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We propose a new algorithm for the classical averaging problem for distributed Wireless Sensors Networks.

This subject is well studied and there are many clever algorithms in the literature. These algorithms are based

on the idea of local exchange of information. They behave well in dense networks (for example in networks

which connections form a complete graph), but their convergence to the real average is very slow in linear or

cyclic graphs.

Our solution is different: in order to calculate the average, we first build an approximate histogram of

observed data, and then from this histogram we estimate the average. In our solution we use the extreme

propagation technique and probabilistic counters. It allows to find the approximation of the average of a

set of measurements done by sensor network with arbitrary precision, controlled by two parameters. Our

method requires O(D) rounds, where D is the diameter of the network. We study the message complexity of

this algorithm and we show that it is of order O(log n) for each node, where n is the size of the network.
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1 INTRODUCTION
The problem of averaging in distributed Wireless Sensors Networks (WSN) has been widely studied

in a series of papers (see e.g. [Boyd et al. 2006; Dimakis et al. 2008]). In [Aysal et al. 2009], at each

clock tick one randomly chosen sensor broadcasts its information to all its neighbors, then each

neighbor averages its own value with the received one. However, with such an algorithm the

network’s global sum is not preserved so this kind of algorithms does not converge to the true

average. This drawback was eliminated in [Kempe et al. 2003] and later in [Iutzeler et al. 2012].

But the convergence speed to the average value of all these algorithms in networks with topology

similar to line graph is slow and highly exceeds the diameter of the network, which is the obvious
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lower bound on the number of rounds needed to compute the exact average. We shall discuss these

phenomena in Section 1.1.

There have been a lot of papers which study the problem of estimation of the size of the network

and which estimate the sum

∑
v ∈V Xv of observed numeric values Xv by nodes v ∈ V . The direct

use of any pair of such algorithms for estimation of the average value
1

|V |

∑
v ∈V Xv does not give

satisfactory results, since both nominator and denominator are biased and numerical experiments

show that the cumulative error is relatively large.

In this paper we propose a novel method of estimation of average in the distributed environment,

which can be summarized as follows: build an approximate histogram of observed data using

probabilistic counters and finally calculate the average from this histogram. The proposed algorithm

is particularly suited for large-scale sensor networks consisting of thousands of devices, where the

distances between two nodes (counted in number of hops) may be very large.

Notice that a trivial algorithm for computing average consists in gossiping all pairs (idv ,Tv )
containing nodes’ identifier idv and its measurementsTv . It requires uniqueness of nodes identifiers
(which can be eliminated by some random mechanism). But more importantly, it has a large

communication complexity and requires a large amount of memory for each node to store all data.

In large networks storing the actual data gathered from other stations is not possible because

of memory limitations. Also the lack of knowledge about network topology makes the task of

data aggregation even more difficult. Thus one needs to find a tradeoff between the amount of

information processed and stored by every node and the number of messages sent by all stations.

It is worth mentioning that in practice the knowledge of exact average of sensors’ measurements

is not necessary in most applications and approximate ones are also acceptable (a detailed analysis

of this issue can be found in [Li et al. 2017]). A similar approach is used in [He et al. 2015] for

the identification of other important aggregates such as quantiles and range countings in wireless

sensor networks.

Let us note that we do not assume e.g. that the devices have some global identifiers known

in advance (in [Cardoso et al. 2009] a similar setting is considered, where stations have some

random unique identifiers, which are previously not known to other stations). The knowledge

of nodes about the network topology is also very limited – initially each station knows only its

direct neighbors and has even no information about the network size (each parameter required for

running the algorithm is determined during the precomputation phase).

Another important feature of our algorithm is that after its execution the same estimate of

average is produced at every node. Some of the existing efficient protocols result in obtaining the

outcomes of data aggregation in some predetermined node by gathering all data from other stations.

These algorithms, in order to achieve the same effect, would require an additional communication

phase for spreading the information about calculated estimates. We also do not want to allow for

such situations, where one station coordinates the whole process, expending much more energy

than other devices. As it is important to have all devices still being capable of working for possibly

long time, we focused also on preventing any particular station from running out of battery much

faster than others.

Our method is based on the extreme propagation technique popularized by C. Baquero, P. S.

Almeida, and R. Menezes in 2009 in [Baquero et al. 2009] (see also [Baquero et al. 2012; Blaskiewicz

et al. 2012]) and on the notion of probabilistic counters. A discussion on some practical aspects of

communication cost of extrema propagation technique based algorithms in real distributed settings

can be found e.g. in [Baquero et al. 2012; Cardoso et al. 2009]

Probabilistic counters were invented in 1977 by Robert Morris in [Morris 1978]. The idea of

using this kind of counting techniques for estimation of aggregates in networks was introduced in

ACM Transactions on Sensor Networks, Vol. 14, No. 9, Article 1. Publication date: March 2018.



Average Counting via Approximate Histograms 1:3

[Considine et al. 2004; Nath et al. 2004]. The method of using collections of probabilistic counters is

not new. It was used for example to control the use of flash memory blocks in [Cichoń and Macyna

2011].

Our algorithm runs in O (D) steps, where D is the diameter of network. Its precision is controlled

by two parameters. Let us recall that we are not assuming any knowledge on the size of the network.

We assume only that we know some reasonable upper bound on the network diameter. The problem

of finding lower and upper bounds on the diameter of a network is well studied (see e.g. [Ajwani

et al. 2012; Roditty and Williams 2013]). Let us remark that it is folklore that a single BFS run rooted

at an arbitrary source yields trivial upper bounds on the diameter with factor 2, which is sufficient

for our purposes. Let us also remark that Stephan Holzer et al. [Holzer et al. 2014] presented an

algorithm that computes a
3

2
-approximation of the diameter w.h.p. in O(

√
n logn + D) time (where

n denotes the number of nodes).

It is worth to remark that the exact calculation of the network diameter in the settings where

the number of devices in the network is not known appears to be time-consuming and the existing

protocols have large time complexity (see e.g. [Peleg et al. 2012] and [Frischknecht et al. 2012]

where the authors consider the model of the network that is similar to that studied in our paper).

However, we do not need to know the exact value of the network diameter. It is sufficient for our

protocol to have only some crude approximation.

One of the crucial factors determining the efficiency of protocols designed for wireless sensor

networks is their energy complexity. As the energy is a critical resource in such distributed

environments, we put a lot of attention on the energetic aspects of designed algorithm. We based

our averaging method on a variant of extrema propagation technique, which appears to be a robust

framework for building more complex energy efficient protocols (cf. the discussion in [Baquero et al.

2012; Cardoso et al. 2009]). As the dominating factor for energy expenditure during the execution

of the proposed algorithm is the number and the size of messages sent by each station, we measure

its energy efficiency in terms of message complexity, defined for a given node as the number

of transmissions it performs. In Section 4.1 we present a thorough discussion on the message

complexity of our solution, showing in Lemma 4.5 that the expected number of messages sent by

each station is of order O (lnn). Hence, the overall message complexity (i.e. the total number of

transmissions performed by all nodes in the network) is O (n lnn).
As we shall see, there is a kind of tradeoff between the communication cost and time and memory

complexity of the averaging protocols in settings where the resources of nodes in very large

networks are significantly limited. Some additional payoff in number of transmissions (but still only

within a constant factor) allows for designing more efficient and robust solutions. It is also worth

noting, that the size of messages sent is directly related to the precision of obtained estimates. If in

a given application only some crude approximation is required, then the number of probabilistic

counters can be reduced, thus resulting in smaller size of messages.

This paper is an extension of a preliminary report [Cichoń and Gotfryd 2016] presented at

the conference ISMS 2016. This paper contains a more detailed discussion on related work, all

proofs necessary for formal analysis of our algorithm, a section with experimental analysis of two

previously known algorithms, a comprehensive evaluation of precision of the algorithm, analysis

of its message complexity and some other new remarks.

1.1 Previous algorithms
In this section we show that there exist families of graphs for which the time complexity of

averaging methods relying on gossip-based information exchange is of order Θ

(
n2

)
. This will serve

as a motivation for posing the following question which arises when considering the worst-case
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behavior of the abovementioned algorithms. Namely, if there exists a protocol for distributed

average estimation having worst-case time complexity not exceeding the network size or diameter.

Starting with these motivating examples we will then answer this question affirmatively, showing

that with a small payoff in energy expenditure (in terms of message complexity) we are able to

guarantee worst-case running time of our averaging algorithm of order Θ (D) (and hence O (n))
regardless of the network topology.

We shall present results of numerical experiments in which we investigated the number of steps

needed to achieve the desired accuracy by these algorithms in line graphs. More precisely, for

several values of n we organized 2n nodes in a line graph; we put initially values 1 into the first n
nodes and values 0 into last n nodes; clearly the average of initial values is 0.5; we ran this algorithm

until the maximal error is less than 0.1 and we recorded the number of rounds. We repeated this

experiment 50 times for each n and we calculated the mean from it.

Before we skip into the summary of our experiments with these algorithms let us emphasize

that the discussed procedures converge quickly to the average and are very efficient in terms of

energy complexity in case of dense graphs (for example in complete graphs or Random Geometric

Graphs). Line graphs are the worst case for them.

