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This work is devoted to a certain class of probabilistic snapshots for elements of the observed data stream. We show
how one can control their probabilistic properties and we show some potential applications. Our solution can be used
to store information from the observed history with limited memory. It can be used for both web server applications
and Ad hoc networks and, for example, for automatic taking snapshots from video stream online of unknown size.

The class of algorithms considered in this paper may be treated as a subclass of reservoir sampling algorithms with
reservoir of size 1. Our solutions can also be treated as a generalization of the classical Jeffrey Vitter’s Algorithm R.
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1 Introduction
Suppose that we are observing a long stream x1, x2, . . . of data. Our goal is to keep an element from this
stream with a prescribed position. For example, we may want to keep the element xi with index i close to
bn/2c after reading first n elements from the stream. Of course this problem is trivial if we have a direct
access to all elements x1, . . . , xn or if we know the number n in advance. But in the case of large amount
of data of unknown length keeping all information into memory is expensive or undesirable or impossible.
Suppose hence that the number n is unknown and that our memory resources are limited.

In this article we investigate series of randomized procedures which allow us to choose elements located
near the required position in the stream of data. All these procedures are based on the same schema. They
only differ on a sequence (αn) of probabilities which are used for control of changes of stored data. In
each case we will have α1 = 1. We will use three variables: K, n and data. Initially we put K = 0,
n = 0 and we set data as nil value:

Initialization: K:= 0; n:= 0; data:= nil;

After reading an element x from the stream we call the following update procedure:

procedure Update(x)
n++
if (random() <= a(n))
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begin
K:= 1;
data: = x

end else
begin

K++
end

end

In the procedure Update we used the function random() which is a high quality pseudo-random gen-
erator of random reals from the interval [0, 1]. The function a(n) represents the probability sequence
(αn). We call the variable K a probabilistic snapshot from data stream.

Connection with reservoir sampling The class of algorithms considered in this paper may be treated
as a subclass of reservoir sampling algorithms with reservoir of size 1 (see Tillé [2006], Knuth [1997]).
Suppose that we use this procedure with the sequence αn = 1

n . In this case we obtain the classical
Jeffrey Vitter’s Algorithm R published in Vitter [1985]. Let Kn denotes value of the random variable K
after reading n items from the stream. It is well known that in this case (i.e. when αn = 1

n ) we have
Pr[Kn = i] = 1

n for each i ∈ {1, . . . , n}, i.e. that the random variable Kn has the uniform distribution
on the set {1, . . . , n}. Therefore E[Kn] = (n+ 1)/2.

Applications Here we show some possible applications of methods discussed in this paper (a more
detailed discsusion is in Section 4):

• The solution proposed in this paper may by used for storing fixed number of snapshots from an
observed movie of unknown length. For example we may want to store short samples of the movie
taken at times closed to 0, 1

10T , 2
10T . . . 9

10T , T from a movie of length T .

• We may need a sample of data from times close to n, n − C, n − 2 · C,. . . , n − k · C, where n is
an index of current item, C is a fixed distance and k is a reasonably small natural number.

• We may need to observe a sample from stock market in such a way that the snapshots from the past
should be less rare than snapshots from times close to the present.

1.1 Mathematical notations and background
We denote by E [X] the expected value of the random variable X . Let us recall that a discrete random
variableX has geometric distribution with parameter p ∈ [0, 1] (X ∼ Geo(p)) ifP [X = k] = (1−p)k−1p
for k ≥ 1. If X ∼ Geo(p) then E [X] = 1

p . A random variable Y has an exponential distribution with
parameter g (Y ∼ Exp (λ)) if its support is [0,∞) and Pr[Y > x] = e−λx for each x ≥ 0. If Y ∼
Exp (λ) then E [Y ] = 1

λ . A random variable Z has the Beta distribution with parameters a, b > 0 (Z ∼
B(a, b)) if its support is [0, 1] and its density is given by the function f(x) = Γ(a+b)

Γ(a)Γ(b)x
a−1(1 − x)b−1,

where Γ(x) is the standard generalization of the factorial function. If Z ∼ B(a, b) then E [Z] = a
a+b .

