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ABSTRACT

In 2011 Bhaskar et al. pointed out that in many cases one can en-
sure sufficient level of privacy without adding noise by utilizing ad-
versarial uncertainty. Informally speaking, this observation comes
from the fact that if at least a part of the data is randomized from
the adversary’s point of view, it can be effectively used for hiding
other values.

So far the approach to that idea in the literature was mostly
purely asymptotic, which greatly limited its adaptation in real-life
scenarios. In this paper we aim to make the concept of utilizing
adversarial uncertainty not only an interesting theoretical idea, but
rather a practically useful technique, complementary to differential
privacy, which is the state-of-the-art definition of privacy. This re-
quires non-asymptotic privacy guarantees, more realistic approach
to the randomness inherently present in the data and to the adver-
sary’s knowledge.

In our paper we extend the concept proposed by Bhaskar et al.
and present some results for wider class of data. In particular we
cover the data sets that are dependent. We also introduce rigorous
adversarial model. Moreover, in contrast to most of previous pa-
pers in this field, we give detailed (non-asymptotic) results which
is motivated by practical reasons. Note that it required a modi-
fied approach and more subtle mathematical tools, including Stein
method which, to the best of our knowledge, was not used in pri-
vacy research before.

Apart from that, we show how to combine adversarial uncer-
tainty with differential privacy approach and explore synergy be-
tween them to enhance the privacy parameters already present in
the data itself by adding small amount of noise.
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1. INTRODUCTION

Let us imagine a following problem. There is a set of users and
each of them keeps a single value. Analogously, we can think about
a database with n records, each corresponding to a specific user.
We have to reveal some aggregated statistic (say, the sum of all
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single values) and preserve the privacy of individuals (say, modeled
using standard differential privacy notion). In recent years there
have been many very promising results, both for the case where the
privacy is governed by a trusted authority (database curator) and
for the case where the database is distributed (see for example [35]
and [31] where the authors use combination of cryptography and
privacy preserving techniques). However, the standard differential
privacy has an obvious drawback which is a necessity of adding
a carefully calibrated noise to the final answer to the query. This
approach is not always satisfactory, as in some cases we may need
to have the exact aggregated statistic. Moreover, as pointed in some
recent papers, adding noise may lead to significant errors in the
aggregated statistic. Even if having noisy response is acceptable
for a given scenario, the resulting statistics may be too far from
the exact values to be usable in practice (see [20, 30]). Finally,
adding noise, specifically from a non-standard distribution, can be
technically problematic — especially when the aggregated data may
come from small, computationally constrained devices. These facts
lead to a somewhat reluctant adaptation of the differential privacy
notion in real life applications, despite its undeniable merits.

One may ask if it is possible to circumvent the problem of adding
noise while preserving the differential privacy of users. Unfor-
tunately, in the paradigm of standard differential privacy, adding
noise is inevitable. Moreover, if we assume that users operate inde-
pendently and cannot cooperate on adding randomized values used
to perturb the original data (which is often the case in distributed
systems), the size of aggregated noise has to be 2(+/n), where n is
the number of users (as proved in [7]).

On the other hand, observing some real-life applications of data
aggregation one can have an intuition that often it is safe to release
aggregated data without adding noise and such act does not expose
any individuals’ privacy, as pointed out in the seminal paper [5].
One of classic examples is the average national income. It is clear
that such an information says in practice nothing significant about
the specific incomes of any of our neighbors, even though they took
part in the survey. Even revealing the average income of employees
in a big company should be secure in terms of privacy of individu-
als. In contrast, revealing the exact average income (or maximum
income) in a small community exposes users to obvious risk of pri-
vacy breach.

These intuitions have already been considered in a few papers,
namely [4, 5, 24] to mention the most significant ones, where the
authors propose relaxations of the differential privacy model which
“utilizes” the randomness inherently present in the data itself. Our
work can be seen as a continuation and extension of the line of
research where the authors leverage adversarial uncertainty. How-
ever, in contrast to previous results we focused on detailed, non-
asymptotic analysis of the relaxed model, which is motivated by



practical needs. Note also, that in the regime of adversarial un-
certainty one has to take into account the randomness inherently
present in the data, especially the dependencies which naturally ap-
pear in real-life scenarios. Therefore, we concentrate also on (lo-
cally) dependent data, which importance we justify in Section 4.
This required using different mathematical tools (e.g. Stein method,
see [33]). To the best of authors knowledge, that type of technical
approach was not used previously in the privacy preserving con-
text, possibly due to the fact that so far the dependent data was not
considered in a wide sense in previous papers concerning utilizing
adversarial uncertainty.