1.1.1 Push-Sum Algorithm. The Push-Sum algorithm from [Kempe et al. 2003] uses two variables

(s,w). In the initial phase this pair is initialized at node u to (xu , 1) where xu is the value observed

by u, and then u sends this pair to itself. At the beginning of each round each node u gathers all

pairs (si ,wi )i=1, ...,k sent to it and calculates s =
∑k

i=1
si , w =

∑k
i=1

wi . Next, at the end of each

round, it chooses uniformly at random one of its neighbors v and sends the pair
1

2
(s,w) to v and to

itself. The number su/wu is the estimate of the average value of (xv )v ∈V , where V is the set of all

nodes.

It is easy to check that after each round the average of all values (sv )v ∈V is always the correct

average and that

∑
v ∈V wv = |V |. But the proof of correctness of this algorithm (convergence

to actual average of values su/wu for each node u) is non-trivial. It uses the “potential” function

Φ =
∑
u,v ∈V

(
cu,v −

wu
|V |

)
2

, where cu,v are so called contributions at node u, related to su andwu by

the formulas su =
∑
v ∈V cu,v · xv andwu =

∑
v ∈V cu,v . Authors show that the function Φ decreases

at least twice after each round and later they use classical results about the diffusion speed in

graphs to show the rate of convergence.

The numerical experiments show that the expected number of rounds necessary to reach precision

0.1 (for each node) is close to an2
, where a ≈ 0.27 (see Fig. 1). Therefore, in this situation (line

graph) O

(
n2

)
steps are required to be sure that each node has an estimation of the average value

0.5 from the interval [0.4, 0.6].

1.1.2 BWGossip Algorithm. The averaging algorithm from [Iutzeler et al. 2012] (BWGossip

Algorithm) is fully distributed. Each node has two variables s andw , therefore the total state of this

algorithm is described by two tables (sv )v ∈V and (wv )v ∈V and the state of a node v is described by

a pair (sv ,wv ). Initially all sv are set to be the values observed by the nodes (which we want to

average) andwv = 1.

At each step one random node v ∈ V wakes up and sends to all its neighbors the vector

mv = (
sv

nv+1
, wv
nv+1

), where nv is the cardinality of its neighborhoodNv . The nodev updates its state

tomv and each nodeu ∈ Nv updates its state to (su ,wu ) = (su ,wu )+mv (according to element-wise

operations). The number sv∗/wv∗ is then the estimate of the average value of (xv )v ∈V after this

step at the node v∗ ∈ V .

Figure 2 shows the average number of rounds (transmissions) of BWGossip algorithm required

to reach the precision of order 10% with respect to the number n of nodes in the network. This
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Fig. 1. Line graph with n nodes and the average number of rounds in Push-Sum algorithm needed to reach

precision 0.1 starting from the vector (1, . . . , 1, 0, . . . , 0). We made 1000 numerical experiments for each even

n between 2 and 60.

figure contains experimental data (points) and its approximation by the function L = 0.55 · n3
. We

see that for obtaining the desired accuracy the algorithm requires on average the number of rounds

which is of order n3
.

Fig. 2. Average number of transmissions required by BWGossip Algorithm to reach the accuracy of order

10% with respect to the network size (line graph, first half of nodes has value 1, the other half – 0).

Let us notice that the algorithm considered in this section is asynchronous, so at each round only

one (randomly chosen) node is activated. In order to compare this algorithm with the previous one

and with our method we slightly modify the original procedure from [Iutzeler et al. 2012]. Namely
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we divide the time into rounds and in each round we wake up all nodes once but in a random order.

This time (see Figure 3) we see that the expected number of rounds is close to 0.4 · n2
, hence is of

order O

(
n2

)
.

Fig. 3. Average number of rounds required by modified BWGossip Algorithm to reach the accuracy of order

10% with respect to the network size (line graph, first half of nodes has value 1, the other half – 0).

Slightly different and more general approach to the problem of distributed averaging in wireless

ad hoc networks was presented in [Boyd et al. 2006]. However, the authors explicitly assume that

the underlying graph is not a bipartite graph, so we may not test their solutions on line graphs. But

simulations performed on non-bipartite graphs similar to line graphs show analogous behavior

of algorithms based on this approach: the expected number of rounds required to obtain a given

precision is of order O

(
n2

)
.

1.1.3 Related papers. An important problem closely related to average approximation is the

estimation of the distribution of some parameter’s values detected by the nodes in a distributed

environment. A lot of algorithms for that problem have been proposed in recent years (see e.g.

[Borges et al. 2012; Haridasan and van Renesse 2008; Sacha et al. 2010] and the references therein).

This class of protocols aims in determining some practical approximation of the actual distribution

of some global characteristic of the network. This is clearly much more than simply estimating

individual aggregates, as such estimates can usually be trivially obtained from the calculated

distribution. In [Haridasan and van Renesse 2008], the authors introduced algorithms based on

gossiping, which allow for computing an estimation of the distribution of nodes’ measurements by

each peer in the network. They considered a couple of techniques in order to decrease the size of

messages transmitted between nodes and reduce the overall message complexity of the protocol.

Among others, they considered two methods based on dynamically building histograms of values

received so far from other nodes.

In the first one histograms with equal intervals are constructed, whereas the second one relies

on histograms with unequal bins, such that each bin contains approximately the same number

of points (equi-depth histograms). The latter approach, though leading to more precise results,

requires however some additional work for dynamic splitting and merging histograms’ intervals

as new values are arriving. A series of experimental results were presented, showing that the
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proposed protocols are able to efficiently (in terms of time and communication complexity) produce

quite accurate estimations of the parameter’s distribution for various classes of distributions. The

quality of obtained approximations was evaluated with Kolmogorov-Smirnoff distance between

two probability measures (maximum over all nodes was taken into account for analyzing the worst-

case errors). Especially the approach where so called equi-depth histograms were used resulted in

estimations with relatively high precision.

Another class of algorithms for estimation of cumulative density function (cdf) was presented in

[Sacha et al. 2010]. It also employs gossip-based dissemination of information between nodes and

provides a mechanism for self-assessment of the accuracy of calculated estimations. In general,

their protocols consist of multiple consecutive instances, where in every such instance the set of

thresholds is selected (based on the knowledge acquired so far) in order to construct some data

structure effectively equivalent to cumulative histogram of values gathered from other nodes. The

estimations of values of the actual cdf in the selected points are then combined into an approximate

cdf using linear interpolation. From the approximation calculated in a given instance, the set of

thresholds is then refined based on some heuristics in order to produce more accurate distribution

estimations in successive steps. The algorithm was also extended with a technique allowing for

evaluation of the approximation’s accuracy. The experiments presented in the paper show the

robustness and efficiency of the protocol for both smooth and skewed distributions.

However, protocols from [Haridasan and van Renesse 2008; Sacha et al. 2010] assume different

communication model from that considered by us. The efficiency and robustness of these methods

rely on the fact that sets of nodes’ neighbors may vary in time, which in particular requires that any

two nodes can communicate directly. In [Sacha et al. 2010] the authors assume, among other things,

that stations are allowed to randomly select their neighbors and change them over time for assuring

better connectivity properties. In contrast, the algorithm introduced by us is designed for multi-hop

settings, where the network topology does not change. It is also worth mentioning that the analysis

of these algorithms is restricted only to experimental evaluation based on simulations. Let us also

note that these algorithms do not result in a consensus – each peer has its own approximation of

the values’ distribution and hence the obtained aggregates may vary across the nodes.

The problem of reaching a consensus on the aggregates like average of the measurements

performed by the nodes has also been extensively studied in the literature in recent years. As the

problem of obtaining precise estimations of parameters of interest with the additional requirement

that each station should have the same value at the end of the protocol is not a trivial task, some

relaxations have been considered. An example are the algorithms for quantized consensus discussed

in [Kashyap et al. 2007], where a discrete version of the averaging problem in sensor networks

was studied. The authors in [Kashyap et al. 2007] proposed solutions based on classical pairwise

gossiping protocol, where the sensors quantize the values of their measurements and at the end

of protocol’s execution each station obtains some integer approximation ˆavд ∈ {µ, µ + 1} of the

actual average avд such that avд ∈ [µ, µ + 1]. They also provide a comprehensive theoretical

analysis of conditions under which the nodes converge to quantized consensus and the rate of that

convergence. These algorithms, however, do not lead to true consensus, as each sensor can end up

with one of two possible values for average approximation.

In [Benezit et al. 2009] a similar problem named interval consensus, which is some generalization

of well known voting problem in distributed systems, was studied. The authors considered a

network, where each node has a quantized value of some measurement and there is a given set of

intervals known in advance to the stations. The goal is to determine in fully distributed manner

which interval contains the average of their measurement. They proposed another modifications of

pairwise gossip by appropriately adapting the updating rules to allow for reaching the consensus

on the set of intervals and provide some theoretical and experimental analysis of their algorithms.
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Both of the aforementioned techniques of quantized consensus, however, are relying on gossip-

based information exchange. Thus, although they are also suited for the task of average estimation

in the distributed systems, the performance issues pointed out in Section 1.1 also apply to them.

Besides the algebraic operations like sum and average, there are other important types of

aggregate operations which can provide valuable characteristics of the large scale wireless sensor

networks. An example are the holistic aggregations, extensively studied in [He et al. 2015] and [Li

et al. 2017]. The authors propose energy efficient sampling-based algorithms for approximating

with an arbitrary precision the quantiles, frequencies, ranks and the number of distinct elements

in distributed datasets consisting of values gathered by the sensors. The discussion involves also

the detailed, formal and experimental analysis of the precision of constructed estimators and the

communication complexity of designed protocols. Moreover, in [He et al. 2015] an algorithm for

approximate counting of the number of observations in a given range based on dynamic binary tree

is discussed. However, all these protocols are designed for some kind of centralized environment in

the sense that they require the existence of a predetermined station (called sink or coordinator)

which gathers all the partial aggregation results from other nodes and calculates the final estimation,

which is then disseminated across the whole network.