A sequence X1, X2, . . . of real-valued random variables converge in distribution to a random variable
X if limn→∞ Fn(x) = F (x), for every number x ∈ R at which the function F is continuous, where Fn
and F are the cumulative distribution functions of random variables Xn and X , respectively.
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We denote by Hn the n-th harmonic number, i.e. Hn =
∑n
i=1

1
i . We will use the following well

known approximationHn = ln(n)+γ+O
(

1
n

)
, where γ ≈ 0.577 is the Euler - Mascheroni constant. We

use the following symbols [·] for the Iverson logical bracket. We will also use the following inequalities
(extension of the classical Weierstarass product inequality):

1−
n∑
i=1

xi ≤
n∏
i=1

(1− xi) < 1−
n∑
i=1

xi +
∑

1≤i<j≤n

xixj . (1)

which holds for any sequence x1, . . . , xn of real numbers from the interval [0, 1] (see Klamkin and New-
man [1970]). We will use several times the following classical inequality, which holds for any non-
increasing function f : [a, b]→ R (where a ≤ b are integers):

∫ b

a

f(x)dx+ f(b) ≤
b∑
i=a

f(i) ≤ f(a) +

∫ b

a

f(x)dx . (2)

Lemma 1 For arbitrary sequence α1, . . . , αn we have
∑n
k=1

∑n
i=k αi =

∑n
k=1 k · αk.

Lemma 2 For arbitrary sequence α1, . . . , αn of positive real numbers we have

n∑
k=1

∑
k≤i<j≤n

αiαj ≤
1

2

(
n∑
k=1

√
k · αk

)2

.

Proof: Let us observe that if x, y ≥ 0 then min(x, y) ≤
√
x
√
y. Therefore

n∑
k=1

∑
k≤i<j≤n

αiαj ≤
1

2

n∑
k=1

∑
k≤i,j≤n

αiαj =
1

2

n∑
k=1

n∑
i,j=1

αiαj [(k ≤ i) ∧ (k ≤ j)] =

1

2

n∑
i,j=1

αiαj

n∑
k=1

[k ≤ i] · [k ≤ j] =
1

2

n∑
i,j=1

αiαj min(i, j) ≤

1

2

n∑
i,j=1

αiαj
√
i
√
j =

1

2

(
n∑
k=1

√
k · αk

)2

.

2

2 General Properties
Let us fix a sequence αn of reals from interval [0, 1] such that α1 = 1. Let us consider the sequenceKn of
consecutive integers tracing the value of the variable K during the run of the Algorithm with controlling
sequence αn. Clearly we have 1 ≤ Kn ≤ n for each n. Notice that Pr[K1 = 1] = 1, Pr[Kn = 1] = αn
and

Pr[Kn+1 = k + 1] = (1− αn+1) Pr[Kn = k] (3)
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for k > 1. The following formula may be derived from the previous one

Pr[Kn = k] = αn−k+1

n∏
i=n−k+2

(1− αi) . (4)

Moreover

Pr[Kn ≥ k] =

n∏
i=n−k+2

(1− αi) (5)

We will also use the random variable Ln = n+ 1−Kn. From the above formula we deduce that

Pr[Ln = k] = αk

n−k−1∏
i=0

(1− αn−i) (6)

and

Pr[Ln ≥ k] = 1−
n∏
i=k

(1− αi) (7)

The following inequalities follows directly from Lemmas 1 and 2 and the inequalities 1:

Corollary 1
∑n
k=1 kαk −

1
2

(∑n
k=1

√
k · αk

)2

≤ E [Ln] ≤
∑n
k=1 kαk.

The sequence E [Kn] satisfies the following simple linear first order difference equation:

Theorem 1 E [Kn+1] = 1 + (1− αn+1)E [Kn]

3 Special cases
In this section we will consider some examples of sequences (αn) which may have applications for con-
trolling the history of a massive streams of data. For example, snapshots generated by the sequence
αn = 1

n are uniformly distributed in the set {1, . . . , n}, hence a collection of such snapshots may be used
as random uniformly distributed sample controlling of behavior of a stream.

In a series of six subsections we shall analyze behavior of the random variable Kn for sequences of the
form αn = min{1, g

nα } for various fixed parameters α > 0 and g > 0. This is a summary of our results:

• if α = 0 and g ∈ (0, 1) then the random variable Kn converges in distribution to the geometric
distribution Geo(g). Moreover E [Kn] ∼ 1

g

• if α ∈ (0, 1) then the random variable Kn
nα converges in distribution to exponential distribution

Exp(g). Moreover E [Kn] ∼ nα

g

• if α = 1 then the random variable Kn
n converges in distribution to the beta distribution Beta(1, g).

Moreover E [Kn] ∼ n
g+1

• if α ∈ (1, 2) then E [Ln] ∼ g
2−αn

2−α

• if α = 2 then E [Ln] = g ln(n) + O (1)

• if α > 2 then E [Ln] = O (1).