The intuition behind the noiseless privacy approach is that in real
life scenarios it might be too pessimistic to assume that the adver-
sary knows almost every record in the database. This assumption
seems far too strong, yet it stands at the heart of standard differ-
ential privacy. Indeed, it is hard to expect that revealing the exact
average worldwide income would in any way harm privacy of any
single individual. However, according to differential privacy defi-
nition, that would be unacceptable. Intuitively we realize that if an
average income (or other value) of a ’large” set of participants is re-
vealed, there should not be a privacy breach. The authors of [5] and
their notion of noiseless privacy capture that intuition. Their ap-
proach allows database designer to check whether the data satisfies
desired privacy parameters, and if it does, just reveal the aggregated
value without adding any noise. Unfortunately, their results are
mostly only asymptotic which makes it hard to use in practice, due
to unknown constants which may hide the real size of privacy pa-
rameters. Using our methods we give explicit bounds for privacy
parameters. From practitioner’s point of view, this allows to con-
struct efficient algorithms by directly using our results. Moreover,
for the few non-asymptotic results in [5] we show that our meth-
ods give better bound for privacy parameters. Despite the merits
(and theoretical importance) of leveraging adversarial uncertainty,
for this approach to become a state-of-the-art privacy promise for
various kind of data aggregation problems, it has to be easy to use
and quantify for practitioners. Showing precise bounds for privacy
parameters and also considering dependent data is the way to make
noiseless privacy more useful in practice, which is the purpose of
our paper.

To the best of our knowledge, the idea of combining standard
differential privacy techniques (i.e. Laplace mechanism, see [16])
with adversarial uncertainty was not explored before. Intuitively
we can think that in the case where the data has much random-
ness, we should be able to add smaller noise than in the case where
the data is deterministic from the adversary’s perspective. Due to
our novel approach, we give explicit bounds for privacy parameters
which allows us to explore the synergy between differential privacy
methods and noiseless privacy approach. We describe and analyse
this synergy in Section 6.

In our paper we follow the model from [5], yet present it in a
more convenient way for our approach. We show that this defini-
tion is coherent with classic (computational) differential privacy —
formally speaking it is an extension. This approach can be seen as
utilizing “uncertainty* that naturally appears in some data sources
to hide the contributions of individuals in the aggregated outcome.
We depict wide classes of data that can be handled without adding
noise and also give the explicit privacy parameters instead of only
asymptotic results. Due to explicitly given parameters, our theo-
rems can be seen as “off the shelf”” ways for a practitioner to check
whether he can safely release the data without any noise or not.
Note however, that the practitioner would still have to choose some
parameters based on domain knowledge (i.e. upper bound for the

fraction of records known to the adversary), but it is quite a com-
mon situation in both security and privacy applications.

1.1 Our results and organization of this paper
Our contribution is as follows:

e We extend the paradigm of utilizing adversarial uncertainty
for the case of dependent data (Theorems 3 and 5).

e We explore the synergy between standard differential privacy
methods and noiseless privacy approach (Theorem 6).

e We propose an adversarial model (Subsection 2.2) and ex-
plicit procedure for preserving privacy (Figure 6), which is
easy to use for practitioners.

e We give improved and explicit (non-asymptotic) bounds for
the privacy parameters (Theorems 2 and 4).

We believe that our contribution is a step towards more practical
constructions of privacy protocols which utilize adversarial uncer-
tainty. Note that, for the first time, we consider a wide class of
dependent data. Moreover, our results state that the party respon-
sible for privacy does not need to know neither the exact structure
of dependencies nor the exact distribution of the data (i.e. joint
distribution). Upper bounds for the size of the greatest dependent
subset and the sum of centralised third moments (or fourth in case
of dependent data) are sufficient to use our results in practice. To
achieve it, we used different methods than those used in context of
adversarial uncertainty before.