A lot of attention has also been recently given to constructing reliable and fault-tolerant data

aggregation algorithms in wireless settings in the presence of message loss, links and nodes failures

or in the scenarios where nodes can dynamically leave or join the network. The examples of novel,

efficient protocols which have been proven to be resilient to such communication failures can be

found, among others, in [Almeida et al. 2017; Gansterer et al. 2013; Jesus et al. 2015].

In the design and analysis of performance of the algorithms for distributed data aggregation

one of the key factors is the time they require for spreading the data across the network and for

convergence of the nodes’ estimations to their final values. There is a vast body of literature dealing

with the relations of convergence speed of the protocols based on randomized rumor spreading or

gossiping (cf. [Boyd et al. 2006; Karp et al. 2000]) to the characteristics of graphs describing the

underlying networks like conductance or vertex expansion. For the detailed discussion on that

subjects see e.g. [Chierichetti et al. 2010; Giakkoupis and Sauerwald 2012] and references therein.

1.2 Mathematical Notation and Background
We denote by |A| the cardinality of a set A. By Γ(x) we denote the standard generalization of the

factorial function. Notice that Γ(n) = (n − 1)! for any integer n ≥ 1.

We denote by E [X ] and var [X ] the expected value and the variance of the random variable X ,

respectively. We denote by

d
→ the convergence in distribution of random variables.

Let us recall that a random variable X has the exponential distribution with parameter λ > 0

(X ∼ Exp(λ)) if its density function fX is given by the formula fX (x) = λ exp(−λx). It is well known
that if X1, . . . ,Xn ∼ Exp(λ) are independent and Y = min{X1, . . . ,Xn}, then Y ∼ Exp(nλ). We

denote by N(0, s2) the normal distribution with mean 0 and variance s2
.

If X1, . . . ,XL are independent random variables with a common Exp(µ) distribution, then the

sum S = X1 + . . . + XL has the Erlang distribution with parameters L and µ (S ∼ Erl(L, µ)), i.e. its
density function is given by the formula

fL,µ (x) =
µLxL−1e−µx

(L − 1)!
. (1)

All of the above probabilistic concepts and distributions of random variables can be found in the

book [Billingsley 2012].

For the sake of clarity, the main symbols used in this paper together with its brief descriptions

are summarized in Table 1.
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Table 1. Major symbols.

Symbol Definition

n the size of the network

®T = (Ti )i=1, ...,n the vector of the observable data stored by the sensors

avg( ®T ) the arithmetic mean of the elements of vector ®T of real numbers

m,M minimal and maximal value in ®T
K the number of intervals (bins) used for construction of a histogram

I = (I1, . . . , IK ) the partition of the interval [m,M] into sub-intervals

m(I ) the middle point of the interval I
®H = (Hi )i=1, ...,K the histogram of the actual sensors’ data ®T

wmI( ®T ) the weighted mean of the elements of ®T by partition I

L the number of probabilistic counters used for cardinality estimation

®CL = (CL,i )i=1, ...,K the approximate histogram of the data ®T

err(wm( ®H ),wm( ®CL)) the approximation error of the average

MC
K,L
G ;x the message complexity of the algorithm for node x in the network G

E [X ] the expected value of a random variable X
var [X ] the variance of a random variable X
Exp(λ) the exponential distribution with parameter λ
Erl(L, λ) the Erlang distribution with parameters L and λ
N(µ, s2) the normal distribution with mean µ and variance s2

Γ the Gamma function (an extension of the factorial function)

1.3 Organization of the Paper
In Section 2 we describe the idea of approximate histograms of data collected by nodes in a network.

We show that an estimator of the average value based on this notion is asymptotically unbiased.

In Section 3 a measure of precision of approximate histograms is introduced and the worst case

of data is recognized. We present a pseudocode of proposed algorithm for average estimation,

discuss its basic properties and show a detailed analysis of its energy efficiency defined in terms of

message complexity in Section 4. Section 5 presents the results of a series of numerical experiments

which illustrate the precision of estimates obtained using our procedure applied to various kinds of

data. An example of utilizing additional information gathered during execution of the averaging

algorithm for estimation of the network size is demonstrated in Section 6. Finally, we conclude in

Section 7 summarizing fundamental properties of proposed algorithm.

2 HISTOGRAMS
We assume that the network is modeled by a connected graph with diameter D. The edges of this
graph correspond to bidirectional communication links. Suppose that the network consists of n

nodes numbered by {1, . . . ,n} and that each node stores a value Tk . Let ®T = (Ti )i=1, ...,n . Our goal

is to estimate the mean

avg( ®T ) =
1

n

n∑
i=1

Ti

in an efficient and easy way.

Using the extreme propagation technique in its basic form we may assume that each node knows

the valuesm = min{Ti : i = 1, . . . ,n} and M = max{Ti : i = 1, . . . ,n}. Ifm = M then the average
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1:10 Jacek Cichoń and Karol Gotfryd

value of the sequence (Ti ) is known. Suppose hence that m < M and let ∆ = M −m. We fix a

parameter K and we split the interval [m,M] into K disjoint intervals of equal length: we put

Ii = [m + ∆
K (i − 1),m + ∆

K i) for i = 1, . . .K − 1 and IK = [m + ∆
K (K − 1),M], so

[m,M] = I1 ∪ I2 ∪ . . . ∪ IK .

Let I = (I1, . . . , IK ). We denote by m(Ii ) the middle point of the interval Ii , i.e. we put m(Ii ) =
m + ∆

K (i −
1

2
) and for an arbitrary vector ®x = (xi )i=1, ...,K of non-negative numbers such that∑K

i=1
xi > 0 we define the weighted mean of ®x by partition I as

wmI(®x) =

K∑
i=1

m(Ii )xi

K∑
i=1

xi

.

We will drop the index I when this parameter is clear from the context.

Let Hi = |{k : Tk ∈ Ii }| for i ∈ {1, . . . ,K}. We call the vector ®H = (Hi )i=1, ...,K the histogram

of the data (Ti )i=1, ...,n . We are going to approximate the average value of observed data ®T by an

approximation of the number

wm( ®H ) =

K∑
i=1

m(Ii ) · Hi

K∑
i=1

Hi

. (2)

In this approach each observed value is approximated by the nearest element from the set of

middle points (m(Ii ))i=1, ...,K , so some error in this method is unavoidable. We call this error a

discretization error. It is controlled by the number K of sub-intervals into which we divide the range

of observed data and by the spread of observed data, as stated in Theorem 2.1.

Theorem 2.1 (Discretization error). For an arbitrary vector ®T of observed data we have���wm( ®H ) − avg( ®T )
���

M −m
≤

1

2K
,

wherem = min{Ti : i = 1, . . . ,n} andM = max{Ti : i = 1, . . . ,n}.

Proof. Let ∆ = M −m. Notice that H1 + . . . + HK = n. Therefore

|wm( ®H ) − avg( ®T )| =

����� 1n n∑
i=1

Ti −

∑K
j=1

m(Ij )Hj∑K
j=1

Hj

����� = 1

n

������ K∑
j=1

∑
Ti ∈Ij

Ti −
K∑
j=1

m(Ij )Hj

������ =
1

n

������ K∑
j=1

©­«
∑
Ti ∈Ij

Ti −m(Ij )Hj
ª®¬
������ = 1

n

������ K∑
j=1

∑
Ti ∈Ij

(
Ti −m(Ij )

) ������ ≤ 1

n

K∑
j=1

∑
Ti ∈Ij

��Ti −m(Ij )
�� ≤

1

n

K∑
j=1

∑
Ti ∈Ij

∆

2K
=

1

n

∆

2K

K∑
j=1

∑
Ti ∈Ij

1 =
∆

2Kn

K∑
j=1

Hj =
M −m

2K
,

so the theorem is proved. �

Remark 2.2. We do not discuss in this paper the problem of proper setting the parameter K , i.e.
the number of bins in histogram. There is extensive literature on this subject, see for example [Scott

1979] or [Chen et al. 2008].
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Average Counting via Approximate Histograms 1:11

2.1 Approximate Counters
Probabilistic counters have been intensively investigated in last years. They were invented in 1977

by Robert Morris (see [Morris 1978]). This original version was carefully analyzed in the early 1980s

by Philippe Flajolet (cf. [Flajolet 1985]), who coined the name Approximate Counting. A popular

realization of this kind of counters is Hyperloglog (see [Flajolet et al. 2007]), which is a popular

tool in Big Data applications. In more recent investigations some other methods were proposed for

estimation of the cardinality of a stream of data. Some of them are well suited for counting the size

of distributed networks (see e.g. [Cichoń et al. 2011]).

One class of such counters is based on the following property of exponential distribution: if

X1, . . . ,Xn are independent random variables with the common distribution Exp(1), then the

random variable Y = min{X1, . . . ,Xn} has the distribution Exp(n) (see Section 1.2).