Notice that for α > 1 we do not know asymptotic distributions of sequence of random variables (Ln)
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3.1 Fixed value
Let us fix a real number a > 1 and let αn = 1

a for each n > 1. In this case we have a closed formula for
E[Kn], namely, from Eq. (4) we immediately get

Pr[Kn = k] =

{
1
a (1− 1

a )k−1 : 1 ≤ k < n

(1− 1
a )n−1 : k = n

From this formula we deduce that

1. The sequence (Kn) of random variables converges in distribution to the geometrical distribution
with parameter 1

a .

2. E[Kn] = a
(
1−

(
a−1
a

)n)
Therefore the generated snapshot may be used for controlling a behavior of a stream at a fixed position

in the past.

3.2 Sublinear Case
In this section we consider the case when αn = min{1, g

nα } for some fixed g > 0 and α ∈ (0, 1). We
shall show that the normalized random variable Kn

nα converges in distribution to the exponential Exp (g)
distribution.

Theorem 2 Let g > 0 and α ∈ (0, 1). Let αn = min{1, g
nα } and let x > 0. Then

lim
n→∞

Pr

[
Kn

nα
≤ x

]
= 1− e−gx .

Proof: Let k = bnαxc. Using formula (5) we obtain

Pr

[
Kn

nα
> x

]
= Pr[Kn > nαx] = Pr[Kn > k] =

n∏
i=n−k+1

(
1− g

iα

)
(for sufficiently large n). Therefore

Pr

[
Kn

nα
> x

]
<
(

1− g

nα

)k
≤
(

1− g

nα

)nαx−1

(8)

and

Pr

[
Kn

nα
> x

]
>

(
1− g

(n− k + 1)α

)k
>

(
1− g

(n− bnαxc)α

)nαx
=(

1− g/(1− bnαxc/n)

nα

)nαx
,

so we see that both bounds on Pr
[
Kn
nα > x

]
converges to the same limit e−gx when n tends to infinity. 2
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Theorem 3 If g > 0, α ∈ (0, 1) and αn = min{1, g
nα } then limn→∞ E

[
Kn
nα

]
= 1

g .

Proof: From Theorem 2 and Fatou’s Lemma we get 1
g ≤ lim infn→∞ E

[
Kn
nα

]
. On the other hand,

inequality (8) applied for n > g1/α implies that

E

[
Kn

nα

]
=

∞∫
0

Pr

[
Kn

nα
> t

]
dt ≤

∞∫
0

(
1− g

nα

)nαt−1

dt = − 1

(nα − g) ln(1− g
nα )

n→∞−→ 1

g
.

2

Corollary 2 If g > 0 and αn = min{1, gn} then E [Kn] = nα

g + o(nα).

Remark. We know much more precise results in some special cases. For example, if αn = 1√
n

then
E [Kn] =

√
n− 1

2 + 1
2
√
n

+ 1
8n + O

(
1

n3/2

)
.

3.3 Linear Case
In this section we consider the case when αn = min{1, gn} for some fixed g > 0. We shall show that the
normalized random variable Kn

n converges in distribution to the Beta(1,g) distribution.

Theorem 4 Let g > 0. Let αn = min{1, gn} and let x ∈ (0, 1). Then

lim
n→∞

Pr

[
Kn

n
≤ x

]
= 1− (1− x)g .

Proof: Let k = bnxc. Then we have

Pr

[
Kn

n
> x

]
= Pr[Kn > nx] = Pr[Kn > k] =

n∏
i=n−k+1

(1− αi) .

Therefore, for sufficiently large n, we have

Pr

[
Kn

n
> x

]
=

n∏
i=n−k+1

(
1− g

i

)
.

Hence

ln

(
Pr

[
Kn

n
> x

])
= −

n∑
i=n−k+1

ln

(
1

1− g
i

)
= −

n∑
i=n−k+1

∑
a≥1

1

a

(g
i

)a
=

−g
n∑

i=n−k+1

1

i
−
∑
a≥2

ga

a

n∑
i=n−k+1

1

ia
.
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Notice that
∑n
i=n−k+1

1
i = Hn −Hn−k, and

−g(Hn −Hn−k) = −g
(

ln(n)− ln(n− k) + O

(
1

n

)
+ O

(
1

n− bnxc

))
=

ln

(
n− bnxc

n

)g
+O

(
1

n

)
Therefore limn→∞(−g(Hn −Hn−bnxc)) = ln((1− x)g). Let An,k =

∑
a≥2

ga

a

∑n
i=n−k+1

1
ia . Then

0 < An,k <
∑
a≥2

ga
∞∑

i=n−k+1

1

ia
=

∞∑
i=n−k+1

∑
a≥2

ga

ia
=

∞∑
i=n−k+1

g2

i2
1

1− g
i

< 2g2
∞∑

i=n−k+1

1

i2

(the last inequality holds for n > 2g
1−x ), hence

An,k < 2g2
∞∑

i=n−k+1

1

i(i− 1)
=

2g2

n− k
=

2g2

n− bnxc
= O

(
1

n

)
.