The rest of this paper is organized as follows. In Section 2 we
explain the motivations, recall the idea of utilizing adversarial un-
certainty from [5] in a way that is more convenient for presenting
our results and provide some formalism that can be seen as an ex-
tension of differential privacy notion. We also introduce and dis-
cuss our adversarial model and some possible applications. In the
next sections we present our results. In Section 3 we focus on the
case when from the adversary’s perspective the aggregated data is
a set of independent random values. Most important is the case dis-
cussed in Section 4, where we allow the adversary to know a pri-
ori some dependencies between data. Note however, that the data
owner do not have to know the exact dependencies in the data. Then
in Section 5 we discuss situation where the adversary has an exact
knowledge of the values of some subset of data values. Finally in
Section 6 we explore the idea of combining adversarial uncertainty
with standard differential privacy approach.

In our paper we consider privacy guarantees for any fixed size of
data, since purely asymptotic approach seems to be inadequate for
typical areas of application. Let us stress that we present formulas
that can be used for deciding if revealing aggregated data from a
given types of data is secure even for a moderate number of users.
At the end in Section 7 we recall some previous and related work.
We conclude and outline the future work in Section 8. Since our
paper is quite technical, for the sake of clarity of presentation some
of proofs and discussions about the extended definition of privacy
have been moved to the Appendix.

2. MODEL

As mentioned in the introduction, the main goal of this paper is
to make the idea of noiseless privacy (from [5]) not only an interest-
ing, theoretical concept, but a practically useful way to guarantee
some level of privacy. We want to emphasize that we use the idea
(noiseless privacy) from [5], yet we present the privacy model in
a slightly different way, which seems to be simpler and more con-
venient for our approach. Moreover it shows direct descendance



from classical differential privacy (as presented in [16]) which may
be considered as a special case of the discussed model.

Let us present the aggregation problem in a general way. In the
system there are n users that may represent different types of par-
ties (organizations, individuals or even sensing devices). Each of
them holds a data record x; (for simplicity we assume that it is
a single value). The goal is to aggregate the data and reveal some
statistics (say, sum of the values). Note that the database may either
be a centralized one, which means that there is a database curator
whose goal is to reveal the values in a private way (namely via
adding some noise to the output), or a distributed one where users
themselves have to generate some output according to a distributed
protocol. See that in terms of privacy definition, both these cases
are equivalent. They differ in algorithmic approach to these prob-
lems. As this paper is about privacy (specifically about utilizing
adversarial uncertainty), both these cases are essentially the same
for us. Therefore by saying data we will mean the set of n values
(held either by different parties or by a single curator) which we
want to aggregate (i.e. compute the sum of these values) and reveal
the obtained statistic to the public. By saying compromised users
we will mean the subset of data about which the adversary has full
knowledge, namely he knows the exact values in this subset. By
saying data owner we will mean a party that is responsible for pre-
serving privacy of the data by designing an appropriate algorithm,
choosing adversarial model parameters (or upper bounds for them)
or deciding whether specific privacy parameters are sufficient or if
they have to be combined with external noise.

2.1 Modeling privacy of randomized data

We use a privacy model in which the data (or at least part of
it) is considered random from the adversary’s perspective, coming
from a specific distribution. This kind of approach is quite natu-
ral in many scenarios, namely the adversarial knowledge is usually
limited. This “uncertainty” can be utilized. However, it needs a
different definition of privacy than standard differential privacy as
in [16], because we have to take into account randomized inputs.
Following the notion introduced in [5] we will call this approach
noiseless privacy. Before we show its formal definition, we need to
introduce a following

DEFINITION 1|  (ADJACENT RANDOM VECTORS). Let X =
(X1,...,X,) be an arbitrary random vector and let X' be other
random vector. Let X. be a random variable. We will say that
vectors X and X' are adjacent if and only if

X' = (X1,..., X, Xu, Xit1, ., X0),
or

X' =X, X1, Xiv1, -5 Xn),

foranyie {1,...,n}.

This essentially captures the notion of data vectors adjacency simi-
lar to the one in [16], but for random variables rather than determin-
istic values. See also that if for some deterministic adjacent vectors
2 and ' we have X = z and X' = 2’ with probability 1, then
this definition of adjacency is the same as in [16]. Note that (as in
standard adjacency definition in [16]) we could as well define ad-
jacency in such a way that instead of adding or removing a vector
element, we could simply change its value, this is just the matter
of choice and a few straightforward technical changes in proofs.
Continuing, we can introduce a following

DEFINITION 2 (DATA SENSITIVITY). We will say that data
vector X = (Xu1,...,Xn) and mechanism M have data sensi-

tivity A if an only if
[M(X) = M(X')| <A,

for every vector X' that is adjacent to X.