In fact, one random variable Y ∼ Exp(n) is not sufficient for estimation of the parameter n.
However, if we have a sequenceY1, . . . ,YL of independent random variables with Exp(n) distribution
where L > 2, then the random variable Z = Y1 + . . . +YL has the Erlang distribution Erl(L,n). From

Eq. 1 we can easily deduce that E
[ L−1

Z

]
= n and var

[ L−1

Z

]
= n2

L−2
. Therefore, the random variable

C = L−1

Z is an unbiased estimator of the number n and its precision is controlled by the parameter

L. We will use this approach in this paper.

Remark 2.3. If all nodes v ∈ V from a considered connected network generate numbers (Xv )v ∈V ,

then the number min{Xv : v ∈ V } can be easily computed by the ordinary extrema propagation

technique in O (D) rounds (cf. [Baquero et al. 2009]). We will use this observation in Section 4.

Remark 2.4. Another popular approach to construction of approximate counters is based on

order statistics (see e.g. [Cichoń et al. 2012b]). They have an interesting properties: namely, this

kind of counters gives precise results for small number of observations. However, we found that

the theoretical analysis of solutions based on such counters is more difficult than that one based on

Erlang distribution in the context of the present paper.

2.2 Approximate Histograms
Let ®T = (Ti )i=1, ...,n be the sequence of observed values. We split the interval [min( ®T ),max( ®T )]
into K intervals (Ii )i=1, ...,K of equal lengths and we associate with each interval Ii an approximate

counter CL,i counting the number Hi = |{k : Tk ∈ Ii }| based on the Erlang distribution Erl(L,Hi ).

The method of transformation of numbers (Hi )i=1, ...,K into the numbers (CL,i )i=1, ...,K will be

described in Section 4.

We call the vector ®CL = (CL,i )i=1, ...,K an approximate histogram of the data ®T . Let ®H be the

histogram obtained from ®T . We will show in Theorem 2.6 that the number wm( ®CL) is an asymptot-

ically unbiased estimator of the number wm( ®H ) when L → ∞. Before we prove this convergence

result we will need the following auxiliary lemma.

Lemma 2.5. Suppose that XL ∼ Erl(L,m), where L > 2. Let YL =
L−1

X . Then E [YL] =m, var [YL] =
m2

L−2
and the sequence

√
L(YL −m) converges in distribution to the normal distribution N(0,m2).

Proof. Let fXL and fYL denote the probability density functions for the random variables XL
and YL , respectively. Notice that Pr[ L−1

X < t] = Pr[X > L−1

t ] = 1 − Pr[X ≤ L−1

t ]. Therefore

fY (t) = −fX (
L−1

t ) ddt (
L−1

t ). After some simplifications we obtain the following formula

fYL (t) =
e−

(L−1)m
t

(
(L−1)m

t

)L
t · Γ(L)

.
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1:12 Jacek Cichoń and Karol Gotfryd

From this formula we easily deduce that E [YL] =m and var [YL] = m2

L−2
. Observe that

fYL+1
(t) =

me−
Lm
t

( Lm
t

)L
t2 · Γ(L)

.

It is worth to remark that this means that the random variable YL+1 follows InvGamma(L + 1,Lm)

distribution.

Let ZL =
√
L
m (YL+1 −m). Then Pr[ZL < t] = Pr[YL+1 < m + mt√

L
]. From this we deduce that the

probability density function fZL of the random variable ZL is given by the formula

fZL (t) =
L

3L
2
+ 1

2

Γ(L)
e
− L3/2

√
L+t

(√
L + t

)−L−2

.

Let us transform the first part of this formula:

L
3L
2
+ 1

2

Γ(L)
=

L
3L
2
+ 1

2

(L − 1)!
=

LL
√
L

eLL!

· eL · L
1

2
L · L

and observe that limL→∞
LL

√
L

eLL!
= 1√

2π
.

After some simple transformations we get

ln

(
eL · L

1

2
L · L · e

− L3/2

√
L+t

(√
L + t

)−L−2

)
= −

1

2

t2 + O

(
1

√
L

)
,

so for each fixed t we have limL→∞ fZL (t) =
1√
2π
e−

1

2
t 2

. The classical Scheffé’s lemma implies that

the sequence (ZL) converges in distribution to the normal distribution N(0, 1).

Therefore the random variable

√
L
m (YL −m) converges in distribution to the standard normal

random variableN(0, 1), or, equivalently, the random variable

√
L(YL −m) converges in distribution

to N(0,m2) if L grows to infinity. �

Theorem 2.6. Let ®H ∈ RK be a vector of non-negative numbers such that C =
∑K

i=1
Hi > 0. Then

√
L
(
wm( ®CL) − wm( ®H )

) d
→ N(0, s2) ,

when L → ∞, where s2 = 1

C4

∑K
i=1

(∑K
j=1

(m(Ij ) −m(Ii ))HiHj

)
2

.

Proof. Let us fix i such that Hi ≥ 1. Then CL,i =
L−1

X where X ∼ Erl(L,Hi ). From Lemma 2.5

we deduce that the sequence

√
L(CL,i − Hi ) converges (if L grows to infinity) in distribution to the

normal distribution N(0,H 2

i ). Notice that if Hi = 0, then CL+1,i = 0, so

√
L(CL,i − Hi ) = 0, hence

also in this case we have the convergence toN(0, 0) interpreted as the Dirac delta function. Observe
also that random variables CL,1, . . . ,CL,K are independent. Therefore

√
L(CL,1 − H1, . . . ,CL,K − HK )

d
→ N(0, Σ) ,

where Σ = diag(H 2

1
, . . . ,H 2

K ) is the square diagonal matrix with elements (H 2

1
, . . . ,H 2

K ) on the main

diagonal.

We are going to apply the Multivariate Delta Method (see e.g. [Small 2010]) to the function wm().

Notice that

d

dxi
wm() =

d

dxi

∑K
j=1

m(Ij )x j∑K
j=1

x j
=

∑K
j=1

(m(Ii ) −m(Ij ))x j

(
∑K

j=1
x j )2

.
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Average Counting via Approximate Histograms 1:13

Let ∇ ®H be the gradient ( d
dx1

wm(), . . . , d
dxK

wm()) evaluated at the point ®H = (H1, . . . ,HK ). From

the Multivariate Delta Method we get

√
L(wm( ®CL) − wm( ®H ))

d
→ N(0,∇T

®H
Σ∇ ®H ) ,

hence

√
L(wm( ®CL) − wm( ®H ))

d
→ N(0, s2) ,

where

s2 =

K∑
i=1

©­­­­«
K∑
j=1

(m(Ij ) −m(Ii ))Hj

(
K∑
j=1

Hj )2

ª®®®®¬
2

H 2

i =

∑K
i=1

(
K∑
j=1

(m(Ij ) −m(Ii ))HiHj

)
2

(
K∑
i=1

Hi

)
4

.

Hence the theorem is proved. �

From the Theorem 2.6 the following corollaries follow.

Corollary 2.7. E
[
wm( ®CL)

]
≈ wm( ®H )

Corollary 2.8. Let C =
∑K

i=1
Hi . If C > 0 then

var
[
wm( ®CL)

]
≈

1

LC4
·

K∑
i=1

(
K∑
j=1

(m(Ij ) −m(Ii ))HiHj

)
2

.

3 PRECISION OF APPROXIMATE HISTOGRAMS
Our goal is to compare the number wm( ®H ) (see Formula 2) with wm( ®CL). In Section 5 we shall

discuss the outcomes of a series of performed experiments. For a proper interpretation of obtained

results we will use the following measure of error of the estimate wm( ®CL)

err(wm( ®H ),wm( ®CL)) =
|wm( ®H ) − wm( ®CL)|

M −m
.

Notice that 0 ≤ err(wm( ®H ),wm( ®CL)) ≤ 1.

Let us observe that this notion of error is independent on linear transformations of ®T . Namely,

if a > 0 and T ′
i = aTi + b for i = 1, . . . ,n, then H ′

i = Hi . Therefore, approximate counters count

the same cardinalities. and this means that this notion of error is independent on such changes of

scale. For example if we change the units of measurement from Fahrenheit to Celsius or to Kelvins

degrees, then the error of estimate will remain the same. The following Theorem 3.1 states this

property more precisely.

Theorem 3.1. Let I = (I1, . . . , IK ) be a partition of interval [m,M] into intervals of equal lengths.

Let α , β ∈ R and α > 0. Let J = (α Ii + β)i=1, ...,K . Let ®x , ®y ∈ RK be nonnegative vectors such that∑K
i=1

xi > 0 and

∑K
i=1

yi > 0. Then

err(wmI(®x),wmI(®y)) = err(wmJ(®x),wmJ(®y)) .
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1:14 Jacek Cichoń and Karol Gotfryd

Proof. Let J =
⋃
{Ji : i = 1, . . . ,K}. Then J = α[m,M]+ β = [αm+ β ,αM + β]. For an arbitrary

®z ∈ RK such that

∑K
i=1

zi > 0 we have

wmJ(®z) =

∑K
i=1

m(Ji )zi∑K
i=1

zi
=

∑K
i=1

(αm(Ii ) + β)zi∑K
i=1

zi
=

α
∑K

i=1
m(Ii )zi + β

∑K
i=1

zi∑K
i=1

zi
= α

∑K
i=1

m(Ii )zi∑K
i=1

zi
+ β = α · wmI(®z) + β .

