨ cl(Iβ) ⊆ Iα));

2) (∀α < ω1)(∃β < ω1)(α < β & cl(Iβ) ⊆ Iα),

where Iα denotes the open interval ]aα, bα[ and cl(Iα) is the corresponding segment
[aα, bα].

In order to construct the required ω1–sequence let us fix an arbitrary function
f : ω1 → ω1 such that

(∀α < ω1)(∀β < ω1)(∃ζ > β)(f(ζ) = α).

Such a function can be constructed easily. Namely, let us take any partition
(Xα)α<ω1 of ω1 into sets of cardinality ω1 and put

f(ζ) = α←→ ζ ∈ Xα (α, ζ ∈ ω1).

Suppose now that α < ω1 and that the partial sequence (]aβ , bβ [)β<α of intervals
has already been constructed. Let f(α) = ξ. If ξ < α, then we put J = Iξ and if
ξ ≥ α, then we put J = S . Since the set J does not contain a countable dense
subset, we can find two elements a and b in J such that

a ≺ b, ]a, b[ ∩ {aβ , bβ : β < α} = ∅.
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We put aα = a and bα = b. Obviously, the ω1–sequence constructed in this way
satisfies relations 1) and 2).

At the next step of the proof we need some partial ordering for which we could
use Martin’s Axiom. Let us define a partial ordering � on ω1 by the following
formula:

β � α←→ (α < β) & (cl(Iβ) ⊆ Iα).

From relation 1) and from the definition of a Suslin line it follows that (ω1,�)
satisfies the countable chain condition. For any ordinal α < ω1 let us consider a
subset

Dα = {β < ω1 : α < β}.

of ω1. Relation 2) implies that (Dα)α<ω1 is a family of coinitial subsets of the
partially ordered set (ω1,�). Notice also that we have assumed the negation of
the Continuum Hypothesis, i.e. ω1 < c, where c, as usual, denotes the cardinality
continuum. Hence, we may apply Martin’s Axiom to this partial order and to the
family (Dα)α<ω1 and find a filter F ⊆ ω1 in (ω1,�) such that

(∀α < ω1)(F ∩Dα 6= ∅).

Let
φ : ω1 → ω1

be any increasing function such that ran(φ) = F . Then we see that

(∀α, β)(α < β < ω1 → cl(Iφ(β)) ⊆ Iφ(α)).

But then we conclude that

(]aϕ(α), aϕ(α+1)[)α<ω1

is a family of pairwise disjoint non–empty open intervals in S. But since S satisfies
the countable chain condition, it is impossible. Hence, Theorem 4 is proved.

Theorem 4 shows us that some additional axioms of set theory decide negatively
the question on the existence of a Suslin line (so, these axioms decide positively
the Suslin Hypothesis). However, there are other additional axioms of set theory
which imply the existence of a Suslin line. One of such axioms is the so called
diamond principle (denoted usually by 3). This principle says that there exists
an ω1–sequence of sets (Xα)α<ω1 such that

1) (∀α < ω1)(Xα ⊆ α);

2) for each set X ⊆ ω1 the set

{α < ω1 : X ∩ α = Xα}

is a stationary subset of ω1.

The family of sets (Xα)α<ω1 mentioned above sometimes is called a diamond
ω1-sequence.

The diamond principle is true in the famous Gödel Constructible Universe and
hence, is consistent with usual axioms of set theory. This principle was discov-
ered by Jensen as a very powerful combinatorial assertion which follows from the
Axiom of Constructibility (this axiom identifies the von Neumann Universe with
the Gödel Universe). Since the Axiom of Constructibility is meaningless for most
mathematicians because of its logical contents, some combinatorial statements, like
3, are quite popular to make some sophisticated constructions. Let us mention also
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that there are quite simple models of set theory ZFC where the diamond principle
holds. Hence, the consistency of the diamond principle can be proved without the
Axiom of Constructibility. We shall discuss this problem more deeply in Part 2 of
this book.

We can think about the diamond principle as of a strong enumeration principle
of subsets of ω1. Namely, during recursive constructions of length ω1 it allows us
take into account stationary many times any subset of ω1. For example, remark
that the diamond principle implies the Continuum Hypothesis (see exercises after
this Chapter).

We will use in the construction of a Suslin line some seemingly stronger form of
the diamond principle. Namely, we will need a family of sets (Tα)α<ω1 such that

3) (∀α < ω1)(Tα ⊆ α× α);

4) for any subset X of ω1 × ω1 the set

{α < ω1 : Tα = X ∩ (α× α)}

is a stationary subset of ω1.

The existence of such a family easily follows from the diamond principle. Indeed,
let

f : ω1 × ω1 → ω1

be an arbitrary bijection. Then the set

C = {α < ω1 : f−1(α) = α× α}

is a closed and unbounded subset of ω1. Let us take a family (Xα)α<ω1 the existence
of which is postulated by the diamond principle. For each α < ω1 we put

Tα = f−1(Xα) ∩ (α× α).

Suppose now that X ⊆ ω1 × ω1. Then f(X) is a subset of ω1 and the set

S = {α < ω1 : f(X) ∩ α = Xα}

is a stationary subset of ω1. But the set C ∩ S is also a stationary subset of ω1.
Hence, for any α ∈ C ∩ S we have

f−1(f(X) ∩ α) = f−1(f(X)) ∩ f−1(α) = X ∩ (α× α)

and
f−1(Xα) = f−1(Xα ∩ α) = f−1(Xα) ∩ (α× α) = Tα.

Therefore, the family (Tα)α<ω1 satisfies relations 3) and 4).

Theorem 6.5 The diamond principle implies that there exists a Suslin line.

Proof. We shall construct a linear ordering � on ω1 such that the pair (ω1,�)
is a Suslin line. The construction of this ordering will be done by the transfinite
recursion of length ω1 which starts from α = 1. We shall define an ω1–sequence
(�α)1≤α<ω1 which satisfies, among others, the following properties:

1) for each non–zero α < ω1 the relation �α is a dense linear ordering without
end–points on the ordinal product ω · α;

2) (∀α, β < ω1)(0 < α < β →�α = �β ∩(ω · α)).
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First of all let us fix some sequence (Tα)α<ω1 which satisfies conditions 3) and
4).

We begin our construction with taking as �1 any dense linear ordering without
end–points on ω. Suppose now that 1 < α < ω1 and that the sequence (�β)1≤β<α

is constructed. If α is a limit ordinal number, then we put

�α =
⋃

1≤β<α

�β .

If α = β+ 1, then the linear ordering �β on ω · β has already been constructed.
We call a subset X of ω ·β×ω ·β a β-foe if it satisfies the following two conditions:

(∀(x, y), (u, v) ∈ X)((x, y) 6= (u, v)→]x, y[ ∩ ]u, v[ = ∅);

(∀a, b ∈ ω · β)(a ≺β b→ (∃(x, y) ∈ X)(]a, b[ ∩ ]x, y[ 6= ∅)).

Notice that �β is a dense linear ordering without end–points on the countable
set ω · β. Therefore, the linear ordering (ω · β,�β) can be identified with the set
(Q,≤) of all rational numbers and its Dedekind completion with the real line R.
Let us consider the family

T = {Tζ : ζ ≤ β & Tζ is a β − foe}.

Since β is countable the family T is countable, too. Notice that each β-foe X defines
an open dense subset

X̃ =
⋃
{]x, y[ : (x, y) ∈ X}

of the Dedekind completion of the linear ordering (ω ·β,�β). So, we may apply the
Baire theorem to the family {X̃ : X ∈ T} and find a bounded Dedekind cut (A,B)
in (ω · β,�β) such that A has no maximal element, B has no minimal element and

(A,B) ∈
⋂
{X̃ : X ∈ T}.

What we want to do now is to put a copy of Q into the gap between A and B. More
precisely, we define an ordering �α on

ω · α = ω · β + ω · {β}

in such a way that

a) the ordering
(ω · {β}, �α ∩ (ω · {β} × ω · {β}))

is isomorphic with (Q,≤);

b) (∀x ∈ A)(∀y ∈ ω · {β})(x �α y);

c) (∀x ∈ ω · {β})(∀y ∈ B)(x �α y).

The relation �α is a linear dense ordering without end–points on ω ·α. Moreover,
every β–foe from the family T remains an α–foe, too. This fact will play a crucial
role in our further considerations.

We put at the end
�=

⋃
α<ω1

�α

and assert that the Dedekind completion of (ω1,�) is a Suslin line.
It follows from our construction that � is a dense linear ordering on ω1 without

end-points. So, the same holds for the Dedekind completion of (ω1,� ).
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It is also easy to observe that there is no countable dense subset of (ω1,� ).
Indeed, suppose that D is any countable subset of ω1. The regularity of ω1 implies
that there is an ordinal β < ω1 such that D ⊆ ω · β. But then the whole interval
ω · {β} is disjoint with the set D. So, D is not dense in (ω1,�). But from this fact
we easily deduce that there is no countable dense subset in the Dedekind completion
of (ω1,�), too.

It remains to show that the Dedekind completion of (ω1,�) satisfies the count-
able chain condition. We shall prove that (ω1,�) satisfies the countable chain
condition. This fact, clearly implies the countable chain condition for the Dedekind
completion of (ω1,�).

Hence, suppose that (]ai, bi[)i∈I is a maximal (with respect to inclusion) family
of pairwise disjoint non–empty open subintervals of (ω1,�). Let us put

F = {(ai, bi) : i ∈ I}

and let us consider the set

U = {α < ω1 : ω · α = α & F ∩ (α× α) is an α− foe}.

It is not difficult to check that the set U is a closed and unbounded subset of ω1

(this is the standard part of almost any proof which uses the diamond principle).
But the set

V = {α < ω1 : Tα = F ∩ (α× α)}

is a stationary subset of ω1, and hence

U ∩ V 6= ∅.

Let us take any ξ ∈ U ∩ V . Then we have

Tξ = F ∩ (ξ × ξ).

Thus, Tξ is a ξ-foe and we know that Tξ was taken into account during the con-
struction of �ξ+1. We know also that Tξ remains a (ξ+1)–foe. Moreover, we claim
that for every ordinal α such that ξ ≤ α < ω1 the set Tξ is an α-foe. Indeed, if
Tξ is a ζ–foe and ξ < ζ < ω1, then Tξ is a (ζ + 1)–foe, too. The limit step is also
clear. Namely, if ξ < ζ < ω1 and ζ is a limit ordinal and for all η satisfying the
inequalities ξ < η < ζ the set Tξ is an η–foe, then Tξ is a ζ–foe, too. Hence,

{]u, v[ : (u, v) ∈ Tξ}

is a maximal family of pairwise disjoint open intervals, so F = Tξ and therefore,

card(I) = card(Tξ) ≤ ω.

Thus, Theorem 5 is proved.

As we know any non-empty Dedekind complete dense linear order without end–
points and with a countable dense subset is isomorphic with the real line R. Hence,
the real line R is unique in a large class of Dedekind complete dense linear orders.
We have another situation with Suslin lines. Namely, it can be proved that the
square of any Suslin line is not a c.c.c. topological space. But it is possible to
construct (using the diamond principle) two Suslin lines P and S such that their
topological product satisfies c.c.c. This fact shows us that Suslin lines may strongly
differ from each other. This is probably one of the reasons why set theoretical and
topological properties of Suslin line are not studied as intensively as of the real line.
No we are going to prove some basic facts about Suslin lines.
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First, let as make one important observation concerning a Suslin line (which was,
in fact, used in the above discussion). Suppose that (S,�S) is a Suslin line. Note
that if ν is an ordinal and (xα)α<ν is a strictly increasing (or strictly decreasing)
sequence in S, then ν < ω1. Indeed, otherwise

(]xα, xα+1[)α<ν

would be an uncountable family of pairwise disjoint non–empty open intervals in S,
which is impossible.

Let us recall that B(S) denotes the class of all Borel subsets of the topological
space S.

Theorem 6.6 Let (S,�S) be an arbitrary Suslin line. Then

1) S has a dense subset of cardinality ω1;

2) card(S) = 2ω;

3) card(B(S)) = 2ω;

4) the intersection of any countable family of dense open subsets of S has a non-
empty interior.

Proof. Suppose that (S,�) is an arbitrary Suslin line. We define by transfinite
recursion a sequence (Dα)α<ω1 of countable subsets of S such that the union

D =
⋃

α<ω1

Dα

is a dense subset of S.
Let D0 consist of one point from S. Suppose that α < ω1 and that a partial

sequence (Dβ)β<α has already been defined. Let us consider the set

A =
⋃

β<α

Dβ .

Since A is a countable set, it is not dense in S. Hence, the set S \ cl(A) is the union
of a non-empty familyWα of pairwise disjoint non-empty open intervals. Of course,
the family Wα is countable. Let Dα be a subset of S which intersects each interval
from Wα exactly at one point. In this way we define the whole sequence (Dα)α<ω1

and, finally, we put
D =

⋃
α<ω1

Dα.

Obviously, card(Dα) = ω1. We will show thatD is a dense subset of (S,�). Suppose
otherwise. Then there exists a point

p ∈ S \ cl(D).

For each ordinal α < ω1 we can find an interval ]aα, bα[∈ Wα such that

p ∈]aα, bα[.

Of course, for any α < β < ω1 we have

[aβ , bβ ] ⊂ ]aα, bα[.

Hence, the sequence (aα)α<ω1 is strictly increasing. But this is impossible by the
remark preceding the theorem. Thus, D is a dense subset of (S,�).
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Now let us fix an arbitrary dense subset D of S of cardinality ω1. Notice that
for any point p ∈ S we can find ν < ω1 and a strictly increasing sequence (xα)α<ν

of points from D such that

x = sup{xα : α < ν}.

Hence, we have
card(S) ≤ (card(D))ω = 2ω.

The converse inequality card(S) ≥ 2ω is clear since S is complete.
It is easy to construct an infinite countable family of pairwise disjoint non-

empty open intervals in S. Hence, there are at least 2ω different open subsets of
S. Furthermore, since every open set in S is a disjoint union of a family of open
intervals and any such family is countable we see that there are precisely 2ω open
subsets of S. From this fact we immediately conclude that the equality

card(B(S)) = 2ω

holds, too.
Suppose now that (Dn)n∈N is a countable family of open dense subsets of S.

Then every set Dn is the union of a countable family On of open intervals. Let En

be the set consisting of all end–points of intervals from On and let

E =
⋃
n∈N

En.

Since E is countable, we can find a non–empty open interval V in S such that
V ∩E = ∅. From the density of every set Dn we immediately deduce that V ⊆ Dn

for each n ∈ N, so
V ⊆

⋂
n∈N

Dn.

Hence, Theorem 6 is proved.

At this place we finish the discussion of Suslin lines and the Suslin Hypothesis.
We will use Suslin lines in several examples in Part 2 of this book.

We started this Chapter with some characterizations of the real line R. There
are many other characterizations of this important mathematical object. For ex-
ample, according to the famous Pontrjagin theorem, any locally compact connected
topological field is isomorphic with the field of all real numbers R, or with the field of
all complex numbers C or with the non–commutative field of all quaternions. From
this theorem we immediately get the next characterization of the real line. Namely,
R can be characterized as a one–dimensional connected locally compact topological
field. We shall not prove these results because they are outside the scope of our
book.