Thus

ln

(
Pr

[
Kn

n
> x

])
= ln

(
1− bnxc

n

)g
+ O

(
1

n

)
.

Therefore

Pr

[
Kn

n
> x

]
=

(
1− bnxc

n

)g
eO( 1

n ) =

(
1− bnxc

n

)g
+ O

(
1

n

)
,

so limn→∞ Pr
[
Kn
n > x

]
= (1− x)g . 2

Corollary 3 If g > 0 and αn = min{1, gn} then limn→∞ E
[
Kn
n

]
= 1

g+1 .

Proof: Notice that Kn
n ≤ 1, hence the sequence (Knn )n∈N is bounded, therefore the convergence in

distribution of the sequence (Knn )n∈N to a random variable Y with Beta(1,g) distribution implies the
convergence of moments (see e.g. Billingsley [2012]), hence

lim
n

E

[
Kn

n

]
=

∫ 1

0

x
d

dx
(1− (1− x)g) dx =

1

1 + g
.

2

Corollary 4 If g > 0 and αn = min{1, gn} then E [Kn] = n
g+1 + o(n).

Remark 1. A slightly more complicated calculus shows that in the case considered in this section we
have E [Kn] = n+1

g+1 + O
(

1
ng

)
.

Remark 2. If αn = 1
n then the snapshot Kn is uniformly distributed in {1, . . . , n}.
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3.4 Subquadratic Case
In this section we consider the case when αn = min{1, g

nα } for some fixed g > 0 and α ∈ (1, 2). We
investigate the random variable Ln = n+ 1−Kn. Let us observe that if α > 1 then 3− 2α < 2− α.

Theorem 5 If g > 0, α ∈ (1, 2) and αn = min{1, g
nα } then

E [Ln] =
g

2− α
n2−α +


O
(
n3−2α

)
: α < 3

2

O
(
ln2(n)

)
: α = 3

2

O (1) : α > 3
2

Proof: Suppose that h ≥ 1. Using the standard interpretation of finite sums as Riemann’s integral sums
(see inequality 2) we easily deduce that

n∑
k=h

k

kα
=
n2−α

2− α
+ O (1) .

and

n∑
k=h

√
k

kα
=


n3/2−α

3/2−α + O (1) : α < 3
2

ln(n) + O (1) : α = 3
2

O (1) : α > 3
2

.

Let us now put h =
⌈
g

1
a

⌉
− 1. From the above observations and Corollary 1 we get

E [Ln] ≤
h−1∑
k=1

k +

n∑
k=h

kg

kα
=

g

2− α
n2−α + O (1)

and

E [Ln] ≥
h−1∑
k=1

k +

n∑
k=h

kg

kα
− 1

2

(
h−1∑
k=1

√
k + g

n∑
k=h

√
k

kα

)2

=

g

2− α
n2−α + O (1) +

1

2

(
h−1∑
k=1

√
k + g

n∑
k=h

√
k

kα

)2

If α < 3
2 then we get

E [Ln] ≥ g

2− α
n2−α + O (1) +

(
O
(
n3/2−α

))2

=
g

2− α
n2−α + O

(
n3−2α

)
.

The cases α = 3
2 and α ∈ ( 3

2 , 2) are similar. 2
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3.5 Quadratic Case
In this section we consider the case when αn = min{1, gn2 } for some fixed g > 0 and we analyze random
variable Ln = n+ 1−Kn.

Theorem 6 Suppose that g > 0 and αn = min{1, gn2 }. Then E [Ln] = g ln(n) + O (1).

Proof: Let h =
⌈√

g
⌉
− 1. Directly from Corollary 1 we have

E [Ln] ≤
n∑
k=1

kαk ≤
h∑
k=1

k + g

n∑
k=h+1

1

k
= g ln(n) + O (1) .

So we have

E [Ln] ≥
n∑
k=1

kαk −
1

2

(
n∑
k=1

√
k · αk

)2

≥

h(h+ 1)

2
+ gHn − gHh −

1

2

(
h∑
k=1

√
k + g

n∑
k=h+1

1

k3/2

)2

= g ln(n) + O (1) .

2

Remark For some special cases there are a much more precise formulas for E [Ln]. For example, if
αn = 1

n2 then we have E [Ln] = Hn+1 − 1 and if αn = min{1, 4
n2 } then E [Ln] = 4Hn+1 + 12

n+2 − 10.