Therefore

err(wmJ(®x),wmJ(®y)) =
|wmJ(®x) − wmJ(®y)|

α(M −m)
=

α |wmI(®x) − wmI(®y)|

α(vK −v1)
= err(wmI(®x),wmI(®y)) ,

so the Theorem is proved. �

From Theorem 3.1 we deduce that investigating the errors of proposed estimator of average value

based on probabilistic counters may be reduced to such data where the middle points (m(Ii ))i=1, ...,K
are fixed and equal to (1, 2, . . . ,K). In this case we have

wmI(®x) =

K∑
i=1

i · xi

K∑
i=1

xi

and (see Corollary 2.8) var
[
err(wm( ®H ),wm( ®CL))

]
≈ h(H1, . . . ,HK ) where

h(x1, . . . ,xK ) =
1

L · (K + 1)2

(
K∑
j=1

(
K∑
i=1

(j − i)xix j

))
2

(
K∑
i=1

xi

)
4

.

Theorem 3.2 (formulated and proved below) implies that when

∑K
i=1

Hi = C is fixed, then the

function h attains its maximum value at the point ®c = (C
2
, 0, . . . , 0, C

2
) and we have h(®c) = 1

8L
(K−1)2

(K+1)2
.

This case of highly concentrated data at two extreme values will be carefully discussed in Section 5,

where we present the results of performed experiments.

In the case when the initial data stored by the stations are distributed uniformly among the bins,

i.e. when Hi = a for each i = 1, . . . ,K , we have h(a,a, . . . ,a) = 1

12L
K 2−1

K (K+1)2
≤ 1

12·L ·K .

For c > 0 and k ≥ 2 we put

Σc,k = {®x ∈ Rk :

k∑
i=1

xi = c ∧
k∧
i=1

(xi ≥ 0)} .

Notice that Σc,k is a compact subset of Rk .

Theorem 3.2. Let c > 0, k ≥ 2 and

f (x1, . . . ,xk ) =
k∑
j=1

x2

j

(
k∑
i=1

(j − i)xi

)2

.

If
®b = ( c

2
, 0, . . . , 0, c

2
) ∈ Σc,k then f (®b) = sup{ f (®x) : ®x ∈ Σc,k } and f (®b) = (k−1)2c4

8
.
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The proof of this theorem is based on the following Lemma 3.3.

Lemma 3.3. Suppose that ®x = (x1, . . . ,xk ) ∈ Σc,k , 1 < l < k and xl > 0. Let

®x ′ =

(
x1 +

k − l

k − 1

xl ,x2, . . . ,xl−1, 0,xl+1, . . . ,xk−1,xk +
l − 1

k − 1

xl

)
.

Then f (®x) ≤ f ( ®x ′).

Proof. Let Ij (y1, . . . ,yk ) =
∑k

i=1
(j − i)yi . Then

Ij ( ®x ′) − Ij (®x) = (j − 1)
k − l

k − 1

xl − (j − l)xl + (j − k)
l − 1

k − 1

xl =

xl
k − 1

((j − 1)(k − l) − (j − l)(k − 1) + (j − k)(l − 1)) = 0 ,

therefore Ij ( ®x ′) = Ij (®x) for each j = 1, . . . ,k . Moreover, from the identity (l − i)(k − 1) = (k − l)(1 −
i) + (l − 1)(k − i) we get

Il (®x) =
k − l

k − 1

I1(®x) +
l − 1

k − 1

Ik (®x) .

From this observation and from the fact that I1(®x) ≤ 0 and Ik (®x) ≥ 0 we deduce that

Il (®x)
2 ≤

(
k − l

k − 1

)
2

I1(®x)
2 +

(
l − 1

k − 1

)
2

Ik (®x)
2 .

Hence

f ( ®x ′) − f (®x) =
k∑
j=1

x ′
j
2Ij ( ®x ′)2 −

k∑
j=1

x j
2Ij (®x)

2 =

k∑
j=1

(x ′
j
2

− x2

j )Ij (®x)
2 = (x ′

1

2

− x2

1
)I1(®x)

2 − x2

l Il (®x)
2 + (x ′

k
2

− x2

k )Ik (®x)
2 ≥

x2

l

((
k − l

k − 1

)
2

I1(®x)
2 − Il (®x)

2 +

(
l − 1

k − 1

)
2

Ik (®x)
2

)
≥ 0 ,

so the lemma is proved. �

Proof of Theorem 3.2. The set Σc,k is a compact subset of Rk and f is a continuous function

on Σc,k . Therefore there exists a point ®b ∈ Σc,k such that

f (®b) = sup{ f (®x) : ®x ∈ Σc,k } .

From Lemma 3.3 we deduce that the maximal value of the function f on the set Σc,n is attached

on the subset {(a, 0, . . . , 0, c − a) : 0 ≤ a ≤ c}. Let us observe that

f (α , 0, . . . , 0, c − α) = 2(k − 1)2α2(c − α)2.

Thus, the function д(α) = f (α , 0, . . . , 0, c − α) reaches its maximum on the interval [0, c] at point

α = c
2
and д( c

2
) =

(k−1)2c4

8
. Hence the theorem is proved. �
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4 ALGORITHM
In this section we describe a pseudocode (Algorithm 1) of the proposed in this paper algorithm

HistMean for distributed averaging. It is used by every node in the network. We assume that the

communication in the network is divided into rounds and that in each round each pair of connected

nodes can exchange information in both directions. Let us also recall, that the graph modeling

the underlying network is undirected and the message complexity of the algorithm defined with

respect to a given node is the number of transmission events that occur in this node. As we shall

discuss later in this section, each such transmission comprises of sending L values. For practical

purposes it suffices to use 5 bytes for each value in order to obtain satisfactory precision for most

of the applications.

The input of this algorithm are:

(1) D∗
: an upper approximation of the diameter D of a network

(2) m: minimal value of observed data

(3) M : maximal value of observed data

(4) K : the number of sub-intervals dividing the range [m,M]

(5) L: the number of exponential random variables connected with each sub-interval

We assume that in the initial phase, before running this algorithm, an another algorithm cal-

culates the valuesm andM . As mentioned previously, this can be done by utilizing the ordinary

deterministic version of extrema propagation procedure (cf. [Baquero et al. 2009; Cichoń et al.

2012a]). We also assume that the number D∗
is known. In fact, it is sufficient to know some upper

bound on the network diameter, because this algorithm stabilizes (no new messages is sent) after

D rounds, where D is the actual network diameter. Both numbers K and L have influence on the

precision of obtained estimates of the average of observed data.

The algorithm uses an array X [1 . . .K][1 . . . L] of floating point numbers. Initially this array is

filled with values∞. At the beginning each node uses the observed value T to find the number a
such that

T ∈ [m +
M −m

K
(a − 1),m +

M − n

K
a] .

Notice that a is the index of sub-interval of the interval [m,M] the observed value T falls into.

Then the node fills the subarray X [a][1 . . . L] with independently generated random numbers from

exponential distribution with parameter 1.

Let Xv denotes the copy of the array X controlled by the node v . The idea of our algorithm is to

transform inside the network arrays (Xv )v ∈V into the array consisting of values

X [a][j] = min{Xv [a][j] : v ∈ V }

and use this array to estimate the histogram of data. More precisely, we use the vector X [a][1 . . . L]
for estimation of the number of nodes which observed values are in the a-th interval. The calculation
of the array X is done using a variant of extrema propagation method. Notice that at the end of the

algorithm each node has precisely the same copy of the array X .

The algorithm HistMean uses K · L probabilistic counters. It was shown in [Cichoń et al. 2012a]

that for a large class of natural graphs the expected message complexity of the classical extreme

propagation procedure for one node is O (logD), where D is the diameter of the graph. But in our

algorithm a message is transmitted by a node if any change in the array of probabilistic counters is

observed. It can be easily checked that if K · L ≫ D then the expected number of transmissions for

one node in the proposed algorithm is close to D · K . The detailed analysis of message complexity

of the procedure HistMean is presented in section 4.1.
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ALGORITHM 1: Distributed averaging algorithm HistMean

function HistMean(D∗,m,M,K ,L)

begin
/* Initialization */

T = observed value

for a = 1 . . .K do
for j = 1 . . . L do

X [a][j] = +∞
end

end
∆ = M −m

find a such that T ∈ [m + ∆
K (a − 1),m + ∆

K a]

for j = 1 . . . L do
/* generation of a pseudo-random real from Exp(1) distribution */
X [a][j] = RandomExp(1)

end
send pair (a,X [a]) to all neighbors

/* broadcasting loop */

for I = 1 . . .D∗ do
C = X

foreach received (a,Y ) do
for j = 1 . . . L do

C[a][j] = min(C[a][j],Y [j])
end

end
for a = 1 . . .K do

if C[a] , X [a] then
X [a] = C[a]

send pair (a,X [a]) to all neighbors

end
end

end
/* final calculations */

for a = 1 . . .K do
S[a] = 0

for j = 1 . . . L do
S[a] = S[a] + X [a][j]

end
if S[a] > 0 then

H [a] = (L − 1)/S[a]

end
else

H [a] = 0

end
end
S1 =

∑K
i=1

(m + ∆
K (i − 1

2
))H [i]

S2 =
∑K
i=1

H [i]
return S1/S2

end
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The memory complexity of this algorithm is O (K · L). In fact, if we know that n ≤ 10
10
(where n

denotes the total number of nodes), then each probabilistic counter can be implemented as 5 bytes

float reals without losing precision.