Now we shall discuss a more important question for us. This question is con-
nected with generalized limits on the real line R. We shall denote by the symbol E
the vector space of all convergent sequences of real numbers. Obviously, the space
E is partially ordered by the relation

(xn)n∈N � (yn)n∈N ←→ (∀n ∈ N)(xn ≤ yn).

For any element
x = (xn)n∈N ∈ E

we put
||x|| = sup

n
|xn|.
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It is clear that the functional
|| · || : E → R

is a norm on the vector space E. Moreover, the pair (E, || · ||) is a separable Banach
space. We shall consider a natural continuous positive linear functional

lim : E → R,

defined by the equality
lim(x) = lim

n
xn

for each x = (xn)n∈N from the space E. This functional does not depend on finitely
many values xn, i.e. if x ∈ E, y ∈ E and

card({n ∈ N : xn 6= yn}) < ω,

then we have
lim
n
xn = lim

n
yn.

Let us denote by the symbol l∞ the vector space off all bounded sequences of real
numbers ordered by the same formula as the space E. It is clear that the inclusion

E ⊆ l∞

holds. The space l∞ is a non–separable Banach space with the norm

||x|| = sup
n
|xn| (x = (xn)n∈N ∈ l∞).

We say that a mapping
Lim : l∞ → R

is a Banach limit (or a generalized limit) if

1) Lim is a positive linear functional on l∞ (hence, it is continuous);

2) Lim is an extension of the linear functional lim.

We finish this Chapter with the following result which establishes, among others,
the existence of Banach limits.

Theorem 6.7 Let µ be any non–negative finitely additive set function defined on
the family P (N) of all subsets of N such that

µ({n}) = 0 (n ∈ N),

µ(N) = 1.

Then the mapping

x 7→
∫
xdµ (x ∈ l∞)

is a Banach limit.

Let us remark, in order to avoid misunderstandings, that by the definition∫
xdµ =

∫
x+dµ−

∫
x−dµ,

where, for example, the symbol
∫
x+dµ denotes the upper bound of all sums of the

form ∑
j∈J

tjµ(Pj),
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where (Pj)j∈J is any finite partition of the set N and for every j ∈ J the real number
tj is defined as

tj = inf(x+|Pj
),

(the definition of
∫
x−dµ is analogous).

We leave the simple proof of this theorem to the reader. We shall make only one
additional remark. Let Φ be any non–principal ultrafilter on the set N. Then there
exists a set function µ canonically associated with the ultrafilter Φ and defined on
P (N) by the following formula:

µ(A) =
{

0 if A 6∈ Φ,
1 if A ∈ Φ.

It is clear that this function is non–negative and finitely additive. Hence, by the
theorem formulated above this set function gives us a Banach limit. It is worth
remarking that in this case the Banach limit is characterized by the following for-
mula:

Lim(x) = a←→ (∀ε > 0)({n : |xn − a| < ε} ∈ Φ).

Therefore, we see that in theory (ZF) & (DC) from the existence of a non–principal
ultrafilter on N we can deduce the existence of a Banach limit.

Exercises

Exercise 6.1 Show that there exist two irrational real numbers r and t such that
the number rt is rational.

Exercise 6.2 Find two non–isomorphic Dedekind complete dense linearly ordered
sets (E1,�1) and (E2,�2) having no end–points and satisfying the following rela-
tion:

card(E1) = card(E2) = c.

Exercise 6.3 Let C denote the field of all complex numbers. Show that there is no
linear ordering ≤ on C such that the structure (C,+, ·, 0, 1,≤) is a linearly ordered
field.

Exercise 6.4 Let α be a fixed ordinal number. A linearly ordered set (E,� ) is
called an ηα–set if for any two sets X ⊆ E and Y ⊆ E such that

card(X) < ωα, card(Y ) < ωα,

(∀x ∈ X)(∀y ∈ Y )(x < y)

there exists an element e ∈ E satisfying the following relations:

(∀x ∈ X)(x < e), (∀y ∈ Y )(e < y).

The notion of ηα–set is due to Hausdorff. In particular, the linearly ordered sets

(Q,≤), (R,≤)

are η0–sets. Show that

a) if (E,≤) is an ηα–set, then E has not end–points and card(E) ≥ ωα;

b) if (E,≤) is an ηα–set, then every linearly ordered set (P,≤P ) such that
card(P ) ≤ ωα can be monomorphically embedded into (E,≤);

c) any two linearly ordered ηα–sets of cardinality ωα are isomorphic.
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Moreover, prove that for every ordinal α there exists an ηα+1–set of cardinality
2ωα .

These results, in particular, show us that if the Continuum Hypothesis holds,
then there exists a linearly ordered set of the cardinality continuum which is universal
in the sense that any other linearly ordered set of the cardinality continuum can be
monomorphically embedded into it.

Let us remark also that ηα–sets are a very particular case of the so called satu-
rated models which are considered in general model theory.

Exercise 6.5 Show that there exists a linearly ordered set (E,≤) having (as a topo-
logical space in its order topology) the following properties:

a) E is locally isomorphic with R (hence, E is also locally homeomorphic with
R);

b) E is connected;

c) E is not separable.

Deduce from these facts that the space E×E is connected non–separable and locally
homeomorphic with the Euclidean plane R2. This space gives us an example of a
two–dimensional topological, even differentiable, manifold without a countable base.
In particular, the manifold E×E does not admit a triangulation (in the usual sense
of the classical combinatorial topology).

Exercise 6.6 Let E be a connected metric space locally separable at each of its
points (i.e. for every x ∈ E there exists a neighbourhood V (x) of x which is separa-
ble). Show that E has a countable base, i.e. E is separable.

Exercise 6.7 Give a description of all closed subgroups of the additive group of the
real line R.

Exercise 6.8 Give a description of all closed subgroups of the additive group of the
n–dimensional Euclidean space Rn (n ∈ N).

Exercise 6.9 Suppose that a function f : R → R has two periods q1 and q2 such
that the real number q1/q2 is irrational. Show that if f is Lebesgue measurable, then
f is equivalent to a constant function. Formulate and prove an analogous result for
the Baire property.

Exercise 6.10 Show that the diamond principle implies the Continuum Hypothesis.

Exercise 6.11 Suppose that the diamond principle holds. Show that there exists a
family (Xα)α<2ω1 of stationary subsets of ω1 such that for any two distinct ordinals
α, β < 2ω1 the intersection Xα ∩Xβ is a non–stationary subset of ω1.

Exercise 6.12 Let (S,�) be an arbitrary Suslin line. Show that the topological
square of S does not satisfy the countable chain condition.

This classical result is due to Kurepa. Deduce from this result that

card(B(S)) = 2ω1 .

Exercise 6.13 Let µ be any σ–finite Borel measure defined on a Suslin line (S,�).
Show that the measure µ has a separable support, i.e. that there exists a separable
closed set F ⊆ S such that µ(S \ F ) = 0.
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Exercise 6.14 Let E be a topological space. We say that E is a Lindelof space if
every open covering of E contains a countable subcovering of E. We say that E is
a hereditarily Lindelof space if each subspace of E is a Lindelof space.

Prove that any Suslin line (S,�) is a non–separable hereditarily Lindelof space.
Prove also that a Suslin line S does not admit a group structure agreed with the
order topology of S.

Exercise 6.15 Assume the diamond principle. Construct two Suslin lines T and
S such that the topological product T × S satisfies the countable chain condition.

Exercise 6.16 Show that if (S,�) is a regular Suslin line, then the ideals of meager
sets and of nowhere dense sets coincide. Moreover, show that

non(K(S)) = ω1.

Exercise 6.17 Using the Erdös-Rado combinatorial theorem (see Appendix A)
prove that the cardinality of any non–separable linearly ordered set satisfying c.c.c.
does not exceed the cardinality continuum.

Deduce the same result from the Archangielski theorem stating that the cardinal-
ity of any compact topological space satisfying the first countability axiom does not
exceed the cardinality continuum.

Exercise 6.18 Let (xn)n∈N and (yn)n∈N be any two sequences of real numbers.
Show that the following inequality holds:

lim sup
n

(xn + yn) ≤ lim sup
n

xn + lim sup
n

yn.

Exercise 6.19 Applying the previous exercise and the Hahn–Banach theorem about
extensions of a linear functional show that there exists a mapping

Lim : l∞ → R

with the following properties:

a) Lim is a linear positive functional (hence, it is continuous);

b) Lim extends the mapping lim;

c) the mapping Lim is invariant under the shift, i.e. the equality

Lim((xn)n∈N) = Lim((xn+1)n∈N) ((xn)n∈N ∈ l∞)

holds.

The mapping Lim is called an invariant Banach limit on the space l∞.

Exercise 6.20 Show that the cardinality of the family of all Banach limits is equal
to 2c.

Exercise 6.21 Prove that any one–dimensional connected differentiable manifold
with a countable base is diffeomorphic either with the one–dimensional torus, or with
the real line R. Hence, we obtain that any non–compact one–dimensional connected
differentiable manifold with a countable base is diffeomorphic with the real line.

Exercise 6.22 Let X be a subset of the real line R. Denote by Is(X) the family of
all those subsets of R which are order isomorphic with X. Show that for non-empty
set X we have

card(Is(X)) = c.
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Exercise 6.23 Prove that every infinite countable linearly ordered set (E,�) is
isomorphic to a certain proper subset of E. Give an example of a subset X of the
real line such that card(X) = c and X is not isomorphic to any proper subset of X
(of course, we mean here that X is equipped with the order induced by the standard
order of R). These results are due to Dushnik and Muller.
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Chapter 7

Measure and Category on
the Real Line

In this Chapter we investigate the σ–ideal L of all Lebesgue measure zero subsets of
the real line R and the σ–ideal K of all first category subsets of R. Hence, the basic
set of our considerations is R. However, after having aquainted himself with our
dicsussions in Chapters 4 and 5, the reader will find that all further considerations
have a much wider range of applications.

Let us introduce and recall some notations. By B we denote here the σ-algebra
B(R) of all Borel subsets of R. The standard one–dimensional Lebesgue measure
on R we shall denote here by λ. By Q we denote the set of all rational numbers.

We say that I is an ideal of subsets of a basic set E if I is an ideal and
⋃
I = E,

i.e. if [E]<ω ⊆ I. Let J be an ideal of subsets of R. We say that J has a Borel
base if

(∀X ∈ J)(∃Y ∈ J)(X ⊆ Y & Y ∈ B).

Note that for every ideal J with a Borel base the inequality

cof(J) ≤ c

holds, where c denotes, as usual, the cardinality continuum. Note also that both
ideals L and K have Borel bases.

Let us recall that any subset of R with the Baire property can be represented
in the form B4K, where B is a Borel set in R and K is a first category subset
of R. An analogous fact is true for Lebesgue measurable sets in R. Namely, any
Lebesgue measurable subset of R can be represented in the form B4L, where B is
a Borel set in R and L is a Lebesgue measure zero subset of R. Hence, the family
of all subsets of R with the Baire property coincides with the σ–algebra generated
by B ∪ K and the family of all Lebesgue measurable subsets of R coincides with
the σ–algebra generated by B ∪ L. These simple observations establish the basic
similarity between the ideals K and L and between the σ–algebras mentioned above.

Let (G, )̇ be an arbitrary group. For any sets X,Y ⊆ G and any element g ∈ G
we define the following sets:

1) X · g = {x · g : x ∈ X},

2) X · Y = {x · y : x ∈ X & y ∈ Y },

3) X−1 = {x−1 : x ∈ X}.
Suppose that I is an ideal of subsets of the group (G, ·). We say that this ideal

is right invariant under translations if

(∀X ∈ I)(∀g ∈ G)(X · g ∈ I).
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We say that this ideal is symmetric if

(∀X ∈ I)(X−1 ∈ I).

If the group G is commutative we shall use additive notation, e.g. we shall write
X + g, X + Y , −X instead of X · g, X · Y , X−1.

Let us notice that both ideals K and L are symmetric and invariant under all
translations from the group (R,+).

We start with some results about ideals on groups which are similar to ideals K
and L from the algebraic point of view.

First we shall show that no ideal on a group symmetric and invariant under
translations of this group can be determined by one set.

Theorem 7.1 Suppose that I is a proper ideal of subsets of a commutative group
(G,+) and suppose that I is symmetric and invariant under all translations from
this group. Then there is no set A ∈ I such that

(∀B ∈ I)(∃g ∈ G)(B ⊆ A+ g).

Proof. Suppose that such a set A exists. Without loss of generality we may assume
that A is a symmetric set, i.e. that A = −A. Since the ideal I is proper there exists
a set B ∈ I satisfying the relations A ⊆ B and A 6= B. Obviously, we may also
assume that B = −B. Let g be such an element of G that B ⊆ A + g. Then we
have

−B ⊆ −A+ g,

and therefore,
B ⊆ A− g,

Thus, we obtain

A ⊂ B ⊆ A+ g ⊆ B + g ⊆ (A− g) + g = A.

So, we get a contradiction which proves our theorem.

The assumption that the ideal I is symmetric is essential in this theorem.
Namely, let us consider the ideal J of subsets of R defined by the equality

J = {B ⊆ R : (∃x ∈ R)(∀y ∈ B)(y ≤ x)}.

The ideal J is invariant under all translations of R. Let us put A =]−∞, 0]. Then
it is easy to see that

(∀B ∈ J)(∃x ∈ R)(B ⊆ A+ x).

So, we conclude that the ideal J is determined by the set A.

Theorem 7.2 Suppose that I is a proper ideal on a commutative group (G,+)
invariant under all translations from this group. Let H ⊆ I and let card(H) <
cov(I). Then we have

card(G \
⋃
H) = card(G).

Proof. Suppose otherwise that there exists a set H ⊆ I such that

card(H) < cov(I),

card(G \
⋃
H) < card(G).

Let us put
X = G \

⋃
H.
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We fix an element g ∈ G \ (X −X). It is easy to check that

g +X ⊆
⋃
H.

Let us put
S = H ∪ {A− g : A ∈ H}.

Since the ideal I is invariant, we see that S ⊆ I. It is also clear that card(S) <
cov(I). But we have ⋃

S = G,

so we obtain a contradiction.

Recall that two ideals I and J of subsets of a basic set E are orthogonal if there
exists a partition {A,B} of the set E such that A ∈ I and B ∈ J . As we know the
ideals K and L on the real line are orthogonal.

Theorem 7.3 (Rothberger) Suppose that I and J are two orthogonal ideals on
a commutative group (G,+) invariant under all translations from this group. Then
the following equality holds:

cov(I) ≤ non(J).

Proof. Let {A,B} be a partition of the group G such that A ∈ I and B ∈ J . Let
X be a subset of G such that X 6∈ J and card(X) = non(J). Then

(∀g ∈ G)((g +X) ∩A 6= ∅).

Hence, we have
(∀g ∈ G)(∃x ∈ X)(∃a ∈ A)(g + x = a).

But the last relation means that

G =
⋃
{A− x : x ∈ X}.

Thus, we obtain
cov(I) ≤ card(X) = non(J)

and the theorem is proved.

In particular, we see that

cov(K) ≤ non(L), cov(L) ≤ non(K).

These two inequalities give us a non–trivial correlation between the main cardinal
functions describing the properties of ideals K and L. The second part of this book
will be devoted for more detailed discussion of properties of the mentioned ideals.
Now, let us recall that if J = K or J = L, then

ω1 ≤ add(J) ≤ non(J), cov(J) ≤ cof(J) ≤ c.