3.6 Superquadratic Case
Finally, in this section we consider the case when αn = min{1, g

nα } for some fixed g > 0 and α > 2.
This case is the least interesting for our purpose, but we concisely consider a > 2 for completeness.
Again, we apply random variable Ln = n+ 1−Kn.

Theorem 7 Suppose that g > 0, α > 2 and αn = min{1, g
nα }. Then E [Ln] = O (1).

Proof: Notice that α− 1 > 1. Let h = bg1/αc − 1. Directly from Corollary 1, we have

E [Ln] ≤
h∑
k=1

k + g

n∑
k=h+1

k

kα
=
h(h+ 1)

2
+ g

n∑
k=h+1

1

kα−1
<∞

2

Remark Ln is a number of update of algorithm which saved the last snapshot. We see that in the su-
perquadratic case algorithm save only data from the very beginning of the stream. Therefore the practical
value of the snapshots constructed in this way is negligible.

4 Applications
In this chapter we will discuss two examples of applications discussed in the previous chapters of proba-
bilistic snapshot.
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4.1 Linear sampling
Let us assume that we are observing a data stream and that after reading the n-th item we would like to
have access to elements laying near the points { k10 · n : k = 0, . . . , 10}. Of course, there is no problem
with the element laying near 0 - it is sufficient to store the first element from the stream. As an element
laying near n we may take the current item. So we must propose some mechanism for dealing with
remaining 9 points.

Let us consider a series K1
n, . . .K

M
n of independent random variables generated by the sequence αn =

1
n . We know (see 3.3) that this is a sequence of independent random variables uniformly distributed in the
set {1, . . . , n}. Let Xn = {K1

n, . . .K
M
n }. Let us fix some 0 < ε < 1

10 and let Ik = {a ∈ N : | an −
k
10 | <

ε}. Let us observe that Pr[Ik ∩Xn = ∅] ≈ (1 − 2ε)M . This approximation is accurate for large n. So,
for simplicity we shall assume that we have an equality. Therefore

Pr[

9∨
k=1

(Ik ∩Xn = ∅)] ≤ 9 · (1− 2ε)M .

The solution of inequality 9 · (1 − 2ε)M ≤ η is given by M ≥ log( η9 )
log(1−2ε) . By putting into this formula

ε = 1
100 and η = 10−10 we get M ≥ 1248.5. Therefore, if we take M = 1250 snapshots then

Pr[

9∧
k=1

(Ik ∩Xn 6= ∅)] > 1− 1

1010
.

Hence, with a very high probability, for each k ∈ {1, . . . , 10} we are able to choose a point from the set
Xn which approximates kn

10 with precision 1%.
We performed numerical experiments with a collection of 1250 independent probabilistic snapshots
Kn= (K1

n, . . .K
1250
n ) evolving independently according to the sequence αn = 1

n . In the experiment
whose results are shown in Fig. 1 after each call to the procedure Update we calculated the quality of set
of snapshots defined as

Q(Kn) =
1

n
max

{
min

{∣∣∣∣kn10
−Kj

n

∣∣∣∣ : j = 1, . . . , 1250

}
: k = 1, . . . , 9

}
.

We may observe in this figure several regularities which are connected with the specific method of gener-
ation of sequences Kn (for example, it is clear that sequences Kn and Kn+1 are not independent of each
other). We can see that the predicted 1% precision has been achieved.

4.2 Bitcoin capitalization
We used bitcoin cap data from Quandl [2017] to test probabilistic snapshots concentrated at the end of the
data stream. The data stream consists of 1439 records from 2013-09-30 to 2017-12-31 (one record for one
day). Since the length of this stream of data is relatively short, we decided to use only 100 probabilistic
snapshots. We used the probability sequence αn = 0.1√

n
. From Sec. 3.2 we know that in this case the

expected value of snapshots is close to 10
√

1439 ≈ 380.
We added to generated probabilistic snapshots to points: the first one, and the last one. The results of

this experiment is shown at Fig. 2. Let us remark that the most left points at these diagrams corresponds
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Fig. 1: Quality of approximation of points kn
10

, k = 1, . . . , 9, by a collection of 1250 snapshots.

Fig. 2: Precision of bitcon cap approximation by 100 snapshots.

to data from the day 2017-12-31 and the most right point to 2013-09-30 (so we reversed the typical order
of such kind of diagrams). Note that despite the large fluctuations in the bitcoin market at the end of 2017,
using only 100 snapshots makes it possible to reproduce the main trend of this parameter of the bitcoins
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market quite faithfully.
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