Notice that after execution of this algorithm each node knows not only the approximate value of

the average of observed data (the same estimation for all nodes), but also knows the approximate

histogram, which may be used to other purposes. As an example, in Section 6 we discuss one

of such possible applications, namely how to make use of the outcomes of our algorithm to the

problem of network size estimation.

Let us also remark that we can easily recognize from the histogram such situations where the

observed values are not concentrated near the mean value. This may happen, for example, when

half of the stations observed value 0 and the second half observed value 1. The algorithms described

in the Section 1.1 do not give such information.

4.1 Message complexity of the algorithm
In this section we will examine the average message complexity of our averaging algorithm

HistMean for any station in the network represented by the graph G, defined as the number of

messages sent by this station during the execution of the algorithm. Such definition of message

complexity as the number of transmissions can be justified by the fact that the energy usage while

sending a message is much higher than the cost of listening.

As already outlined above, the message complexity of the proposed averaging algorithm can

be bounded above by O(D · K) for any node in any connected network with diameter D. This is
due to the simple observation that in the worst case scenario stations can update all K vectors

in all rounds. This in turn leads to K transmissions in each of D rounds of the algorithm. The

simple worst case bound gives a good approximation of the average number of transmissions

for graphs with small diameter, i.e. when D = O (1). In that case, if n ≫ K , then in most rounds

stations receive much more than K vectors of Exp(1) random variables and we may expect that on

average there will be some changes in pretty large fraction of min-Exp vectors X [i] related to the

intervals of histogram. But this approximation appears to be very crude if the underlying graph

describing network topology has large diameter, e.g. linear in number of nodes (i.e. D = O (n)).
Then, intuitively, the number of vectors received by a node from their neighbors in consecutive

rounds will be usually close to K or even less than K . Thus, in many rounds no new minima will be

gathered and hence nothing will be transmitted.

This preliminary discussion will be formalized later in this section. As we shall see, assuming

the parameters K and L of the algorithm being constant, the average message complexity for any

node in an arbitrary connected graph can be upper bounded by some function f (n) = O (lnn) (in
general f (n) depends on both K and L). This is a significant improvement of the simple bound

O(D · K) when network diameter D is large.

For the sake of clarity let us recall that in each round of our algorithm each station first gathers

all vectors from their neighbors, and then for every 1 ≤ i ≤ K calculates the pointwise minimum of

the stored vector X [i] of current minimal values and received vectors corresponding to ith interval.

Finally, if some value ofX [i] has changed, then the station sends the updatedX [i] to their neighbors.
In the analysis below sending a vector of L values is considered as a single transmission.

Before we give the formal statements of the results on message complexity, let us introduce some

required notations and basic definitions.

LetG = (V ,E) be an arbitrary connected graph with |V | = n and diameter D. For any fixed x ∈ V
and 0 ≤ r ≤ D we denote S(x , r ) = {v ∈ V : d(x ,v) = r } and B(x , r ) = {v ∈ V : d(x ,v) ≤ r } with
S(x , 0) = B(x , 0) = {x}. Moreover, assuming that our histogram consists of K intervals Ii , 1 ≤ i ≤ K ,
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and the data observed by the nodes are (Tv )v ∈V , we put S
(i)(x , r ) = {v ∈ V : d(x ,v) = r ∧Tv ∈ Ii }

and B(i)(x , r ) = {v ∈ V : d(x ,v) ≤ r ∧Tv ∈ Ii }. Observe that there is exactly one i ∈ {1, . . . ,K}

such that S (i)(x , 0) = B(i)(x , 0) = {x} and for all j , i we have S (j)(x , 0) = B(j)(x , 0) = ∅. Finally, by

the MC
K,L
G ;x we denote the random variable representing the message complexity of the algorithm

HistMean for graph G and node x when running with parameters K and L.
Let us also recall that the nth

harmonic number is defined by Hn =
∑n

i=1

1

i and the nth
harmonic

number of order r > 1 is given by H (r )
n =

∑n
i=1

1

ir . It is a well known fact that Hn = lnn +O (1) and

for r > 1 we have limn→∞H (r )
n = ζ (r ), where ζ is the Riemann Zeta function.

Some of the theorems proved in this section are generalizations of the results from [Cichoń et al.

2012a], hence we will omit part of details referring to the original paper when possible.

The main result of this section is the following Theorem 4.1.

Theorem 4.1. Let G = (V ,E) be an arbitrary connected graph with |V | = n nodes and let x ∈ V .
For any fixed constant parameters L ≥ 1 and K ≥ 1 the expected message complexity of the algorithm

HistMean for x is

E
[
MC

K,L
G ;x

]
=

K∑
i=1

∑
r ≥0

|B(i )(x,r ) |>0

1 −

(
1 −

|S (i)(x , r )|

|B(i)(x , r )|

)L
= O (lnn) .

We will prove this theorem in the following steps. First, we derive the expression for expected

message complexity for any fixed node x of an arbitrary graph G in the case K = 1 and L ≥ 1. We

will prove that it is maximized over all connected graphs with n nodes for the line graph Ln and

one of the outermost vertices. Thus, we generalize the results obtained in [Cichoń et al. 2012a].

Next we will analyze the case K > 1 using the fact that for any fixed partition of n values (stored

by the stations) into K bins it suffices to consider separately the number of transmissions related to

particular bins and sum them up for obtaining the overall message complexity for a given station.

We will also show that for the outermost vertex of Ln for any fixed n and K the most balanced

partition of n values into K bins maximizes the expected message complexity. This will lead us to

the upper bound, which is of logarithmic order in the network size n for constant K and L. The
following lemmas formalize these results.

Lemma 4.2. Let G = (V ,E) be an arbitrary connected graph representing the network with |V | = n
nodes and let x ∈ V . Fix some L ≥ 1. Then

E
[
MC

1,L
G ;x

]
=

∑
r ≥0

(
1 −

(
1 −

|S(x , r )|

|B(x , r )|

)L)
and

var
[
MC

1,L
G ;x

]
=

∑
r ≥1

(
1 −

(
1 −

|S(x , r )|

|B(x , r )|

)L) (
1 −

|S(x , r )|

|B(x , r )|

)L
.

Proof. Proof of this lemma is similar to that of Theorem 1 in [Cichoń et al. 2012a], which is a

particular case for L = 1. Denoting byML
x ;r the event that the station x transmits in round r ≥ 0,

our goal is to estimate the probability Pr[1ML
x ;r
] = 1, where 1ML

x ;r
is an indicator random variable

related to the eventML
x ;r .

Notice that x sends in round r a message with updated vector of current minima if and only if in

this round there was some change on at least one of the coordinates of the min-Exp vector stored

by x . From the proof of Theorem 1 in [Cichoń et al. 2012a] it follows that for any fixed 1 ≤ j ≤ L

such a change on the jth coordinate occurs with probability
|S (x,r ) |
|B(x,r ) | . Because all Exp(1) random
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variables the initial vectors consist of were generated independently by each station, the events

that jth coordinate changes for 1 ≤ j ≤ L are independent, hence the probability that there was

some change leading to the transmission of updated vector is

Pr[ML
x ;r ] = 1 −

(
1 −

|S(x , r )|

|B(x , r )|

)L
.

Using the same kind of argument as in [Cichoń et al. 2012a] one can show that the events {ML
x ;r }r ≥0

are independent and from the definition of message complexity we obtain MC
1,L
G ;x =

∑
r ≥0

1ML
x ;r
.

Therefore

E
[
MC

1,L
G ;x

]
=

∑
r ≥0

(
1 −

(
1 −

|S(x , r )|

|B(x , r )|

)L)
and

var
[
MC

1,L
G ;x

]
=

∑
r ≥1

(
1 −

(
1 −

|S(x , r )|

|B(x , r )|

)L) (
1 −

|S(x , r )|

|B(x , r )|

)L
.

�

Lemma 4.3. For an arbitrary connected graph G = (V ,E) with |V | = n, any vertex x ∈ V and any

fixed L ≥ 1

E
[
MC

1,L
G ;x

]
≤ E

[
MC

1,L
Ln ;x ∗

]
= n −

n∑
i=1

(
1 −

1

i

)L
where x∗ is an outermost vertex of the line graph Ln .

Proof. The proof proceeds in the same vein as that of Theorem 2 in [Cichoń et al. 2012a].

We adopt the same set of simple transformations of the original graph G with the property that

applying them to any graphG and vertex x for which there exists r > 0 such that |S(x , r )| > 1 will

result in increasing the expected message complexity for x . Performing some finite number of such

transformations on G results eventually in the line graph Ln with x being one of the outermost

vertices.

The only difference is that for proving that these transformations increase themessage complexity

we apply the inequality (for b ≥ 1, c ≥ 2)

1 −

(
1 −

c

b + c

)L
< 1 −

(
1 −

c − 1

b + c − 1

)L
+ 1 −

(
1 −

1

b + c

)L
,

which is equivalent to

(b + c − 1)L − bL

(b + c − 1)L
−
(b + c − 1)L − bL

(b + c)L
> 0.

Calculating the expected message complexity for the case when x is one of the outermost vertices

of Ln completes the proof. �

We have already shown that the theorems on message complexity of the extreme propagation

technique from [Cichoń et al. 2012a] can be easily generalized for the case of transmitting vectors

of L ≥ 1 random values. Let us now consider the case K ≥ 1.