Hence, if the Continuum Hypothesis holds, then all of these cardinal numbers are
equal to the cardinality continuum. The next result shows us that Martin’s Axiom
also implies that these cardinal numbers for K and L are equal to c.

Theorem 7.4 If Martin’s Axiom holds, then

add(K) = add(L) = c.
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Proof. Assume that Martin’s Axiom holds. First we shall prove that the equality
add(K) = c holds.

Suppose that κ < c and that (Nα)α<κ is a family of nowhere dense subsets of R.
We must show that

⋃
α∈κNα ∈ K. Let I(R) denote the family of all finite sequences

of non–empty open intervals with rational end–points. Let

P = {(f, U) : f ∈ I(R) & U is a dense open subset ofR}.

We define a partial ordering ≤ on the set P . Namely, we put

(f, U) ≤ (g, V )

if the relation

(U ⊆ V ) & (f ⊇ g) & (∀i ∈ dom(f) \ dom(g))(f(i) ⊆ V )

holds.
Now we shall check that the partially ordered set (P,≤) satisfies the countable

chain condition. Suppose that ((fα, Vα))α<ω1 is an arbitrary family of elements
from P . Then there are ordinals α < β < ω1 such that fα = fβ . Let V = Vα ∩ Vβ .
Then V is a dense open subset of R and

(fα, V ) ≤ (fα, Vα), (fα, V ) ≤ (fβ , Vβ).

Hence, we see that (P,≤) satisfies c.c.c., so we may apply Martin’s Axiom to the
partially ordered set (P,≤).

For every α < κ, every n ∈ N and any two numbers p, q ∈ Q such that p < q we
put

Dα = {(f, U) ∈ P : Nα ∩ U = ∅}

and

En
p,q = {(f, U) ∈ P : (∃m > n)(m ∈ dom(f) & f(m) ∩ ]p, q[ 6= ∅)}.

It is easy to check that for each α < κ the set Dα is a coinitial subset of (P,≤) and
that for each n ∈ N and for all p, q from Q such that p < q the set En

p,q is coinitial,
too. Let us put

S = {Dα : α < κ} ∪ {En
p,q : n ∈ N & p, q ∈ Q & p < q}.

We see that card(S) < κ ·ω < c. So there exists a filter F in (P,≤) which intersects
all sets from the family S. We define

I =
⋃
{f : (∃U)((f, U) ∈ F )}.

Since F ∩ En
p,q 6= ∅ for every n ∈ N and any rational numbers p, q such that p < q,

we see that dom(I) = N. For each natural number n we put

Un =
⋃

n<m

I(m)

and
H =

⋂
n

Un.

It is clear that for each n ∈ N the set Un is open in R. Moreover, suppose that p, q
are rational numbers and p < q. Then

F ∩ En
p,q 6= ∅.

130



Hence, there exists m > n such that

I(m) ∩ ]p, q[6= ∅.

Thus, for every n ∈ N the set Un is dense and open in R. Therefore, the set H is a
dense Gδ-subset of R.

Notice, at the end, that if α < κ, then F ∩Dα 6= ∅, so there exists an element
(f, U) of F such that Nα ∩U = ∅. But, since F is a filter, it is not difficult to check
that

H ⊆ U,

so Nα ∩H = ∅, too. Therefore, we have⋃
α<κ

Nα ⊆ R \H.

In particular, we see that
⋃

α<κNα ∈ K.

Now we shall prove the second part of the theorem, i.e. that Martin’s Axiom
implies the equality add(L) = c. Suppose that κ < c and that (Lα)α<κ ⊆ L. Let
us fix a real number ε > 0. We shall show that there exists an open set U ⊆ R such
that λ(U) ≤ ε and ⋃

α<κ

Lα ⊆ U.

Let
P = {V ⊆ R : V is open set & λ(V ) < ε}.

We consider the partial ordering of P defined by the formula

U ≤ V ←→ U ⊇ V.

First we shall establish that (P,≤) satisfies the countable chain condition. In order
to show this suppose that {Vα}α<ω1 is an uncountable subfamily of P . Then there
exist a strictly positive number ε1 < ε and an uncountable subset T of ω1 such that
for each α ∈ T we have λ(Vα) < ε1. For every α ∈ T let Iα be a finite union of
intervals with rational end–points such that

λ(Vα M Iα) < (ε− ε1)/2.

Then there are different α, β ∈ T such that Iα = Iβ . Obviously, we have

Vα ∪ Vβ ⊆ Vα ∪ (Iα \ Vα) ∪ (Vβ \ Iβ).

Therefore,
λ(Vα ∪ Vβ) < λ(Vα) + λ(Iα \ Vα) + λ(Vβ \ Iβ) < ε.

Thus, P satisfies c.c.c. and we may apply Martin’s Axiom to the partial ordering
P .

Note that for every α < κ the set

Gα = {V ∈ P : Lα ⊆ V },

is a coinitial subset of P . Hence, there exists a filter G in P such that

(∀α < κ)(Gα ∩G) 6= ∅.

Let us consider the set
U =

⋃
G.

131



It is easy to see that
(∀α < κ)(Lα ⊆ U).

Note that every element of G is an open set and we can find a countable family
(Un)n∈N of elements from G such that U =

⋃
n Un. Moreover, G is a directed family

of sets. Hence, if U1, . . . , Un are elements of G, then U1∪ . . .∪Un is also an element
of G, so

λ(U1 ∪ . . . ∪ Un) < ε.

This fact immediately implies that

λ(U) = λ(
⋃
n

Un) ≤ ε.

Since ε is an arbitrary strictly positive number, the theorem is proved.

It is well known that theory ZFC & (MA) & (2ω > ω1) is consistent. Hence,
it is consistent that add(K) > ω1 and that add(L) > ω1. In the second part of this
book we shall see that theory

ZFC & (2ω = ω2) & (add(K) = add(L) = ω1)

is consistent, too. So, the values of these cardinal functions are not uniquely de-
termined by theory ZFC. However, there are natural examples of topological and
measure spaces for which these functions are precisely determined.

Example 1. Let us consider ω1 as a topological space with the discrete topology
and let X denote the product topological space ωω

1 . For every ordinal α < ω1 the
set

Aα = {f ∈ X : (∀n ∈ N)(f(n) ≤ α)}

is closed and nowhere dense in X. Moreover, we have⋃
α<ω1

Aα = X.

Hence, in this situation cov(K(X)) = ω1. Remark also that X is a topological space
metrizable by a complete metric.

Example 2. For an arbitrary infinite cardinal κ let us consider the measure
product space and topological product space {0, 1}κ. From the Kuratowski-Ulam
theorem and from the Fubini theorem we can easily deduce that

add(K({0, 1}κ)) ≤ add(K({0, 1}ω)),

add(L({0, 1}κ)) ≤ add(L({0, 1}ω)).

In particular, let us put κ = ω1. For each ordinal α < ω1 let

Aα = {f ∈ {0, 1}ω1 : (∀β > α)(f(β) = 0)}.

It is easy to check that for α < ω1 we have

Aα ∈ K({0, 1}ω1) ∩ L({0, 1}ω1)

but ⋃
α<ω1

Aα 6∈ K({0, 1}ω1) ∪ L({0, 1}ω1).
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Thus, for κ = ω1 we have

add(K({0, 1}κ)) = add(L({0, 1}κ)) = ω1.

The above examples show us that the flexibility of the cardinal functions con-
nected with ideals (as we have in the case of K and L) is an exception rather than
a rule.

The following two results give us another similarity between measure and cate-
gory.

Theorem 7.5 Let (G, ·) be a locally compact topological group and let µ be a left
invariant Haar measure on G. If A is a µ-measurable subset of G and µ(A) > 0,
then there exists a neighbourhood U of the neutral element of G such that

(∀h ∈ U)(µ(h ·A ∩A) > 0).

Proof. Without loss of generality we may assume that µ(A) <∞. Let 0 < ε < µ(A)
3 .

Since µ is a Radon measure we can find an open set V and a compact set K such
that

1) K ⊆ A ⊆ V ;

2) µ(V \A) < ε;

2) µ(A \K) < ε.

From the compactness of the set K we can easily deduce that there exists a neigh-
bourhood U of the neutral element of G such that

U ·K ⊆ V.

Notice that
(∀h ∈ G)(h ·K ∩K ⊆ h ·A ∩A).

Therefore, it is sufficient to show that

(∀h ∈ U)(µ(h ·K ∩K) > 0).

Suppose that this relation is not true. Then there exists h ∈ U such that

µ(h ·K ∩K) = 0.

But K ⊆ V and h ·K ⊆ V . Thus, we have

µ(V ) ≥ µ(h ·K ∪K) = µ(h ·K) + µ(K) = 2µ(K).

From this relation we conclude that

2(µ(A)− ε) ≤ µ(A) + ε,

and, finally, we obtain
µ(A) ≤ 3ε < µ(A).

This contradiction proves the theorem.
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A careful analysis of the proof of the last theorem shows us that it can be done
in theory (ZF) & (DC). Morever, a little modification of the proof presented
above gives us that for every µ-measurable subset A of the group G we have

lim
h
µ(h ·A ∩A) = µ(A),

where h ∈ G converges to the neutral element of G. This property of the Haar
measure µ is called the Steinhaus property of µ. In particular, we see that the
classical Lebesgue measure on R has the Steinhaus property. Moreover, from the
Steinhaus property of µ and from the uniqueness theorem for a Haar measure we can
easily deduce another important property of µ. We mean here the so called metric
transitivity of µ. Namely, suppose that (G, ·) is a σ–compact locally compact
topological group, H is a countable dense subset of G and A is a µ–measurable
subset of G such that µ(A) > 0. Then we have

µ(G \ ∪{h ·A : h ∈ H}) = 0.

Of course, we can apply this result to the Lebesgue measure on R.
Now we shall consider a weak analogue of the Steinhaus property for category.

Theorem 7.6 Let (G, ·) be a topological group and let A be a non–meager subset
of G having the Baire property. Then there exists a neighbourhood U of the neutral
element of G such that

(∀h ∈ U)(h ·A ∩Ais non–meager).

Proof. From the Banach theorem about open first category sets (see Chapter 2) we
can immediately deduce that any non-empty open subset of our group G is non–
meager. Let us find an open subset V of G such that A4V is meager and let us fix
an element g ∈ V . From the continuity of basic operations on the group (G, ·) we
get a neighbourhood U of the neutral element of G such that

(U−1) · U · g ⊆ V.

We claim that
(∀h ∈ U)(U · g ⊆ (h · V ∩ V )).

Indeed, let h ∈ U and t ∈ U . Then we have t ·g ∈ V . But we also have h−1 ·t ·g ∈ V ,
so t · g ∈ h · V . Therefore, t · g ∈ (h · V ∩ V ). Thus, for each element h ∈ U the set
h · V ∩ V is non–meager. Now it is obvious that the same holds for the set A, i.e.
h ·A ∩A is non–meager.

In the proof of the last theorem we used the classical Banach theorem about
open first category sets, which is based on the Axiom of Choice. Hence, we see that
the proof of the last theorem is done in theory ZFC. We want to remark that for
some groups (G, ·) the Axiom of Choice can be replaced by a much weaker axiom
DC (see exercises after this Chapter).

Let I be an ideal on a topological group (G, ·) and let I possess a Borel base.
We say that I has the Steinhaus property if for any Borel set A which does not
belong to I the set

A ·A−1 = {ab−1 : a, b ∈ A}

has a non–empty interior.
Now suppose that A and U are subsets of a group (G, ·) such that

(∀h ∈ U)(h ·A ∩A 6= ∅).
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Then it is clear that
(∀h ∈ U)(∃a, b ∈ A)(h · a = b).

Therefore, we have
U ⊆ A ·A−1.

Taking into account this simple remark and the results of two previous theorems
we conclude that both ideals K and L have the Steinhaus property.

Theorems 5 and 6 proved above have various applications. In particular, the
following example gives us a simple application of these theorems.

Example 3. Suppose that G is a Legesgue measurable subgroup of the group
(R,+). Then G = R or G ∈ L.
Indeed, suppose that λ(G) > 0. Then by Theorem 5 there exists an ε > 0 such that

]− ε, ε[ ⊆ G−G = G.

But then we have ⋃
n∈N

n ]− ε, ε[ ⊆ G,

hence G = R. An analogous fact is obviously true for the Baire property.

All results presented above show a big similarity between ideals K and L. Both
are symmetric, invariant under translations, both possess Borel bases and have the
Steinhaus property, both are σ-additive. Moreover, Martin’s Axiom implies that
these ideals are c-additive.

We shall give another result which also shows a similarity between ideals K and
L. In order to formulate and prove this result we need one auxiliary assertion con-
cerning κ-additive ideals on an infinite cardinal κ.

Suppose that I1 is an ideal of subsets of a basic set E1 and that I2 is an ideal
of subsets of a basic set E2. We say that a bijection

f : E1 → E2

is an isomorphism between I1 and I2 if

(∀X ⊆ E1)(X ∈ I1 ←→ f(X) ∈ I2).

We say that ideals I1 and I2 are isomorphic if there exists an isomorphism between
I1 and I2.

Let κ be an arbitrary infinite cardinal. We define three simple ideals by the
following relations:

1) I0(κ) = [κ]<κ;

2) I1(κ) = P (κ× {0}) ∪ [κ× {1}]<κ;

3) I2(κ) = {A ⊆ κ× κ : card(pr1(A)) < κ}.

Note that the ideal I0 is an ideal of subsets of κ, the ideal I1 is an ideal of subsets
of (κ × {0}) ∪ (κ × {1}) and the ideal I3 is an ideal of subsets of κ × κ. Since we
have

κ = card((κ× {0}) ∪ (κ× {1})) = card(κ× κ),

all these ideals are defined on sets of cardinality κ.
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Theorem 7.7 Let κ be an infinite cardinal and let J be an ideal of subsets of a
basic set of cardinality κ. Suppose also that add(J) = κ and cof(J) = κ. Then J
is isomorphic with one of the ideals I0(κ), I1(κ), I2(κ).

Proof. We may assume that J is an ideal on the basic set X =
⋃
J . Taking into

account the equality add(J) = κ we see that κ is a regular cardinal and [X]<κ ⊆ J .
If the equality [X]<κ = J holds, then J is isomorphic with the ideal I0(κ).

Suppose now that J \ [X]<κ 6= ∅ . If there exists a set A ∈ J such that for any
another set B ∈ J we have card(B \A) < κ, then

J = P (A) ∪ [X \A]<κ,

hence, J is isomorphic with I1(κ).
Thus, we may assume that

(∀A ∈ J)(∃B ∈ J)(card(B \A) = κ).

Let (Bα)α<κ ⊆ J be a base of the ideal J . For each ordinal α < κ we put

Cα =
⋃
ζ<α

Bζ .

Then {Cα}α<κ is also a base of J . Moreover, if α < β, then Cα ⊆ Cβ . Our
assumption implies that for every α < κ there exists β < κ such that card(Cβ\Cα) =
κ. Without loss of generality we can suppose that card(Cα+1 \ Cα) = κ for each
α < κ. Now let us put

Cα+1 \ Cα = {cαβ : β < κ}.

Then the mapping
f : κ× κ→ X

defined by the formula
f((α, β)) = cαβ

gives us an isomorphism between the ideal J and the ideal I2(κ).

The following result is known as the Erdös-Sierpiński Duality Principle.

Theorem 7.8 (Erdös-Sierpiński) Suppose that add(K) = add(L) = c. Then the
ideals K and L are isomorphic. Moreover, there exists an isomorphism f : R → R
between K and L such that (f ◦ f)(x) = x for every x ∈ R.

Proof. Let us observe that both ideals K and L satisfy assumptions of the previous
theorem. Therefore, each of these ideals is isomorphic with one of the ideals I0(c),
I1(c), I2(c). Note that ideals K and L contain sets of the cardinality continuum.
Hence, we can eliminate the ideal I0(c) as a possible isomorphic image of K or L.
Notice now that for every A ∈ K there exists a non-empty perfect set P ∈ K such
that A∩ P = ∅. The same fact is true for the ideal L. But the set c× {0} is in the
ideal I1(c) and there is no P ∈ I1(c) such that card(P ) = c and (c× {0})∩ P = ∅.
Hence, we can also eliminate the ideal I1(c) as a possible isomorphic image of K or
L. Therefore, we see that both ideals K and L are isomorphic to the ideal I2(c). In
particular, we obtain that ideals K and L are isomorphic.

Now let {K,L} be a partition of the real line R such that K ∈ K and K is an
Fσ–set and L ∈ L and L is a Gδ–set. The results of Chapters 3 and 4 imply that
there exists a Borel isomorphism between the ideals K and K∩P (L) and there exists
a Borel isomorphism between the ideals L and L∩P (K). Hence, the ideals K∩P (L)
and L ∩ P (K) are isomorphic, too. Let π : L→ K be such an isomorphism. Then
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it is not difficult to check that the function f = π ∪ π−1 is a required isomorphism
between K and L.

Now we shall consider some properties of two classical Boolean algebras closely
connected with the ideals K and L. Let C denote the quotient Boolean algebra
B/(B ∩K) and let R denote the quotient Boolean algebra B/(B ∩ L). The Boolean
algebra C is called the Cohen algebra and the Boolean algebraR is called the Solovay
algebra.

Let B be a Boolean algebra and let X ⊆ B. A supremum of X in B, if it exists,
is denoted by the symbol

∑
X. Similarly, an infimum of X in B, if it exists, is

denoted by the symbol
∏
X.

Let κ be an uncountable cardinal number. We say that B is a κ–complete
Boolean algebra if every subset of B of cardinality less than κ has a supremum in
B. Notice that ω1–complete Boolean algebras are also called σ–complete algebras.
It is easy to check that if a Boolean algebra B is κ–complete and J is a κ–compelete
ideal in B, then the quotient algebra B/J is κ–compelete, too.
In particular, Boolean algebras C and R are σ-complete.

Recall that a Boolean algebra B is complete if every subset X of B has a
supremum in B, i.e. if B is κ–complete for any uncountable cardinal κ. We say
that a Boolean algebra B satisfies the countable chain condition (c.c.c) if every
family X ⊆ B of pairwise disjoint elements (i.e. (∀x, y ∈ X)(x 6= y → x ∧ y = 0))
is at most countable.

It is easy to check that both algebras C and R satisfy c.c.c.

Theorem 7.9 Suppose that B is a σ–complete Boolean algebra satisfying the count-
able chain condition. Then B is a complete algebra.

Proof. Let X be an arbitrary family of elements of B. Let Y be a maximal (with
respect to inclusion) subset of B \ {0} consisting of pairwise disjoint elements such
that

(∀y ∈ Y )(∃x ∈ X)(y ≤ x).

Then card(Y ) ≤ ω and it is not difficult to show that∑
Y =

∑
X.

From this theorem we immediately conclude that both Boolean algebras C and
R are complete nonatomic algebras satisfying c.c.c.

A Boolean algebra B is called a measure Boolean algebra if there exists a
function

µ : B → [0, 1]

such that

1) µ(1) = 1;

2) (∀b ∈ B)(µ(b) = 0←→ b = 0);

3) for every sequence (bn)n∈N of pairwise disjoint elements from B we have

µ(
∑
n∈N

bn) =
∑
n∈N

µ(bn).
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The function µ is called a measure on the algebra B.

Obviously, there exists a probability diffused Borel measure ν on the real line
R equivalent to the Lebesgue measure λ. It is clear that ν canonically defines the
corresponding measure µ on the algebra R. In particular, we obtain that R is a
measure Boolean algebra. Remark also that the measure ν is Borel isomorphic with
the restriction of the Lebesgue measure λ to the Borel σ–algebra of the segment
[0, 1]. Indeed, as we know any two probability diffused Borel measures defined on
Polish topological spaces are Borel isomorphic.

Let B be a Boolean algebra. We say that a set X ⊆ B \ {0} is cofinal in B if X
is a cofinal subset of B \ {0} with respect to the ordering inverse to the ordering of
B, i.e.

(∀b ∈ B \ {0})(∃x ∈ X)(x ≤ b).

The cofinality of B, denoted by cof(B), is defined by the equality

cof(B) = min{card(X) : X ⊆ B \ {0} & X is cofinal in B}.

Now we can formulate the following

Theorem 7.10 The algebras C and R are not isomorphic. In fact, we have
cof(C) = ω and cof(R) > ω. Moreover, there is no Borel isomorphism between
the ideals K and L.

Proof. Let T be an arbitrary countable base of the standard topology on R. Then
it is easy to see that {[U ]K : U ∈ T} is a cofinal set in C. Hence, cof(C) = ω. Let us
show that cof(R) > ω. Let λ be a probability measure on R canonically associated
with the Lebesgue measure and suppose that (an)n∈N ⊆ R \ {0} is a countable
cofinal family in R. For each n ∈ N let us choose an element bn ∈ R\{0} such that
bn < an and 0 < λ(bn) < 2−n−2. Then (bn)n∈N is a cofinal subfamily of R \ {0},
too. Let us put

c =
∑
n∈N

bn.

Then we have λ(c) < 1
2 , so c′ > 0. But there is no n ∈ N such that bn ≤ c′. Thus,

we obtain a contradiction. Hence, cof(R) > ω.

The inequality cof(C) < cof(R) immediately implies that the algebras C and R
are not isomorphic.

Suppose now that f : R→ R is a Borel bijection between ideals K and L. Then
the mapping ϕ : R → C defined by the formula

ϕ([A]L) = [f−1(A)]K (A ∈ B)

is an isomorphism between algebras R and C, and we get a contradiction.

Theorem 10 gives us the first important difference between measure and category
on the real line. Moreover, this theorem shows that the isomorphism between K
and L postulated by the Duality Principle is a very strange mapping which is far
from being effective.

Let us discuss the second important difference between ideals K and L.
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Let B be a c+–complete Boolean algebra. We say that B is weakly (ω, ω)–
distributive if for every double sequence {bnk}n,k∈N of elements of B the following
equality holds: ∏

n

∑
k

bnk =
∑

f∈ωω

∏
n

∑
k<f(n)

bnk.

The reader can treat this property as rather complicated. However, its meaning
is completely clear, for example, in the language of forcing extensions of models of
set theory. Note that the inequality∏

n

∑
k

bnk ≥
∑

f∈ωω

∏
n

∑
k<f(n)

bnk

holds in every c+–complete Boolean algebra.

Theorem 7.11 The algebra C is not weakly (ω, ω)–distributive. The algebra R is
weakly (ω, ω)–distributive.

Proof. Let us recall that for any two uncountable Polish spaces there exists a
Borel isomorphism between them which preserves the first category subsets. Hence,
the algebra C is isomorphic to the algebra B(Nω)/K(Nω), where Nω denotes the
standard Baire space.

For any natural numbers n and k let us put

Bnk = {f ∈ Nω : f(n) = k}.

Then for each n ∈ N we have∑
k

[Bnk] = [
⋃
k

Bnk] = [NN] = 1.

Hence, ∏
n

∑
k

[Bnk] = 1.

Let f ∈ ωω be an arbitrary function. Then⋂
n

⋃
k<f(n)

Bnk

is a closed nowhere dense subset of Nω. Thus,∏
n

∑
k<f(n)

[Bnk] = 0.

Therefore, we have ∑
f∈ωω

∏
n

∑
k<f(n)

[Bnk] = 0.

In this way we proved that the algebra C is not weakly (ω, ω)-distributive.

Suppose now that {bnk}n,k∈N is a double sequence of elements of R. Let λ be
the canonical probability measure on R and let

b =
∏
n

∑
k

bnk.

Without loss of generality we may assume that λ(b) > 0. Fix a real number ε > 0.
Note that for every n ∈ N we have

b ≤
∑

k

bnk.
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Hence,
b =

∑
k

b · bnk.

From this equality we get

λ(b) ≤ lim
k

λ(
∑
l<k

b · bnl).

Let f : ω → ω be a function such that for each n ∈ N we have

λ(
∑

l<f(n)

b · bnl) ≥ λ(b) · (1− ε

2n+1
).

Then it is not difficult to check that

λ(
∏
n

∑
l<f(n)

b · bnl) ≥ λ(b) · (1− ε).

But ε > 0 is arbitrary, so we see that∏
n

∑
k

bnk ≤
∑

f∈ωω

∏
n

∑
k<f(n)

bnk.

Thus, the theorem is proved.

Now we shall discuss some properties of the standard Baire space Nω. Let us
recall the order relation � on ωω defined in Chapter 1 of the book:

f � g ←→ (∃n ∈ ω)(∀m ≥ n)(f(m) ≤ g(m)).

In the same Chapter we defined also two cardinal numbers b and d. We shall show
that these cardinal numbers are closely connected with cardinal functions describing
the ideal K.

Theorem 7.12 The following relations hold:

1) b ≤ non(K);

2) cov(K) ≤ d;

3) add(K) = min{b, cov(K)};

4) cof(K) = max{d, cov(K)}.

Proof. For every function f ∈ ωω let us consider the set Kf defined by the equality

Kf = {g ∈ ωω : g � f}.

Note that
Kf =

⋃
n

⋂
k>n

{g ∈ ωω : g(k) ≤ f(k)}.

From this formula we easily deduce that for every f ∈ ωω the set Kf is a first
category subset of the space Nω.

Suppose now that κ < b and that {fα : α < κ} is a subset of ωω. Then the set
{fα : α < κ} is not �–unbounded, i.e. there exists a function f ∈ ωω such that

(∀α < κ)(fα � f).
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But then we have
{fα : α < κ} ⊆ Kf ,

hence, non(K) ≥ b.

Suppose now that a set X ⊆ ωω is �–cofinal, i.e. that

(∀f ∈ ωω)(∃g ∈ X)(f � g).

Then we have
ωω =

⋃
g∈X

Kg,

and this relation implies the inequality cov(K) ≤ d.
Now we want to show that

min{b, cov(K)} ≤ add(K).

Suppose that κ < min{b, cov(K)} and that {Kα : α < κ} is an arbitrary family
of sets from the σ–ideal K. For each α < κ let (Nα

n )n∈N be a sequence of nowhere
dense subsets of R such that

Kα =
⋃
n

Nα
n .

Let us put
S = {Nα

n : α < κ & n ∈ N}.

It is sufficient to establish that ⋃
S ∈ K.

We shall do it in two steps.
First we observe that there exists a real number t0 such that for every N ∈ S

we have (t0 + Q)∩N = ∅. Indeed, it is easy to check that any real number t0 from
the set

R \
⋃
{N − q : N ∈ S & q ∈ Q}

is a required one. This set is non–empty, since

card({N − q : N ∈ S & q ∈ Q}) ≤ κ · ω < cov(K).

Let us fix some enumeration (qn)n∈N of the set Q + t0. For any set N ∈ S let
fN be a function from ωω such that

N ∩
⋃
n

]qn −
1

f(n)
, qn +

1
f(n)

[= ∅.

Notice that
card({fN : N ∈ S}) ≤ κ · ω < b.

Hence, there exists a function g ∈ ωω such that fN � g for every N ∈ S. Evidently,
we may assume that 0 does not belong to ran(g). Let us put

H =
⋂
n

⋃
k>n

]qk −
1

g(k)
, qk +

1
g(k)

[.

Then H is a dense Gδ–subset of R and for every N ∈ S we have N ∩H = ∅. So the
union

⋃
S is a first category subset of R.

Now we can easily show that

cof(K) ≤ max{d, cov(K)}.
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Indeed, let X be a subset of R such that card(X) = non(K) and X 6∈ K. Let F
be a �–cofinal subset of ωω such that card(F ) = d. We may assume that for each
function f ∈ F the range of f does not contain 0. Finally, let (qn)n∈N be a fixed
enumeration of Q. We put

T = {R \
⋂
n

⋃
k>n

]qk + x− 1
f(k)

, qk + x+
1

f(k)
[ : x ∈ X & f ∈ F}.

Using the previous arguments we deduce that T is a cofinal subset of K. Hence, we
have the inequality cof(K) ≤ max{d, cov(K)}.

It remains to prove that

add(K) ≤ b, d ≤ cof(K).

In order to prove these inequalities we need two notations. For every function
f ∈ ωω let us put

Tf = {x ∈ {0, 1}ω : (∀n)(x(f(n)) = 0)}.

Notice that if f ∈ ωω is a strictly increasing function, then Tf is a nowhere dense
closed subset of the Cantor space {0, 1}ω. For any decreasing (with respect to
inclusion) sequence G = (Gn)n∈N of dense open subsets of {0, 1}ω we define by
recursion the following sequence (mk)k∈N of natural numbers:

1. m0 = 0;

2. mk+1 = min{n > mk : (∀s ∈ {0, 1}mk)(∃t ∈ {0, 1}n)(s ⊆ t & [t] ⊆ Gk)},

where [t] denotes the basic open subset of the space {0, 1}ω determined by the finite
sequence t. Let us put

fn(k) = mn+k

for all n, k ∈ N. Let h(G) ∈ ωω be a function such that

(∀n ∈ N)(fn � h(G)).

We assert that for every decreasing sequence G = (Gn)n∈N of dense open subsets
of {0, 1}ω and for every strictly increasing function g ∈ ωω the following implication
holds:

Tg ∩
⋂
n

Gn = ∅ → g � h(G).

Let us prove this implication. Suppose that the relation g � h(G) does not hold.
Then it is not difficult to check that the set

{n ∈ N : (∃k ∈ N)(g(n) ≤ mk & mk+1 < g(n+ 1)}

is infinite. Indeed, suppose that there exists p ∈ N such that for all n > p the
interval [g(n), g(n+ 1)[ contains at most one element from the set

{m0,m1, ...,mk, ...}.

Let
k0 = min{k : mk > g(p)}.

Then for each natural index i we have the inequality

g(p+ i) ≤ mk0+i.
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This inequality gives us

g(p+ i) ≤ fk0(i) ≤ fk0(p+ i)

for all natural numbers i. Hence, we obtain g � fk0 , which is impossible. Thus, the
mentioned set is infinite. Now, taking into account the definition of natural numbers
mk (k ∈ N), we can recursively construct an element x from the intersection
Tg ∩

⋂
nGn. So, we proved our auxiliary assertion.