Lemma 4.4. Let G = (V ,E) be an arbitrary connected graph with |V | = n nodes and let x ∈ V . For

any fixed L ≥ 1 and K > 1

E
[
MC

K,L
G ;x

]
=

K∑
i=1

∑
r ≥0

|B(i )(x,r ) |>0

1 −

(
1 −

|S (i)(x , r )|

|B(i)(x , r )|

)L
.
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Moreover, for any fixed partition of n values into K bins such that ni stations have initial values
belonging to the interval Ii , 1 ≤ i ≤ K , the expected message complexity of x is not greater than for

the line graph Ln with x at one of its ends, i.e.

E
[
MC

K,L
G ;x

]
≤ E

[
MC

1,L
Ln ;x

]
= n −

K∑
i=1

ni∑
j=1

(
1 −

1

j

)L
. (3)

Proof. From construction of the algorithm HistMean and the fact that all random values

generated during the initial phase of our algorithm are independent one can easily see that sending

an updated vector X [i] related to ith bin of the histogram for any fixed i can be triggered only by

receiving another vector with values generated initially by some other station u such that Tu ∈ Ii .
It is clear that any received vector related to some other interval Ij , j , i , has no influence on

occurrence of transmissions of X [i]. From this observation we may conclude that for any fixed

partition of n values into K bins (n1, . . . ,nK ) it is sufficient to separately count the number of times

the min-Exp vector X [i] is updated (and thus transmitted) for 1 ≤ i ≤ K and sum up these counts

over all bins to obtain the overall message complexity for given graph G and vertex x . The same

type of argument as in the case K = 1 leads us to the conclusion that for any fixedG and x and any

given dataset ®T = (Tv )v ∈V the expected message complexity E
[
MC

K,L
G ;x

]
is not greater than for Ln

with x at one of its ends and the same initial data ®T . �

Lemma 4.5. For any fixed n, K and L the message complexity for the outermost vertex x of line

graph Ln is maximized for the most balanced partitions of n values into K bins, i.e. when for any

1 ≤ i, j ≤ K the numbers of stations ni and nj with initial values from intervals Ii and Ij , respectively,

fulfill |ni −nj | ≤ 1. Moreover, if K and L are constant, then E
[
MC

K,L
Ln ;x

]
= K ·L · lnn+O(1) = Θ (lnn).

Proof. Fix n, K and L and let x be the outermost vertex of Ln . From the formula 3 from Lemma

4.4 it follows that for maximizing E
[
MC

K,L
Ln ;x

]
it suffices to find such partition η = (n1, . . . ,nK ) of n

values into K bins (with additional condition that n1 > 0 and nK > 0) that minimizes the function

φ(K ,L,η) =
K∑
i=1

ni∑
j=1

(
1 −

1

j

)L
.

Let us consider a partition η = (n1, . . . ,ns , . . . ,nt , . . .nK ) and suppose that |ns − nt | ≥ 2 for some

1 ≤ s, t ≤ K , s , t . Without loss of generality we assume ns ≥ nt +2. Let us define η′ = (n′
1
, . . . ,n′K )

such that n′s = ns − 1, n′t = nt + 1 and n′i = ni for i < {s, t}. Then we have

φ(K ,L,η′) =
K∑
i=1

n′
i∑

j=1

(
1 −

1

j

)L
=

K∑
i=1

ni∑
j=1

(
1 −

1

j

)L
−

(
1 −

1

ns

)L
+

(
1 −

1

nt + 1

)L
< φ(K ,L,η),

where the last inequality follows from the assumption ns ≥ nt + 2. Now we can apply this

transformation repeatedly until we obtain one of the partitions such that for any i , j we have
|ni−nj | ≤ 1. This leads us to the conclusion that the most balanced distribution of the stations’ initial

values maximizes the message complexity E
[
MC

K,L
Ln ;x

]
of HistMean algorithm for the outermost

vertex of line graph.
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To complete the proof of Lemma 4.5 it suffices to show E
[
MC

K,L
Ln ;x

]
= Θ (lnn). Let us assume

then that K and L are some fixed constants and letm > 0 be fixed. After some simple algebraic

transformations and using the fact that for l > 1 we have limm→∞H (l )
m = ζ (l) we get

m −

m∑
j=1

(
1 −

1

j

)L
= −

m∑
j=1

L∑
l=1

(
L

l

) (
−

1

j

) l
=

L∑
l=1

(−1)l+1

(
L

l

)
H (l )
m = LHm + O (1) . (4)

In the case of most balanced partition for each 1 ≤ i ≤ K we have

⌊ n
K

⌋
≤ ni ≤

⌈ n
K

⌉
. Therefore, from

equations 3 and 4 and the fact that H n
K
= lnn + O (1) we obtain E

[
MC

K,L
Ln ;x

]
= K · L · lnn + O (1) =

Θ (lnn) as required. �

Remark 4.6. Suppose that for some graphG = (V ,E) representing the network there exists some

station x ∈ V that for all 1 ≤ r ≤ D the number of r -neighbors of x inG (i.e. |{v ∈ V : d(v,x) = r }|)
is less or equal to K . It is worth mentioning that in such cases there exists some distribution of the

initial values ®T = (Tv )v ∈V stored by the stations that leads to the same expected message complexity

for x as for the outermost vertex x∗ of the line graph with the same number of vertices as G and

the dataset ®T , i.e. MC
K,L
G ;x = MC

K,L
L |V | ;x ∗ . It suffices that for each u , v such that d(u,x) = d(v,x) = r

the initial values Tu and Tv fall into different bins of the histogram. Then, if there is nj stations

with values from jth bin, 1 ≤ j ≤ K , then there is exactly nj rounds ri1 , . . . , rinj when x receives

exactly one Exp(1) vector related to this bin.

In fig. 4 we present the outcomes of simulations for determining the number of transmissions

performed during executions of our algorithm for the case when average message complexity is

with high probability very close to the upper bound, i.e. for outermost vertices 1 and n of line graph

Ln with V = {1, . . . ,n} and the initial values (Tv )v ∈V stored by stations distributed uniformly over

the unit interval. The parameters of the algorithm HistMean were set to K = L = 20 (left) and

K = 4, L = 50 (right). For each network size n in the range from 50 to 5000 (with step 10) we

performed 100 independent trials. We can observe that the growth rate of the number of messages

sent by the outermost vertices is logarithmic in the network size, thus confirming our bound proven

in Lemma 4.5 (the gray curve corresponds to the theoretical upper bound on expected number

of transmissions which is asymptotically equal to K · L · lnn). Moreover, one can notice that the

outcomes of single trials are highly concentrated around the mean, what also coincides with our

theoretical results discussed above.

5 EXPERIMENTS
In this section we present the results of numerical experimental analysis of approximation errors

of average value returned by our distributed averaging algorithm HistMean described in Section

4. The simulations were performed for different network sizes and various sets of input data

representing the values observed initially by the stations. Let us notice that the error of obtained

estimates does not depend on the network topology. It may only depend on the number of stations

the network consists of and the distribution of values being averaged. As formally proven in

Section 3, the topology of underlying connected undirected graph representing the network is

irrelevant when considering the precision of obtained estimates and hence we do not want to put

too much focus on some particular topologies when discussing evaluation of algorithm’s precision.

Nevertheless, the network topology has significant impact on the algorithm’s running time and the

overall message complexity. We showed that the linear allocation of sensors is the worst case both

for time complexity and energy efficiency of the proposed averaging procedure, thus this topology

was adopted for most of the simulations.

ACM Transactions on Sensor Networks, Vol. 14, No. 9, Article 1. Publication date: March 2018.



Average Counting via Approximate Histograms 1:23

Fig. 4. Estimations of the expected message complexity E
[
MC

K,L
Ln ;1

]
obtained using algorithm HistMean

with K = L = 20 (left) and K = 4, L = 50 (right) for the outermost vertices of line graph Ln when the stations’

initial data are randomly generated from the uniform distribution over the unit interval. The gray curve

corresponds to the theoretical upper bound on E
[
MC

K,L
Ln ;1

]
≈ K · L · lnn for most balanced partition of n

values into K bins.

At the end of Section 3 we showed that we should check the precision of proposed estimator on

a symmetric distribution concentrated at two extreme points. This case will be discussed in Sec. 5.1.

In the next section we will show how our estimator behaves on randomly distributed data.

Let us notice that in our experiments we take into account both kinds of errors. The first one is

due to the discretization error (see Theorem 2.1) and is controlled by the number K of sub-intervals

the range of observed data is divided into. The second one is due to probabilistic nature of the

approximate counters used in our algorithm and it depends on the number L of probabilistic

counters attached to every sub-interval.

5.1 Worst case
Fig. 5 depicts the outcomes of simulations for the worst case data for different network sizes n
varying from 50 to 10000 with step 10. For each n we performed 100 independent experiments

where n/2 nodes have the value 0 and the remaining n/2 the value 1. The parameters were set to

K = 4 and L = 50. We can observe that in all experiments our algorithm calculates the average

with 20% precision.

Fig. 6 shows the maximal and average errors (represented by black squares and gray dots,

respectively) for these experiments as a function of the network size. We can observe that regardless

of the number of nodes in almost all experiments the average is approximated with 20% precision

and the mean error is about 5%.