Suppose now that F ⊆ ωω is an �–unbounded family of functions. We may
assume that each function from F is strictly increasing. Suppose that the set

T =
⋃
{Tf : f ∈ F}

is a first category set in the space {0, 1}ω and let us take a decreasing sequence
G = (Gn)n∈N of dense open subsets of {0, 1}ω such that

T ∩
⋂
n

Gn = ∅.

Then we have f � h(G) for every f ∈ F . Hence, we conclude that F is bounded.
This contradiction shows us that T is not a first category subset of {0, 1}ω. Thus,
add(K) ≤ b.

Now let us take any cofinal family (Kα)α<cof(K) of first category sets in the
space {0, 1}ω. For each α < cof(K) let us fix a decreasing sequence

Gα = (Gα
n)n∈N

of dense open subsets of {0, 1}ω such that

Kα ∩
⋂
n

Gα
n = ∅.

It is easy to see that the family

{h(Gα) : α < cof(K)}

is a �–cofinal family. Hence, we have d ≤ cof(K), and the theorem is proved.

Let W denote the ideal of nowhere dense subsets of R. This ideal is an important
mathematical object, because the σ–ideal K is σ–generated by the ideal W. It is
obvious that

add(W) = non(W) = ω

and that
cov(W) = cov(K).

We shall show that, in a certain sense, this ideal is as complicated as the ideal K.

Theorem 7.13 cof(W) = cof(K).

Proof. Let F be a cofinal subfamily of the ideal W. We shall prove that the family

{[0, 1] ∩
⋃
n∈N

(Y − n) : Y ∈ F}

is cofinal in the ideal K([0, 1]). Suppose that A ⊆ [0, 1] is a first category set.
Let (An)n∈ω be a countable family of nowhere dense subsets of [0, 1] such that
A =

⋃
nAn. Let us put

B =
⋃
n

(An + n).
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Then B is a nowhere dense subset of R, so there exists a set Y ∈ F such that
B ⊆ Y . But then we have

A ⊆ [0, 1] ∩
⋃
n

(Y − n).

This inclusion shows us that cof(K) ≤ cof(W).

Suppose now that X ⊆ R is a set of cardinality non(K) not belonging to the
ideal K. Let us take a set F ⊆ ωω of cardinality d such that for every function
g ∈ ωω there exists a function f ∈ F satisfying the relation

(∀n)(g(n) ≤ f(n)).

Let (qn)n∈N be a fixed enumeration of the set Q. For each x ∈ R and for each
f ∈ ωω let us define

Cf
x = x+

⋃
n

]qn −
1

f(n) + 1
, qn +

1
f(n) + 1

[.

We assert that the family

{R \ Cf
x : x ∈ X & f ∈ F}

is a base of the ideal W. Indeed, suppose that A ∈W. Let

x ∈ X ∩ (R \
⋃
q∈Q

(A− q)).

Then it is easy to check that (x + Q) ∩ A = ∅. So, we can take a function g ∈ ωω

such that

A ∩
⋃
n

]x+ qn −
1

g(n) + 1
, x+ qn +

1
g(n) + 1

[ = ∅.

Now let f be a function from F such that (∀n)(g(n) ≤ f(n)). Then A ∩ Cf
x = ∅ ,

so we see that
cof(W) ≤ non(K) · d.

Hence, by Theorem 12, we get the inequality cof(W) ≤ cof(K). Finally, we have
the required equality cof(W) = cof(K).

Exercises

Exercise 7.1 Find a proper σ–ideal of subsets of the real line R which is invariant
under all translations of R and for which there exists a set A ∈ I satisfying the
relation

(∀B ∈ I)(∃x ∈ R)(B ⊆ A+ x).

Show that in Theorem 1 of this Chapter we can omit the assumption ”I is sym-
metric” if our group (G, ·) satisfies the following relation:

(∀g ∈ G)(∃n ∈ N)(n · g = 0),

where 0 denotes the neutral element of G.
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Exercise 7.2 Prove that there exist two first category subsets X and Y of the real
line (R,+) such that the set X+Y does not have the Baire property in R. Conclude
from this fact that the ideal K is not closed with respect to the operation +.

Similarly, prove that there exist two Lebesgue measure zero subsets X and Y of
R such that the set X + Y is not measurable in the Lebesgue sense. Conclude from
this fact that the ideal L also is not closed with respect to the operation +.

Exercise 7.3 a) Let (G, ·) be an arbitrary topological group and let A and B be any
two non–meager subsets of G with the Baire property. Show that the set A · B−1

has a non–empty interior in G.
b) Let (G, ·) be a locally compact topological group equipped with the Haar mea-

sure µ and let A and B be µ–measurable subsets of G such that µ(A) > 0, µ(B) > 0.
Show, in theory ZF & DC, that the set A ·B−1 has a non–empty interior in G.

Exercise 7.4 Let (G, ·) be a topological group satisfying the first countability axiom,
i.e. the neutral element of G has a countable fundamental system of neighbourhoods.
Prove, in theory ZF & DC, an analogue of the Steinhaus property for (G, ·).

Exercise 7.5 Let (G,+) be a topological vector space (over the field of rational
numbers). Prove, in theory ZF & DC, an analogue of the Steinhaus property for
(G,+).

Exercise 7.6 Prove the metric transitivity of the Haar measure.

Exercise 7.7 Formulate and prove an analogue of the metric transitivity for the
Baire property in topological groups.

Exercise 7.8 Let κ be an arbitrary uncountable cardinal and let {0, 1}κ be the
generalized Cantor discontinuum of the weight κ. Find the values of the following
cardinal functions:

add(L({0, 1}κ)), add(K({0, 1}κ)).

Exercise 7.9 Recall that a Boolean algebra B is atomic if for every b ∈ B \ {0}
there exists an atom a ∈ B such that a ≤ b. Show that if B is a complete atomic
Boolean algebra and

At(B) = {a ∈ B : a is an atom},

then B is isomorphic with the power set algebra P (At(B)).

Exercise 7.10 Let κ be an uncountable cardinal and let B be a κ–complete Boolean
algebra. Suppose also that J ⊆ B is a κ–complete ideal in B. Show that the quotient
Boolean algebra B/J is κ–complete, too.

Exercise 7.11 Let κ be an infinite cardinal number. We say that a Boolean algebra
B satisfies the κ–chain condition if for every family X ⊆ B of pairwise disjoint
elements we have card(X) < κ.

Show that if an algebra B is κ–complete and satisfies the κ–chain condition,
then B is a complete Boolean algebra.

In particular, let κ = ω. Show that any Boolean algebra B satisfying the ω–chain
condition is finite.

Exercise 7.12 Prove that if B is a complete non–atomic Boolean algebra and
cof(B) = ω, then B is isomorphic to the Cohen algebra C.

Exercise 7.13 We say that a Boolean algebra B has an (ω1, ω)-caliber if for every
X ∈ [B]ω1 there exists Y ∈ [X]ω such that

∏
Y > 0. Show that the Solovay algebra

R has (ω1, ω)-caliber.
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Exercise 7.14 Prove the Erdös-Sierpiński Duality Principle under the assumption
that

add(K) = add(L) = cof(K) = cof(L).

Exercise 7.15 Assume that Martin’s Axiom holds. Let E be a topological space
with a countable base and let {Xi : i ∈ I} be a family of first category subsets of E
such that

card(I) < c.

Prove that the set ∪{Xi : i ∈ I} is also a first category subset of E.

Exercise 7.16 Assume that Martin’s Axiom holds. Let E be a topological space
with a countable base such that every closed subset of E is Gδ–set in E. Let µ
be an arbitrary σ–finite Borel measure on E. Prove that the completion of µ is a
c–additive measure.

146



Chapter 8

Some Classical Subsets of the
Real Line

There are two main goals of this Chapter: to justify the title of the book and to
acquaint the reader with some classical subsets of the real line R which play an
important role not only in the mathematical analysis but also in other fields of
mathematics. We have already met one of such sets: this is the classical Cantor
discontinuum C on the real line R which, as a topological space, is homeomorphic
with the product space {0, 1}ω, where the set {0, 1} is equipped with the discrete
topology.

One of the most important properties of the Cantor discontinuum is the follow-
ing: in the class of all non–empty compact metric spaces this space is in some sense
an initial one. More precisely, any non–empty compact metric space is a continuous
image of the Cantor discontinuum. As an illustration of the power of this fact let
us remark that it implies the existence of various Peano–type mappings (continuous
surjections from the segment [0, 1] onto the square [0, 1]2), the existence of a family
of the cardinality continuum of non–empty pairwise disjoint perfect subsets of the
segment [0, 1] and so on.

Let us remark also that for the generalized Cantor discontinuum, i.e. topo-
logical space of the form {0, 1}κ, where κ is an arbitrary uncountable cardinal, we
do not have any similar result. In other words, not every compact topological space
is a continuous image of some generalized Cantor discontinuum. This fact (observed
first by E. Marczewski) is implied by the Suslin condition (i.e. the countable chain
condition) for the generalized Cantor discontinuum, which was discussed in Chapter
2. This property (i.e. c.c.c) evidently is preserved by continuous surjective map-
pings. Hence, if a topological compact space does not satisfy the Suslin condition
(for example, the space ω1 + 1 with the usual order topology), then it cannot be
a continuous image of the generalized Cantor discontinuum. The fact mentioned
above was an impulse for creating a whole domain in general topology, namely,
the so called theory of dyadic compact spaces (i.e. such compact spaces which are
continuous images of the generalized Cantor discontinuums).

We shall meet the Cantor discontinuum in future considerations many times.
We shall see that there are a lot of non–trivial assertions and constructions which
are closely related to this object.

The Cantor discontinuum C is one of the first uncountable mathematical objects
which can be called a small set. We know that this set is small from the point of
view of category, namely, this set is a nowhere dense subset of the real line R. The
same can be said from the point of view of the classical Lebesgue measure. Namely,
the Lebesgue measure of C is equal to zero. However, the Cantor discontinuum is
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not as small as one can think at the first observation. For example, it is easy to
check that the set

C + C = {x+ y : x ∈ C & y ∈ C}
contains a non–empty open subinterval of the real line R. Actually, we have

C + C = [0, 2].

In particular, this fact shows us that neither ideals K and L on the real line R are
closed under vector sums of their elements. It is worth remarking here that on the
real line there exist non–trivial invariant σ–ideals which are closed under vector
sums of their elements (see exercises to this Chapter).

Now we shall construct a Lebesgue measurable subset of the real line R which,
together with its complement, is big from the Lebesgue measure point of view.
Namely, we shall construct a Lebesgue measurable set X ⊆ R such that

λ(X ∩ V ) > 0, λ((R \X) ∩ V ) > 0

for every non–empty open set V ⊆ R. Let (Vn)n∈N be any countable base of open
subsets of R. By the method of mathematical recursion we define two sequences

(Xn)n∈N, (Yn)n∈N

of subsets of R such that for each index n ∈ N the following relations hold:

1) Xn, Yn are closed and nowhere dense subsets of R;

2) λ(Xn) > 0 and λ(Yn) > 0;

3) Xn ∪ Yn ⊆ Vn,

and, moreover,

4) Xn ∩ Ym = ∅ for all n,m ∈ N.

Suppose that n ∈ N and that the partial sequences

(Xi)i<n, (Yn)i<n

are constructed and satisfy the above conditions. Let us consider the set

Z =
⋃
i<n

(Xi ∪ Yi).

This set is closed and nowhere dense in R. Hence, there exists a non–empty open
interval

Un ⊆ Vn \ Zn.

Now we can easily construct two closed nowhere dense sets

Xn ⊆ Un, Yn ⊆ Un

such that
Xn ∩ Yn = ∅, λ(Xn) > 0, λ(Yn) > 0.

Thus, the sequences (Xn)n∈N and (Yn)n∈N are constructed. Now it is sufficient to
put

X =
⋃
n

Xn.

It is clear that for every non–degenerated segment [a, b] ⊆ R we have

λ([a, b] ∩X) > 0, λ([a, b] ∩ (R \X)) > 0.

A non–essential modification of the above construction gives us a proof of the
following, more general theorem.
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Theorem 8.1 There exists a countable partition (Tn)n∈N of the real line R with
the following properties:

1) for each n ∈ N the set Tn is Lebesgue measurable;

2) for any n ∈ N and for any non–empty open set V ⊆ R we have

λ(V ∩ Tn) > 0.

In particular, we also have

λ(V ∩ (R \ Tn)) > 0.

There are some generalizations of the above theorem in terms of the Baire cat-
egory (see exercises after this Chapter). But there is no analog of this theorem for
subsets of R with the Baire property. In other words, there is no subset of the real
line R which has the Baire property such that for every non–empty open set V ⊆ R
both sets

V ∩X, V ∩ (R \X)

are not first category subsets of R. We leave an easy proof of this fact to the reader.

Example 1. Let X be an Fσ–subset of the real line R such that for every non–
empty open set V ⊆ R we have

λ(X ∩ V ) > 0, λ((R \X) ∩ V ) > 0.

The construction of such a set was shown above. We shall consider the characteristic
function φX of this set. This function has a lot of interesting properties. Before
we formulate one of such properties we recall some basic facts about the Baire
classification of the real functions defined on the real line. We say that a function
f : R→ R is of the zero Baire class B0(R,R) if f is a continuous function, i.e.

B0(R,R) = C(R,R).

Suppose that for a given ordinal number α < ω1 the Baire classes

Bξ(R,R)

are defined for all ξ < α. Then the Baire class of the order α is defined as a class
of all functions f from R into R such that

f(x) = lim
n
fn(x) (x ∈ R),

where (fn)n∈N is some sequence of functions satisfying the inclusion

{f0, f1, . . .} ⊆
⋃
ξ<α

Bξ(R,R).

In this way we can define the class

Bα(R,R)

of functions for every ordinal α < ω1. Next we put

B(R,R) =
⋃

α<ω1

Bα(R,R).
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Using the method of transfinite recursion it is not difficult to show that the class
B(R,R) coincides with the class of all Borel functions from R into R. Hence, the
class of all Borel mappings from R into R can be characterized as the least class of
functions from R into R which contains all continuous functions from R into R and
is closed under limits of sequences of functions (obviously, we consider the pointwise
convergence here). Let α be any ordinal less than ω1. A function f : R → R is a
function strictly of the class α if

f ∈ Bα(R,R) \
⋃
ξ<α

Bξ(R,R).

A famous result, due to Lebesgue, states that for every α < ω1 there exists a
function strictly of the class α. Our function φX is, which is easy to prove, from
the second Baire class. Moreover, since for every non–degenerated segment [a, b] we
have

λ([a, b] ∩X) > 0, λ([a, b] ∩ (R \X)) > 0,

it is not difficult to check that φX is not equivalent (with respect to the σ–ideal of
λ–measure zero sets) to any function from the first Baire class. Hence, we deduce
from these observations that the function φX is strictly of the second class. At the
same time let us notice that the function φX is equivalent (with respect to the σ–
ideal of first category subsets of R) to a function identically equal to zero. It is worth
reminding that every Lebesgue measurable function f : R → R is equivalent (with
respect to the σ–ideal of λ–measure zero sets) to some function f∗ : R → R from
the second Baire class. Let us also emphasize that for the classical mathematical
analysis an important role is played by various subclasses of the class B1(R,R).
Such subclasses are, for example, the class of all semicontinuous functions (upper
and lower), the class of all derivatives of continuous functions, the class of functions
with the period 2π which can be represented as a sum of a pointwise convergent
(on the whole real line) trigonometric series and so on.

From now on we shall consider such subsets of the real line R the existence of
which is implied by more serious set–theoretical tools. One of the most famous
subsets of R is the so called Vitali set, constructed by Vitali in 1905.

Let us consider in R the following equivalence relation:

x ∈ R, y ∈ R, x− y ∈ Q,

where Q denotes, as usual, the subgroup of all rationals of the real line R. This
equivalence relation canonically determines a partition of R into continuum many
equivalence classes. Let X be any selector of this partition, i.e. X is such a subset of
R which intersects each equivalence class exactly at one point. The existence of such
a set is implied by the Axiom of Choice (notice that we need here an uncountable
version of this axiom). Any set of this form is called a Vitali set. This set satisfies
the following two relations:

1)
⋃
q∈Q

(X + q) = R,

2) (∀q ∈ Q)(q1 6= 0→ (X + q1) ∩X = ∅).

From these relations it is easy to deduce the next classical result due to Vitali,
which gives us the first example of Lebesgue non–measurable set and also the first
example of a set without the Baire property.

Theorem 8.2 (Vitali) Any Vitali set is Lebesgue non–measurable and has no
Baire property.
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Proof. Let X be a Vitali set and suppose that X is a Lebesgue measurable set
(respectively, has the Baire property). Then relation 1) shows us that a countable
union of translations of the set X covers the whole real line R. Hence, X cannot
have the Lebesgue measure zero (respectively, cannot be a first category set). Hence,
λ(X) > 0 (respectively, X ∈ B̄(R) \K). So, by the Steinhaus property for measure
or by an analogous property for category (see Chapter 7), there exists a real number
ε > 0 such that

]− ε, ε[ ⊆ X −X,

where
X −X = {x− y : x, y ∈ X}.

Now if q ∈ Q \ {0} is such that |q| < ε, then

(X + q) ∩X 6= ∅,

which contradicts relation 2). Thus, the Vitali theorem is proved.

Example 2. As we can see the proof of the last theorem was based on a very special
characteristic of the Lebesgue measure and the Baire property on the real line R.
The reader should know that for some Vitali sets X it is possible to construct a
non–zero σ–finite complete and invariant (under all translations of R) measure ν
such that X ∈ dom(ν). Moreover, if we consider the von Neumann topology on the
real line R (see Appendix B) associated with the measure ν, then the set X has the
Baire property for this topology. So, we see that Vitali sets are pathological objects
only with respect to the Lebesgue measure and with respect to the Baire property
for the Euclidean topology. These sets may have ”regular” and ”nice” properties
with respect to other measures and topologies on the real line R. The same can
be said about other pathological objects with which we shall deal in our further
considerations.

It is a good moment to notice here that the Axiom of Choice in its uncountable
form is necessary for the construction of Lebesgue non–measurable sets or sets
without the Baire property. This follows from a famous result of Solovay stating
that it is possible to construct some models of theory (ZF) & (DC) in which all
subsets of the real line R are Lebesgue measurable and have the Baire property
with respect to the Euclidean topology on R.

We shall consider now the second important class of subsets of the real line R.
Namely, we shall discuss some properties of Hamel bases of R. The attention to
these sets was drawn by Hamel also in 1905. The construction of these sets is not
difficult, either.

We shall use a general theorem of the theory of vector spaces over arbitrary fields
which states that in every vector space there exists a base, i.e. a maximal linearly
independent set. This theorem follows almost immediately from the Zorn Lemma
(i.e. from the Axiom of Choice). We shall consider the real line R as a vector space
over the field Q of all rational numbers. Hence, applying the mentioned theorem
we get that there are bases of R over Q. Any such base is called a Hamel base.

Let (ei)i∈I be an arbitrary Hamel base. It is clear that card(I) = 2ω. As we
know every element x of R may be uniquely represented in the form

x =
∑
i∈I

qi(x) · ei,

where (qi(x))i∈I is some indexed family of rational numbers such that

card({i ∈ I : qi(x) 6= 0}) < ω.
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For each index i ∈ I the rational number qi(x) is called the coordinate of x corre-
sponding to this index.

Hamel bases were found not accidentally but as a tool for a solution of the
concrete question of the mathematical analysis. We shall formulate this question
now. Let us consider the class of all functions f : R→ R which satisfy the following
functional equation:

f(x+ y) = f(x) + f(y), (x, y ∈ R).

This equation is called the Cauchy functional equation. Notice that this equation
simply says that f is a homomorphism from the additive group R into itself. The
task is to find all solutions of the Cauchy functional equation. It is clear that there
are natural solutions of this equation. Namely, every function of the form

f(x) = a · x,

where a is a fixed real number is a solution of this equation. Such solutions we shall
call trivial solutions. Hamel bases allow us to construct non–trivial solutions of the
Cauchy functional equation.

Theorem 8.3 (Hamel) There are non–trivial solutions of the Cauchy functional
equation.

Proof. Let (ei)i∈I be an arbitrary Hamel base in R. As we noticed above any x ∈ R
can be uniquely represented in the form

x =
∑
i∈I

qi(x) · ei.

Let us fix i0 ∈ I and define a function φ : R→ R by the following formula:

φ(x) = qi0(x) (x ∈ R).

It is clear that φ satisfies the Cauchy functional equation. Moreover, the range of
this function is contained in Q. This function is not constant:

φ(0) = 0, φ(ei0) = 1.

So φ is not a continuous function. We shall see below that φ even is not Lebesgue
measurable and does not have the Baire property.

Suppose now that a function f : R→ R satisfies the Cauchy functional equation.
It is clear that for every x ∈ R and for every q ∈ Q we have

f(q · x) = q · f(x).

From this fact we immediately deduce that if f is a continuous function at least at
one point, then

f(x) = f(1) · x

for any x ∈ R. This fact was first proved by Cauchy. It is also easy to prove that if
f is a solution of the Cauchy functional equation and is upward bounded on some
non–empty open interval then f is a trivial solution. Hence, we see that non–trivial
solutions of the Cauchy functional equation are discontinuous at each point. Neither
is it difficult to see that the graph of an arbitrary non–trivial solution of the Cauchy
functional equation is a dense subset of the plane. R2.

Theorem 8.4 (Frechet) Any non–trivial solution of the Cauchy functional equa-
tion is not Lebesgue measurable and does not have the Baire property.
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Proof. There are lot of proofs of this theorem. We shall show a very simple one,
also based on the Steinhaus property (or on its analogue for category). Suppose
that a function f : R → R satisfies the Cauchy functional equation and that f is
Lebesgue measurable (respectively, has the Baire property). Let us consider the
sets of the form

f−1([−n, n]) (n ∈ N).

All these sets are Lebesgue measurable (respectively, have the Baire property) and⋃
n∈N

f−1([−n, n]) = R.

Hence, there exists n ∈ N such that

λ(f−1([−n, n])) > 0,

respectively,
f−1([−n, n]) ∈ B̄(R) \K.

Then the Steinhaus property (or its analogue for category) implies that the set

f−1([−n, n])− f−1([−n, n])

is a neighbourhood of the zero element of R. Let V be any non–degenerated segment
in R such that

V ⊆ f−1([−n, n])− f−1([−n, n])

and 0 ∈ V . Then
f(V ) ⊆ [−2n, 2n],

so the function f is bounded on V . From this fact it immediately follows that f is
continuous at the point 0. Hence, f is a trivial solution of the Cauchy functional
equation.

Observing the previous two theorems we can see that the existence of a Hamel
base in R implies an existence of a Lebesgue non–measurable subset of R and an
existence of a subset of R without the Baire property. More exactly, the proof of
this fact can be done in theory (ZF) & (DC).

Example 3. One can prove that there are Lebesgue measurable and Lebesgue
non–measurable Hamel bases (see exercises after this Chapter). This fact shows us
an essential difference between Hamel bases and Vitali sets from the point of view of
the Lebesgue measurability. The same is true for the Baire property. The following
question arises in a natural way: if µ is a non–zero σ–finite measure on the real
line R invariant under all translations of R, then does there exist a Hamel base in
R non–measurable with respect to µ? It turns out that this question is undecidable
in theory ZFC (see exercises to this Chapter).

Hamel bases have a lot of interesting and important applications in many
branches of mathematics. One of the most beautiful applications may be found
in the theory of polyhedra. More precisely, in the part of this theory which is
connected with the third Hilbert problem about the equivalence (by finite decom-
position) of a three–dimensional cube and a regular three–dimensional simplex with
the same volume (the third Hilbert problem is shortly discussed in one of exercises
after this Chapter). Let us recall to the reader that Hamel was one of Hilbert’s
students and worked in geometry, too.

We shall consider now the so called Bernstein subsets of the real line R. These
sets were constructed by the method of transfinite recursion by Bernstein in 1908.
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The existence of these sets, similarly as the existence of Vitali sets or Hamel bases,
cannot be proved in theory (ZF) & (DC). We give now a precise definition of
Bernstein sets.

Let X be a subset of the real line R. We say that X is a Bernstein set in R if
for every non–empty perfect set P ⊆ R both sets

P ∩X, P ∩ (R \X)

are non–empty. In other words, a set X is a Bernstein subset of R if no non–empty
perfect subset of R is contained in X or in R \X.

Theorem 8.5 (Bernstein) There are Bernstein subsets of the real line R.

Proof. Let (Pi)i∈I be the family of all non–empty perfect subsets of the real
line R, where I is some set of the cardinality continuum. So we have

card(I) = c,

(∀i ∈ I)(card(Pi) = c),

where c denotes, as usual, the cardinality continuum. Thus, we may apply here
Theorem 3 from Chapter 1. According to this theorem, there exists a family (Yi)i∈I

of pairwise disjoint sets such that

Yi ⊆ Pi & card(Yi) = card(Pi) = c

for each i ∈ I. Let X be any selector of the family (Yi)i∈I . It is easy to see that X
is a Bernstein subset of R.

Let us note that throught a slight change of the above arguments we obtain a
partition (Xα)α<c of the real line R into Bernstein sets.

It is almost obvious that no Bernstein set is Lebesgue measurable or has the
Baire property. Indeed, it is clear, for instance, that

λ∗(X) = 0, λ∗(R \X) = 0

for every Bernstein set X ⊆ R (recall that λ∗ denotes the inner Lebesgue measure
on R). Moreover, from the point of view of topological measure theory the Bernstein
sets are extremely bad. This opinion is legitimized by the next theorem.

Theorem 8.6 Let µ be an arbitrary non–zero σ–finite diffused Borel measure on
R and let µ̄ be its completion. If X is a Bernstein subset of R, then we have
X 6∈ dom(µ̄).

Proof. Suppose that X is a Bernstein set and that X ∈ dom(µ̄). Then it is clear
that we also have R \X ∈ dom(µ̄). Since the measure µ is non–zero, the following
disjunction holds:

µ̄(X) > 0 ∨ µ̄(R \X) > 0.

Without loss of generality we may assume that µ̄(X) > 0. As we know every
σ–finite Borel measure defined on a Polish topological space is a Radon measure.
Hence, the given measure µ is a Radon measure, too. Thus, there exists a compact
set K ⊆ R such that

K ⊆ X, µ(K) ≥ 1
2
µ(X) > 0.

But the measure µ is diffused and µ(K) > 0, so the compact set K is uncountable.
Therefore, there exists a non–empty perfect (in R) subset of K. Thus, we get that
X is not a Bernstein set.
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Other properties of the Bernstein sets are considered in exercises after this Chap-
ter.

We change the subject of discussion to the so called Luzin subsets of the real
line R. These sets were constructed by Luzin in 1914 under the assumption of the
Continuum Hypothesis. The same sets were constructed by Mahlo one year before
Luzin. In the mathematical literature the name Luzin sets is used, probably, be-
cause Luzin investigated these sets deeply and showed a number of their important
properties. Now we define these sets precisely.

Let X be a subset of the real line R. We say that X is a Luzin set if

1) X is uncountable;

2) for every first category subset Y of R the intersection X ∩ Y is at most
countable.

It is obvious that the family of all Luzin subsets of the real line is a σ–ideal invariant
under all transformations of the real line which preserve the σ–ideal K (in particular,
this family is invariant under all translations of R).

We remark at once that it is impossible to prove in theory ZFC the existence
of a Luzin set. Namely, assume that

(MA) & (2ω > ω1)

holds and take an arbitrary set X ⊆ R. If X is countable, then it is not a Luzin
set. Suppose now that X is uncountable. We know that Martin’s Axiom implies
the equality add(K) = 2ω. Let Y be any subset of X of cardinality ω1. Then we
have Y ∈ K and card(X ∩ Y ) > ω, so we obtain again that X is not a Luzin set.

However, if we assume the Continuum Hypothesis, then Luzin sets exist on the
real line R.

Theorem 8.7 (Luzin-Mahlo) If the Continuum Hypothesis holds, then there are
Luzin subsets of the real line R.

Proof. Let us recall that the Continuum Hypothesis means that c = ω1. Let
(Xξ)ξ<ω1 be a family of all first category Borel subsets of R. We define by the
transfinite recursion a family (xξ)ξ<ω1 of points from R. Suppose that ξ < ω1 and
that a partial family (xζ)ζ<ξ has already been defined. Let us consider the set

Zξ = (
⋃
ζ<ξ

Xζ) ∪ {xζ : ζ < ξ}.

It is clear that Zξ is a first category subset of the real line. Hence, by the Baire
theorem, there exists a point

xξ ∈ R \ Zξ.

This ends the construction of the family (xξ)ξ<ω1 . Now we put

X = {xξ : ξ < ω1}.

Notice that if ζ < ξ < ω1, then xζ 6= xξ. Therefore, card(X) = ω1. Suppose now
that Z is an arbitrary first category subset of the real line. Then there exists an
ordinal ξ < ω1 such that Z ⊆ Xξ. Obviously, we have

X ∩ Z ⊆ X ∩Xξ ⊆ {xζ : ζ ≤ ξ},

and thus we see that X is a Luzin set.
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Notice that if X is a Luzin set on R, then the set X ∪ Q is also a Luzin set.
Hence, the Continuum Hypothesis implies that there are Luzin sets dense in R. We
can easily get a much stronger result. Namely, a slight modification of the above
proof gives us such a Luzin set X that for any set Y ⊆ R with the Baire property
we have

card(Y ∩B) ≤ ω ←→ Y ∈ K.

Luzin sets have a lot of interesting properties. The next theorem was proved by
Luzin.

Theorem 8.8 Suppose that X is a Luzin set. Then X does not have the Baire
property in R (and any uncountable subset of X does not have the Baire property).
Moreover, in the topological space X ∪ Q with the topology induced by the topology
of R every first category set is at most countable and, conversely, every at most
countable subset of the space X ∪Q is a first category set in X ∪Q.

Proof. Let X be a Luzin set and suppose that X has the Baire property. Since X
is uncountable and for every first category set Y ⊆ R we have card(X ∩ Y ) ≤ ω,
we see that X is not a first category subset of R. But then X contains some
uncountable Gδ–subset Z. Let Y be any subset of Z homeomorphic with the Cantor
discontinuum. Then Y is a nowhere dense set in R and Y ⊆ X. We also have
card(X ∩ Y ) ≥ ω1, which contradicts the definition of a Luzin set. So X does not
have the Baire property.