Finally, Fig. 7 and 8 show the mean and maximal errors, respectively, in experiments performed

for data concentrated at two extreme points where a fraction p of n nodes have value 0 and (1 − p)
value 1 for n = 100, 1000 and 10000 and for p from the set {0.05i : 1 ≤ i < 20}. As previously, we

chose K = 4 and L = 50. For each n and p 1000 independent experiments were performed. We

can observe that both mean and maximal error of the proposed estimator do not depend on the

network size and decrease as the distribution of the values becomes more skewed.

Notice that for data concentrated at end points with the same numbers of values (stations’

observation) at both ends the discretization error does not occur, so we are observing only the

errors generated by probabilistic counters.
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Fig. 5. Errors of algorithm HistMean with parameters K = 4, L = 50 for data concentrated at end points with

respect to the number of nodes in the network.

Fig. 6. Maximal (black squares) and average (gray dots) errors of algorithm HistMean with parameters K = 4,

L = 50 for data concentrated at end points with respect to the number n of nodes in the network. For each n
we ran 100 experiments.

5.2 Uniform and Normal Distribution
Fig. 9 presents the outcomes of simulations of the algorithm HistMean for different network sizes

n for the case where randomly generated data are distributed uniformly over the unit interval. We

performed 100 independent experiments for each n in the range from 50 to 5000 with step 10. In
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Fig. 7. Mean errors of algorithm HistMean with parameters K = 4, L = 50 for data concentrated at end

points with respect to the fraction p of nodes with minimal value. Experiments were repeated independently

1000 times for networks of size 100, 1000 and 10000.

Fig. 8. Maximal errors of algorithm HistMean with parameters K = 4, L = 50 for data concentrated at end

points with respect to the fraction p of nodes with minimal value. Experiments were repeated independently

1000 times for networks of size 100, 1000 and 10000.

each experiment the interval between the minimal and maximal value was split into K = 20 equal

sub-intervals and L = 20 probabilistic counters were used. The maximal and average errors as a

function of the network size are shown in Fig. 10. We can see that for each n the mean error of our

estimator is below 2% and in all experiments the approximation error does not exceed 8%.
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Fig. 9. Errors of algorithm HistMean with parameters K = 20, L = 20 for randomly generated data from

uniform distribution over [0, 1] with respect to the number of nodes in the network.

Fig. 10. Maximal (black squares) and average (gray dots) errors of algorithm HistMean with parameters

K = 20, L = 20 for randomly generated data from uniform distribution over [0, 1] with respect to the number

n of nodes in the network. For each n we ran 100 experiments.

We performed similar experiments to the previous ones for random data following the normal

distribution with mean 1000 and variance equals to 100. As before, for each network size n between

50 and 5000 (with step 10) we ran 100 independent simulations with the same choice of parameters

of the algorithm (i.e. K = L = 20). Fig. 11 and 12 depict the errors of individual experiments and
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the maximal and average errors for each n, respectively. Observe that in this case the average is

estimated with 5% precision in each try. Moreover, the mean error of obtained approximation is

not greater that 1%.
1

Fig. 11. Errors of algorithm HistMean with parameters K = 20, L = 20 for random data following normal

distribution with mean equals to 1000 and variance 100 with respect to the number of nodes in the network.

5.3 Non-symmetric Distributions
In this section we focus on two examples of non-symmetric distributions used for generating

random values for simulations of algorithm HistMean. The first one is the exponential distribution

with the rate equal to 1. As in the normal and uniform cases, we performed 100 independent

experiments for network sizes n ∈ {50, 60, . . . , 5000}. We set both parameters K and L to 20. The

outcomes of individual simulations are depicted in Fig. 13 and the maximal and mean values of the

approximation errors are presented in Fig. 14. Note that the maximal error of all obtained estimates

is less than 5% and the mean error is about 1%. We can also see that for this distribution of observed

data the maximal and average errors decrease as network size grows.

Fig. 15 and 16 show the results of simulations (with the same choice of parameters as before) for

data generated randomly according to the following skewed distribution. The interval between

minimal and maximal values (set to 0 and 100, respectively) was split into K = 20 sub-intervals. In

almost all of them there is only one observation except some two consecutive intervals i and i + 1

with the same number (about n/2, where n is the network size) of observed values chosen uniformly

at random. In the presented case i was set to 4. We see that for n > 200 the maximal and mean errors

are below 2% and 1%, respectively. One can also observe that the errors stabilize as n gets larger. In

fact, this is consistent with the results from Corollary 2.7. For such distribution of sensory data, for

moderate values of n (in the order of thousands) and the choice of L = 20 probabilistic counters

for each bin the main contribution to the approximation error is due to constant discretization

error discussed in Section 2 (cf. Theorem 2.1). It is worth noting that similar behavior of the mean

1
Certain improvements on the algorithm’s accuracy in the case of increasing values of parameter n is due to the fact that the

number K is too large for small number of nodes (see the remarks at the end of Section 2.1 regarding probabilistic counters).
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Fig. 12. Maximal (black squares) and average (gray dots) errors of algorithm HistMean with parameters

K = 20, L = 20 for random data following normal distribution with mean equals to 1000 and variance 100

with respect to the number n of nodes in the network. For each n we ran 100 experiments.

Fig. 13. Errors of algorithmHistMeanwith parametersK = 20, L = 20 for randomly generated data according

to exponential distribution with rate 1 with respect to the number of nodes in the network.

and maximal errors can be observed when moving the peak of the distribution towards any of the

extreme intervals.
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Fig. 14. Maximal (black squares) and average (gray dots) errors of algorithm HistMean with parameters

K = 20, L = 20 for randomly generated data according to exponential distribution with rate 1 with respect to

the number n of nodes in the network. For each n we ran 100 experiments.

Fig. 15. Errors of algorithm HistMean with parameters K = 20, L = 20 for randomly generated data from

non-symmetric distribution concentrated at two consecutive intervals i and i + 1 for i = 4 with respect to the

number of nodes in the network.

6 NETWORK SIZE ESTIMATION
One of the examples of exploiting additional data gathered during distributed computation of the

average is to make use of the histogram for approximating the number of devices the network
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Fig. 16. Maximal (black squares) and average (gray dots) errors of algorithm HistMean with parameters

K = 20, L = 20 for randomly generated data from non-symmetric distribution concentrated at two consecutive

intervals i and i + 1 for i = 4 with respect to the number n of nodes in the network. For each n we ran 100

experiments.

consists of. Such possibility may be treated as a “side effect” of our algorithm. This can be done by

adopting the idea of network size estimation proposed in [Baquero et al. 2012].

Let us consider the scenario where the number of stations n is initially not known and suppose

that the parameters K and L of the algorithmHistMean are fixed. For an arbitrary fixed sequence ®T

of values observed by the stations and the histogram ®H = (Hi )i=1...K of the dataset ®T , our algorithm,

in addition to the estimate of avg( ®T ), results in an approximate histogram ®CL = (CL,i )i=1...K .

As previously mentioned, each CL,i is an unbiased estimator of the number Hi of observations

falling into ith bin with variance equals to

H 2

i
L−2

. Hence, from the linearity of expectation it follows

immediately that N̂ =
∑K

i=1
CL,i is an unbiased estimator of the network size n. Moreover, all

realizations of exponential random variables used in the algorithm for approximate counting are

generated independently, thus the approximate counters CL,i are independent and var
[
N̂

]
=∑K

i=1
var

[
CL,i

]
= 1

L−2

∑K
i=1

H 2

i . One can easily check that for any fixed n this formula for the

variance is minimized when the numbers Hi are equal, i.e. Hi =
n
K for i = 1, . . . ,K , and maximized

for highly biased distribution of the observed values with n − 1 and 1 values in two outermost bins.

In these cases the variance of N̂ is
n2

K 2(L−2)
and

n2−2n+2

L−2
≈ n2

L−2
, respectively.

These results coincide with the outcomes of simulations performed for different sets of observed

data and different network sizes n. Fig. 17 depicts the results of experiments for estimation of the

number of stations in the network using our averaging algorithmHistMeanwithK = L = 20 in the

cases when the observed data are distributed uniformly and come from highly biased distribution

with n − 1 observed values in the first interval and 1 in the last one. For each network size n in the

range from 50 to 5000 (with step 10) we performed 100 independent trials.

It is worth mentioning that it is possible to achieve an arbitrary accuracy of estimates of the

network size by increasing the number L of counters for each interval. For more detailed discussion
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Fig. 17. Estimations of the network size n obtained using algorithm HistMean with K = 20 and L = 20 for

randomly generated data from the uniform distribution over the unit interval (left) and the case when n − 1

stations have value 0 and one has value 1 (right).

regarding the precision of network size estimations obtained using this kind of approach we refer

to [Baquero et al. 2012].

7 CONCLUSIONS
The proposed in this paper method of computing the average value in distributed environment

may be summarized as follows: represent the observed data by a histogram with K bins and use

a sequence of L independent probabilistic counters connected with each bin to approximately

count the number of observations falling into each bin. This can be done in an efficient way using

broadcasting and the extreme propagation technique. The worst case for the presented approach

are symmetric data concentrated at two end points. Using 200 probabilistic counters per each node

we obtain the precision of order 20% for the worst case data. However, at the end of the execution

of our algorithm each node has at its disposal an approximate histogram, so it can recognize this

phenomena and may take appropriate actions. It is also possible to utilize these additional data for

other purposes, such as obtaining a precise estimation of the number of devices in the network.

Moreover, the proposed solution leads to the situation of reaching the true consensus – each station

has eventually the same estimate of the actual average of observed values.
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