The second part of this theorem follows from the fact that X ∪Q is a Luzin set,
too, and X ∪Q is dense in R.

The theorem proved above shows us that if the Continuum Hypothesis holds,
then there exists an uncountable everywhere dense topological space X ⊆ R such
that

K(X) = [X]≤ω,

where K(X) denotes the σ–ideal of first category subsets of the space X. This
equality implies also that

B̄(X) = B(X),

where B̄(X) denotes the class of all subsets of X with the Baire property and B(X)
denotes the Borel σ–algebra of the space X.

A Hausdorff topological space E without isolated points is called a Luzin space
if the equality

K(E) = [E]≤ω

holds. Hence, we see that there exists a Luzin set on the real line R which is an
example of a topological Luzin space.

The next theorem, also essentially due to Luzin, shows us an interesting con-
nection between Luzin sets on R and the topological measure theory.

Theorem 8.9 Let X be an arbitrary Luzin subset of the real line R. Then the
following two sentences hold:

1) if µ is a σ–finite diffused Borel measure on R, then µ∗(X) = 0, where µ∗ is
the outer measure associated with µ;

2) if µ is a σ–finite diffused Borel measure on the topological space X, then µ is
identically equal to zero.
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Proof. It is almost obvious that sentences 1) and 2) are equivalent. Hence, we shall
prove only the second one. Without loss of generality we may assume that X is
a dense subset of R. Let µ be any σ–finite diffused Borel measure defined on the
topological space X. Since X is a separable metric space, we may apply the theorem
about supports of Borel measures (see Chapter 4) and find a first category subset
of X on which µ is concentrated. But any first category subset of X is countable
and µ is diffused, so µ is identically equal to zero.

This theorem shows us that from the topological point of view Luzin sets are
extremely pathological (any uncountable subset of a Luzin set does not have the
Baire property) but from the point of view of topological measure theory Luzin sets
are very small, since they have a measure zero with respect to any σ–finite diffused
Borel measure on R.

A dual (in a certain sense) object to Luzin set is the so called Sierpiński set,
which was constructed by Sierpiński also under the assumption of the Continuum
Hypothesis in 1924. We give a definition of this set now.

Let X be a subset of R. We say that X is a Sierpiński set if

1) X is uncountable;

2) for every Lebesgue measure zero subset Y of R the intersection X ∩ Y is at
most countable.

A lot of facts about Sierpiński sets are similar to the facts about Luzin sets. For
example:

a) the family of all Sierpiński sets is a σ–ideal invariant under all transformations
of the real line which preserve the σ–ideal L (in particular, this family is
invariant under all translations of R);

b) the assumption (MA) & (2ω > ω1) implies that there are no Sierpiński sets.

Analogously, the following theorem holds:

Theorem 8.10 (Sierpiński) Assume the Continuum Hypothesis. Then there are
Sierpiński subsets of the real line R.

The proof of this theorem is very similar to the proof of Theorem 7. The only
one change that must be done is the replacement of the family (Xξ)ξ<ω1 of all first
category Borel subsets of R by the family (Yξ)ξ<ω1 of all λ–measure zero Borel
subsets of R (notice also that one can deduce Theorem 10 from Theorem 7 and,
conversely, using the Erdös–Sierpiński duality principle).

Now we want to show the next similarity between Luzin and Sierpiński sets.

Theorem 8.11 Every Sierpiński set is a first category subset of the real line R. No
uncountable subset of a Sierpiński set is Lebesgue measurable.

Proof. Let X be a Sierpiński set. As we know the σ–ideals K and L are orthogonal,
i.e. there exists a partition {K,L} of R such that K ∈ K and L ∈ L. But we have

card(X ∩ L) ≤ ω

and the inclusion
X ⊆ K ∪ (X ∩ L),

holds, so we get X ∈ K.
Suppose now that Y is an uncountable subset of a Sierpiński set X. Since

X ∩ Y is uncountable, we see that Y 6∈ L. Suppose, however, that Y is Lebesgue
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measurable. Then λ(Y ) > 0 and we can find an uncountable set Z ⊆ Y of Lebesgue
measure zero. But then the set X ∩ Z is uncountable, so we get a contradiction
with the definition of the set X.

Other interesting properties of Luzin sets and Sierpiński sets are presented in
exercises to this Chapter.

It is easy to see that if we replace the Continuum Hypothesis by Martin’s Axiom
(which is a much weaker assertion than CH), then we can prove the existence of
some analogs of Luzin and Sierpiński sets. Namely, if Martin’s Axiom holds, then
there exists a set A ⊆ R such that card(A) = c and for each set X ∈ K we have

card(A ∩X) < c.

A set A with the above property is called a generalized Luzin subset of R. Simi-
larly, if Martin’s Axiom holds, then there exists a set B ⊆ R such that card(B) = c
and for each set Y ∈ L we have

card(B ∩ Y ) < c.

A set B with the above property is called a generalized Sierpiński subset of
R. Let us remark that for the existence of generalized Luzin sets or generalized
Sierpiński sets we do not need the full power of Martin’s Axiom. In fact, the
existence of a generalized Luzin set is implied by the equalities

cov(K) = cof(K) = c.

In an analogous way the equalities

cov(L) = cof(L) = c

imply the existence of a generalized Sierpiński subset of the real line R.

In our further considerations we shall meet other generalizations of Luzin sets
and Sierpiński sets. But now we shall use once more Martin’s Axiom and construct
a generalized Sierpiński set with the Baire property in the restricted sense.

Theorem 8.12 Suppose that Martin’s Axiom holds. Then there exists a set X ⊆ R
such that:

1) for every non–empty perfect set P ⊆ R the intersection X∩P is a first category
set in P ;

2) for every Lebesgue measurable set Y ⊆ R with λ(Y ) > 0 the intersection X∩Y
is non–empty.

In particular, the set X has the Baire property in the restricted sense and is not
Lebesgue measurable.

Proof. Let, as usual, c denote the cardinality continuum. Let (Zξ)ξ<c denote the
family of all Borel subsets of the real line of a strictly positive Lebesgue measure,
i.e.

{Zξ : ξ < c} = B(R) \ L,

and let (Tξ)ξ<c denote the family of all Borel subsets of the real line of Lebesgue
measure zero, i.e.

{Tξ : ξ < c} = B(R) ∩ L.

For each ordinal ξ < c we fix a partition {Z0
ξ , Z

1
ξ } of Zξ such that Z0

ξ is a Lebesgue
measure zero set and Z1

ξ is a first category subset of Zξ. Now we define an injective
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c–sequence (xξ)ξ<c of real numbers. Suppose that ξ < c and that a partial sequence
(xζ)ζ<ξ has already been defined. Let us consider the set

Dξ = (
⋃
ζ≤ξ

Z0
ζ ) ∪ {xζ : ζ < ξ} ∪ (

⋃
ζ≤ξ

Tζ).

Martin’s Axiom implies that the set Dξ is also of Lebesgue measure zero. Hence,
we have

Zξ \Dξ 6= ∅.
So we can choose a point xξ as any element from the last non–empty difference of
sets. In this way we shall define a whole c–sequence (xξ)ξ<c. Now we put

X = {xξ : ξ < c}

and we will show that the set X is a required one. Let P be any non–empty perfect
subset of R. If its Lebesgue measure is equal to zero, then for some ξ < c we have
P = Tξ. Hence, from the method of construction of the set X we immediately have

card(P ∩X) < c.

Using Martin’s Axiom again we see that the intersection P ∩X is a first category set
in P . Now suppose that λ(P ) > 0. Then for some ordinal ξ < c we have P = Zξ.
Therefore,

P ∩X ⊆ Z1
ξ ∪ {xζ : ζ < ξ}.

Taking into account the fact that the set P does not have isolated points, we obtain
from the last inclusion that P ∩X is a first category set in P . Thus, condition 1)
is satisfied for our set X. Since we have

xξ ∈ Zξ

for each ordinal ξ < c, we get that condition 2) holds for the set X, too.

It is easy to see that the set X constructed in the proof of the above theorem is
a generalized Sierpiński set. Hence, we can deduce that Martin’s Axiom implies the
existence of a massive (with respect to the Lebesgue measure) generalized Sierpiński
set which has the Baire property in the restricted sense.

Now we will discuss another method of a construction of Lebesgue non-
measurable sets (or sets without the Baire property). This method is essentially
different from the previous constructions and is based on the notion of an ultrafilter
in the set ω of all natural numbers. This construction was done by Sierpiński in
1938.

Let us recall that if E is an arbitrary basic set and Φ is a proper filter of subsets
of E, then there exists an ultrafilter of subsets of E which extends Φ. If the set E
is infinite, then for the proof of this fact we need strong versions of the Axiom of
Choice. We shall consider here only the case E = ω where Φ is the dual filter to
the ideal

I = [ω]<ω.

Any ultrafilter which extends this filter is non–principal. Notice now that any family
S of subsets of the power set P (ω) can be considered as some subset of the Cantor
discontinuum {0, 1}ω. Namely, it is enough to take the set

{1X : X ∈ S},

where 1X denotes the characteristic function of the set X. Let us also consider
the probability Haar measure µ on the compact topological group {0, 1}ω and let
µ̄ denote the standard completion of the measure µ. The following theorem shows
us that every non–principal ultrafilter on ω is a non-measurable subset of the space
{0, 1}ω.
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Theorem 8.13 (Sierpiński) Every non–principal ultrafilter on ω is non-
measurable with respect to the measure µ̄.

Proof. Let U be a non–principal ultrafilter in ω and let

Z = {1X : X ∈ U}.

It is clear that Z ⊆ {0, 1}ω. Suppose that the set Z is measurable with respect to
the measure µ̄. Let Γ denote the family of all elements x = (xn)n∈ω from the space
{0, 1}ω which are eventually equal to zero, i.e.

card({n ∈ ω : xn = 1}) < ω.

It is obvious that Γ is a dense subgroup of the Cantor discontinuum {0, 1}ω. The
ultrafilter U is non–principal, so for every element x ∈ Γ we have

Z + x = Z,

where + denotes the group operation in {0, 1}ω. Hence, we see that the set Z is
invariant under the subgroup Γ. Then the metric transitivity of the Haar measure
µ implies that

µ̄(Z) = 0 ∨ µ̄(Z) = 1.

Let us put
e = (1, 1, . . . , 1, . . .).

Since U is an ultrafilter, we get

Z + e = {0, 1}ω \ Z.

Therefore, we have

(Z + e) ∩ Z = ∅, (Z + e) ∪ Z = {0, 1}ω.

Since the measure µ is invariant under translations of {0, 1}ω, the same is true for
the measure µ̄. So we see that none of the equalities µ̄(Z) = 0 and µ̄(Z) = 1 can
hold. Indeed, the first equality gives us 0+0 = 1 and the second gives us 1+1 = 1.
Hence, the set Z is not µ̄–measurable.

As we know (see Chapter 4) the measure µ̄ is isomorphic with the restriction of
the Lebesgue measure λ to the unit segment [0, 1], i.e. there exists a Borel bijection

g : {0, 1}ω → [0, 1]

such that for every set X ⊆ {0, 1}ω we have

X ∈ dom(µ̄)←→ g(X) ∈ dom(λ)

and if X ∈ dom(µ̄), then
µ̄(X) = λ(g(X)).

Hence, in theory (ZF) & (DC) the existence of a Lebesgue non–measurable subset
of the real line R is equivalent with the existence of a µ̄–non–measurable subset of
the Cantor discontinuum.

Summarizing all these remarks we see that in theory (ZF) & (DC) the following
implication holds:

there exists a non–principal ultrafilter on ω →

there exists a Lebesgue non-measurable subset of the real line R.
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Actually, a similar result can be established for the Baire property. Namely, any
non–principal ultrafilter on ω considered as a subset of the Cantor discontinuum
does not have the Baire property. Moreover, in theory (ZF) & (DC) the existence
of a non–principal ultrafilter on ω implies the existence of a subset of the real line
without the Baire property.

At this place we finish our short review of some classical subsets of the real line
R. Other interesting subsets of R and interesting families of subsets of R will be
considered in Part 2 of this book.

Exercises

Exercise 8.1 Let E be an infinite compact topological space with the weight w(E) =
κ. Show that E is a continuous image of some closed subset of the generalized
Cantor discontinuum 0, 1κ.

Exercise 8.2 Give an example of a σ–ideal I of subsets of R such that

1) I is invariant under the group of all isometric transformations of R;

2) there exists a set X ∈ I such that card(X) = c;

3) (∀Y, Z ∈ I)(Y + Z ∈ I).

Exercise 8.3 Prove Theorem 1 from this Chapter.

Exercise 8.4 Let us consider the complete separable metric space

(dom(λ), ρλ)

which is canonically associated with the family of all Lebesgue measurable subsets
of the unit segment [0, 1]. Let us recall that the metric ρλ is defined by the formula:

ρλ(X,Y ) = λ(X M Y ) (X,Y ∈ dom(λ)),

where two sets X,Y are identified if ρλ(X,Y ) = 0. Let M be the family of all sets
Z ∈ dom(λ) such that for every non–empty open interval V ⊆ [0, 1] the inequalities

λ(Z ∩ V ) > 0, λ(([0, 1] \ Z) ∩ V ) > 0

hold. Show that M is a residual subset of the space (dom(λ), ρλ), i.e. M is the
complement of a first category set in this space.

Exercise 8.5 Let Φ be some class of functions from R into R. We say that a
function

g : R2 → R
is universal for the class Φ if for every function φ ∈ Φ there exists y ∈ R (certainly,
depending on φ) such that

(∀x ∈ R)(φ(x) = g(x, y)).

Prove, using the method of transfinite induction, that for every ordinal α < ω1 there
exists a Borel function universal for the class Bα(R,R). Deduce from this fact the
Lebesgue theorem which says that for every α < ω1 there exists a function strictly
of the class Bα(R,R). Formulate and prove an analogous result for an arbitrary
uncountable Polish topological space E. Formulate and prove an analogous result
for the classes B∗

α(E) (α < ω1) of Borel subsets of an uncountable Polish topological
space E. Prove also that there does not exist a Borel function g : R2 → R universal
for all Borel functions from R into R.
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Exercise 8.6 Show that for an arbitrary function f : R → R the following two
sentences are equivalent:

a) f is of the first Baire class;

b) for every non–empty perfect set P ⊆ R the restriction f |P is continuous at
least at one point of P .

This result is due to Baire and is known as the Baire characterization of func-
tions of the first Baire class.

Exercise 8.7 Prove that the function φX from Example 1 from this Chapter is not
equivalent (with respect to the σ–ideal of all λ–measure zero sets) to any function
of the first Baire class. Using this fact show that φX is strictly of the second Baire
class.

Exercise 8.8 Prove that there exists a measure µ on the real line R satisfying the
following conditions:

a) µ is a non–zero complete σ–finite measure invariant under the group of all
isometric transformations of the real line;

b) dom(λ) ⊆ dom(µ) where λ denotes the Lebesgue measure on R;

c) (∀Y ⊆ R)(λ(Y ) = 0→ µ(Y ) = 0);

d) there is a Vitali set X such that X ∈ dom(µ).

Show also that for any measure ν on the real line invariant under the group Q and
extending the Lebesgue measure λ no Vitali set is ν–measurable.

Exercise 8.9 Let E be an arbitrary vector space. Show that any two bases of E have
the same cardinality. Their common cardinality is called the algebraic dimension of
the space E. Notice here that this fact is a very particular case of a general theorem
about the cardinality of any system of free generators of a free universal algebra.

Exercise 8.10 Let E be an arbitrary normed vector space over the field of real
numbers (or over the field of complex numbers) and let E have an infinite algebraic
dimension. Show that there exists a linear functional defined on E and discontinuous
at each point of E. Compare this result to the fact that every linear functional
defined on a finite–dimensional normed vector space is continuous.

Exercise 8.11 Using a Hamel base describe all solutions of the Cauchy functional
equation.

Exercise 8.12 Find all continuous functions f : R→ R which satisfy the following
functional equation:

f(x+ y) = f(x) · f(y) (x, y ∈ R).

Show that there are discontinuous (and Lebesgue non–measurable) solutions of this
functional equation, too.

Exercise 8.13 Prove that there are two sets A,B ⊆ R both of the Lebesgue measure
zero and of the first category such that

A+B = R.

Conclude from this fact that there exists a Hamel base in R which is contained in
the set A∪B and, consequently, is of the first category and of the Lebesgue measure
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zero. Show also that for every σ–finite measure µ on the real line which is invariant
(or, more generally, quasi–invariant) under the group of all translations of R and
for every Hamel base (ei)i∈I we have the implication

{ei : i ∈ I} ∈ dom(µ)→ µ({ei : i ∈ I}) = 0.

Exercise 8.14 Using the method of transfinite recursion construct a λ–massive
Hamel base in R, where λ denotes the Lebesgue measure on R. Deduce from this
fact that there exists a Hamel base in R non–measurable with respect to the measure
λ.

Exercise 8.15 Prove that the following two sentences are equivalent:

a) the Continuum Hypothesis;

b) for every non–zero σ–finite measure µ on the real line R invariant under all
translations of R there exists a Hamel base non–measurable with respect to µ.

Exercise 8.16 Let us recall that a polyhedron in the three–dimensional Euclidean
space R3 is an arbitrary subset of this space which can be represented as the union
of a finite family of closed three–dimensional simplexes. For any two polyhedra
X ⊆ R3 and Y ⊆ R3 we say that they are equivalent by a finite decomposition if
there exist two finite families

(Xi)i∈I , (Yi)i∈I

of polyhedra such that:

a) X =
⋃

i∈I Xi, Y =
⋃

i∈I Yi;

b) (∀i, j ∈ I)(i 6= j → int(Xi) ∩ int(Xj) = int(Yi) ∩ int(Yj) = ∅),
where the symbol int denotes, as usual, the interior of a set;

c) for each i ∈ I the polyhedra Xi and Yi are congruent with respect to the group
of all motions of the space R3.

Let f : R→ R be any solution of the Cauchy functional equation such that f(π) = 0.
Let P3 denote the class of all polyhedra in R3 and let us define a functional

Φf : P3 → R

by the formula
Φf (X) =

∑
j∈J

f(αj) · |bj | (X ∈ P3),

where (bj)j∈J is the injective family of all edges of the polyhedron X and αj is the
value of the angle of X corresponding to the edge bj and, finally, |bj | denotes the
length of the edge bj. Show that the functional Φf is invariant under the group of
all motions of the space R3 and has equal values for any two polyhedra equivalent
by finite decomposition.

We say that Φf is a Dehn functional on P3 associated with the solution f of the
Cauchy functional equation.

Let α be the value of an angle corresponding to an edge of the regular three–
dimensional simplex. Show that the set {α, π} can be extended to a Hamel base in
R. Conclude from this fact that there exists a solution f : R → R of the Cauchy
functional equation such that f(α) = 1 and f(π) = 0. Show that the functional Φf

assigns a strictly positive value on the three–dimensional regular simplex of the vol-
ume 1 and that Φf assigns the value zero on the unit closed cube in R3. Hence, these
two polyhedra, having the same volume, are not equivalent by finite decomposition.
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This gives the solution of the third Hilbert problem, obtained first by his
disciple Dehn.

This fact also explains us why during school–lectures on elementary geometry
we are needed to use some infinite procedures or limit processes for a calculation of
the volume of a three–dimensional simplex.

Exercise 8.17 Let f : R→ R be any non–trivial solution of the Cauchy functional
equation. Show that the graph of the function f is an everywhere dense subset of
the Euclidean plane R2.

Exercise 8.18 Suppose that f : R→ R is a Lebesgue measurable function satisfying
the inequality

f(
x+ y

2
) ≤ f(x) + f(y)

2
(x, y ∈ R).

Show that the function f is continuous and, consequently, f is a convex function in
the usual sense.

This result was obtained by Sierpiński. Formulate and prove an analogous result
for the Baire property.

Exercise 8.19 Let E be a topological space. We say that a subset X of E is totally
imperfect in E if X contains no non–empty perfect (in E) subset. Moreover, we
say that X is a Bernstein subset of E if both sets X and E \ X are totally
imperfect.

a) Prove, in theory (ZF) & (DC), that if there exists a totally imperfect subset
of the real line of cardinality c, then there exists a Lebesgue non-measurable
subset of the real line (prove also the same for the Baire property);

b) Show that in every complete metric space E of the cardinality continuum
(hence, in every uncountable Polish space) there exists a Bernstein set. More-
over, show that if the space E has no isolated points, then any Bernstein subset
of E does not have the Baire property in E.

Exercise 8.20 Let E be an uncountable Polish space and let X be any subset of
E. Show that the following two sentences are equivalent:

a) X is a Bernstein subset of E;

b) for every non–zero σ–finite diffused Borel measure µ defined on E the set X
is µ̄–non–measurable, where µ̄ denotes the standard completion of the measure
µ.

Exercise 8.21 Let n be a natural number greater or equal to 2 and let X be a
totally imperfect subset of the n–dimensional Euclidean space Rn. Prove that the
set Rn\X is connected (in the usual topological sense). In particular, any Bernstein
subset of Rn is connected.

Exercise 8.22 Let us consider the first uncountable ordinal ω1 equipped with its
order topology and let I be the σ–ideal of all non–stationary subsets of ω1. Let us
put

S = I ∪ I ′,

where I ′ is the dual filter to the ideal I. Observe that S is the σ–algebra generated
by I. Show that for any set X ⊆ ω1 the following two relations are equivalent:

a) the sets X and ω1 \X are stationary in ω1;
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b) for every non–zero σ–finite diffused measure µ defined on S we have

X 6∈ dom(µ̄),

where µ̄ denotes the usual completion of the measure µ.

Any set X with the above properties can be considered as a certain analog (for the
topological space ω1) of a Bernstein subset of R .

Exercise 8.23 Let P (R) denote the complete Boolean algebra of all subsets of the
real line R. Let us consider the quotient algebras P (R)/L and P (R)/K. Show that
these Boolean algebras are not complete.

Exercise 8.24 Prove that every Luzin subset of the real line R is a strongly measure
zero set. Does the converse implication hold?

Exercise 8.25 Let X be any Luzin subset of the real line R and let µ be any σ–
finite diffused Borel measure on R. Suppose also that f : X → R is a mapping
which has the Baire property. Prove that

µ∗(f(X)) = 0,

where µ∗ is the outer measure associated with the measure µ (in particular, f(X) is
a totally imperfect subset of R).

Exercise 8.26 Suppose that the Continuum Hypothesis holds and let X be an un-
countable subset of the real line R such that

B̄(X) = B(X).

Show that X is a Luzin set.

Exercise 8.27 Let X be any Lebesgue measurable subset of the real line R and let
x be any point from R. We recall that the point x is a density point of the set X if

limλ(V (x))→0
λ(V (x) ∩X)
λ(V (x))

= 1,

where V (x) denotes an arbitrary open interval containing the point x. Let us recall
also that the Lebesgue theorem about density points states that almost every point
of the set X is the density point of X. Let us consider the family T of all Lebesgue
measurable subsets Y of R such that each point of Y is a density point of Y . Show
that

a) T is a topology on R which strictly extends the standard Euclidean topology
on R;

b) the topological space (R, T ) is a Baire space and satisfies the Suslin condition;

c) every first category set in the space (R, T ) is nowhere dense;

d) a set X ⊆ R is Lebesgue measurable if and only if X has the Baire property
in the space (R, T ).

e) a set X ⊆ R is of Lebesgue measure zero if and only if X is a first category
set in the space (R, T ).
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The topology T is called the density topology on R. Show that a set Z ⊆ R is
a Sierpiński set in R if and only if Z is a Luzin set in the space (R, T ) (this means
that Z is uncountable and for every first category set Y in (R, T ) the intersection
X ∩ Y is at most countable).

Let us remark that the density topology is a very particular case of the von
Neumann topology (see Appendix B).

Exercise 8.28 Assume that the Continuum Hypothesis holds. Prove that there
exists a set X ⊆ R satisfying the following conditions:

a) X is a vector space over the field Q;

b) X is an everywhere dense Luzin subset of R.

Show also that there exists a set Y ⊆ R satisfying the following conditions:

a) Y is a vector space over the field Q;

b) Y is an everywhere dense Sierpiński subset of R.

Moreover, assuming Martin’s Axiom, formulate and prove analogous results for
generalized Luzin sets and for generalized Sierpiński sets. Deduce from these results,
assuming Martin’s Axiom, that there exist an isomorphism f of the additive group
of R onto itself and a generalized Luzin set X in R such that f(X) is a generalized
Sierpiński set in R.

Exercise 8.29 Let X be a Sierpiński set on the real line R. Equip X with the
topology induced by the density topology of R. Prove that the topological space X is
non–separable and hereditarily Lindelof.

Exercise 8.30 Assume that the Continuum Hypothesis holds. Let X be a
Sierpiński set on the real line R. Equip X with the topology induced by the Eu-
clidean topology of R. Prove that

A(X) = B(X)

where A(X) denotes the class of all analytic subsets of X and B(X) denotes the
class of all Borel subsets of X.

Exercise 8.31 Suppose that Martin’s Axiom holds. Applying a generalized Luzin
set on the real line R show that there exists a σ–algebra S of subsets of R such that

a) for each point x ∈ R we have {x} ∈ S;

b) S is a countably generated σ–algebra, i.e. there exists a countable subfamily
of S which generates S;

c) there is no non–zero σ-finite diffused measure defined on S;

A similar result can be proved in theory ZFCif we replace R by a certain uncountable
subspace E of R. We shall consider this result in Part 2 of the book.

Exercise 8.32 Let us consider the set E = ω1×ω1, where, as usual, ω1 is the first
uncountable ordinal. Prove that there exists a partition {X,Y } of the set E such
that

a) for any ordinal ξ < ω1 we have

card(X ∩ ({ξ} × ω1)) ≤ ω;
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b) for any ordinal ζ < ω1 we have

card(Y ∩ (ω1 × {ζ})) ≤ ω.

The partition {X,Y } is called a Sierpiński partition of the set E.
Conversely, suppose that κ is an uncountable cardinal and let E = κ×κ. Assume

that there exists a partition {X,Y } of the set E such that

c) for any ordinal ξ < κ we have

card(X ∩ ({ξ} × κ)) ≤ ω;

d) for any ordinal ζ < κ we have

card(Y ∩ (κ× {ζ})) ≤ ω.

Prove that the equality κ = ω1 holds.

Exercise 8.33 Let us consider the family P (ω1) of all subsets of ω1 as a σ–algebra.
Let P (ω1)⊗ P (ω1) denote the product σ–algebra. Show that

P (ω1)⊗ P (ω1) = P (ω1 × ω1).

Deduce from this fact, using the Fubini theorem, the following classical result of
Ulam: there is no non–zero σ–finite diffused measure defined of the σ–algebra P (ω1).

Exercise 8.34 Let � be well–ordering of the real line R. Prove, using the
Kuratowski-Ulam theorem, that this well–ordering considered as a subset of R2 does
not have the Baire property. Similarly prove, using the Fubini theorem, that � is
not measurable with respect to the two–dimensional Lebesgue λ2.

Deduce from these facts that

a) neither � nor R2\ � is an analytic subset of the plane R2;

b) in theory (ZF) & (DC) the following implication holds:

there exists a well–ordering on R→

there exists a subset of R without the Baire property

and non–measurable with respect to the Lebesgue measure.

Exercise 8.35 Let Z be the subset of the Cantor discontinuum defined in the proof
of Theorem 13 starting with a non–principal ultrafilter on ω. Show that the set Z
does not have the Baire property in the product space {0, 1}ω. Deduce from this that
in theory (ZF) & (DC) the following implication holds:

there exists a non–principal ultrafilter on ω →

there exists a subset of the real line Rwithout the Baire property.

Exercise 8.36 Let Φ be any non–principal filter in ω and let

Z = {1X : X ∈ Φ},

where 1X denotes the characteristic function of the set X. Prove that in the Cantor
discontinuum {0, 1}ω we have:

a) if the set Z has the Baire property, then it is a first category subset of {0, 1}ω;
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b) if the set Z is measurable, then it is a measure zero subset of {0, 1}ω.

Exercise 8.37 Assume that Martin’s Axiom holds. Show that there are two σ–
algebras S1 and S2 of subsets of the real line R satisfying the following relations:

a) (∀x ∈ R)({x} ∈ S1 ∩ S2);

b) the σ–algebras S1 and S2 are countably generated;

c) there exists a probability diffused measure on S1 and a probability diffused
measure on S2;

d) there is no probability diffused measure on the σ–algebra generated by S1∪S2.

We shall return to the result of this exercise in Part 2 of the book.

Exercise 8.38 Prove that the order type of an arbitrary totally imperfect subset
of R is strictly less than the order type of R. Apply this result to a Bernstein set
(respectively, to a Luzin set and to a Sierpiński set).
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[91] K. Kuratowski, Une méthode d’elimination des nombres transfini des
raisonnements meth’ematiques, Fund. Math., 3, (1922), 76-108
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[95] D. Kurepa, Ensebles linéries et une class de tableaux ramifies, Publ. Math
Univ. Belgrade 6, (1937), 129-160

[96] D. Kurepa, Around the general Suslin problem, Proc. Internat. Symp. on
Top. Herceg-Novi, Beograd (1969), 239-245

[97] R. Laver, On the consistency of Borel’s conjecture, Acta Mathematica,
137, (1976), 151-169

[98] M. Lavrientiev, Sur la recherche des ensambles homéomorphes, C.R.
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(1938), 215-217

[139] M.E. Rudin, Souslin’s conjecture, Amer. Math. Monthly, (1969), 1113-1119

[140] W. Rudin, Principles of mathematical analysis, New York, McGraw-Hill,
(1964)

[141] B. Russell, A. Whitehead, Principia Mathematica, vol. 1, Cambridge
Univ. Press, (1910)

[142] S. Shelah, Proper forcing, Lecture Notes in Mathematics 940, 1982

[143] J.R. Shoenfield, Mathematical Logic, Reading, Addison-Wesley, (1967)

[144] J.R. Shoenfield, Measurable cardinals, in Logic Colloquium’69, Amster-
dam, North Holland, (1971)

[145] J.R. Shoenfield, Martin’s axiom, Amer. Math. Monthly, 82, (1975), 610-
618
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