Note that this bears close resemblance to the /;-sensitivity de-
fined in [16]. More detailed comparison of noiseless privacy and
standard differential privacy can be found in Appendix.

We can formally define noiseless privacy in the following way

DEFINITION 3 (NOISELESS PRIVACY). We say that a
privacy mechanism M and a random vector X = (X Tyeovy Xn)
preserve noiseless privacy with parameters (g, 0) if for any random
vector X' such that X and X' are adjacent we have

VeesP(M(X) € B) < e"P(M(X') € B) +6.

Intuitively, this definition says that if data can be considered ran-
dom, then the outcome of the coin flip of any single user does
not significantly change the result of deterministic mechanism M,
whether the user is added to the result, or removed from it. This is
very similar to standard differential privacy. A more detailed com-
parison is moved to the Appendix. Throughout this paper we will
use abbreviation (g, 4)-NP (as in [5]) to denote noiseless privacy
with parameters ¢ and J.

Clearly, this model of privacy is a coherent extension of differen-
tial privacy. We see it as a generalization of the known differential
privacy definition that can be useful for some real life scenarios.
See that in Rem.1 (Appendix) we explained that this model is in-
deed more general than differential privacy, but if we fix the data
as deterministic, it is essentially the same definition. Moreover, in
Section 6 we show how the standard differential privacy methods
can be combined with noiseless privacy approach.

Whether or not (and to what extent) particular data can be con-
sidered random is of course an important problem to be solved by
the data holder, and is beyond the scope of this paper. Note that
also other papers in this line of research has not yet dealt with this
problem which may be a very interesting question for a future work.

See that in noiseless privacy, random data has natural self-hiding
properties, even though the mechanisms are deterministic. Instead
of relying on the randomness of mechanism (as in the standard dif-
ferential privacy methods), we can sometimes rely on the inherent
randomness of the data itself. Deterministic algorithms have an ob-
vious benefit of not introducing any errors (which are inevitable in
standard differential privacy approach due to the addition of noise),
so the answer to a query is exact.

The most common and useful deterministic mechanism would be
simply summing all the data. In our paper we explore the privacy
parameters of mechanism M (X) = sum/(X) for any distribution
of the data vector X, a wide class of dependencies in the data and
the adversarial model defined in Subsection 2.2.

2.2 Adversarial Model

We assume that the adversary:

e May know the exact data of at most some fraction « of the
users.

e May know the correct distribution (but not the value itself)
of the data of the rest of users (note that the distribution for
each user might be different).

e May know the dependencies between some of the data values
(if there are any), but only in subsets of size at most D.



Let us now discuss and justify these assumptions. First of all,
one can easily see that in standard differential privacy we essen-
tially assume that the adversary knows the exact data of all users
except one. Here we relax this by giving an upper bound on the
number of users which are compromised. See that in realistic sce-
narios it is not very plausible that the adversary indeed knows al-
most every data record. On the other hand, we still give him quite
a lot of power, namely we assume that he knows the distributions
of the data, but not the exact values. From the point of view of the
adversary, data is a vector of (at least n — yn) random variables
with known distribution and some known (at most yn) data values.
See that in sections 3 and 4 we assume for simplicity that the ad-
versary does not know any exact values (so v = 0). We discuss this
in Section 5 where we show how to extend our results for the case
where the adversary knows any arbitrary yn exact values.

In real-life data it is quite common to have some dependencies
involved. Moreover, the adversary might know about them. To pro-
pose a realistic model for noiseless privacy, one has to take it into
account. In our model we give the adversary the precise knowledge
about all dependencies in subsets of size at most D. That essen-
tially means that he does not have an insight into dependencies of
subsets of size greater than D. Note that it might be the case that
such dependencies do not exists (namely the data might really have
all dependent subsets of size at most D), or simply the adversary
does not know about these dependencies and cannot therefore uti-
lize them. Obviously in standard differential privacy notion we do
not care about the distribution of data, whether it is dependent or
not and so on, which is much easier to comprehend in practical ap-
plications. Here, on the other hand, due to the necessity of utilizing
the inherent randomness in data instead of adding external noises,
we must take such things into account.

See that there is asymmetry between the adversary and other
users and even the data owner. Namely we assume that the ad-
versary has power of knowing the exact structure of dependencies
(of size at most D), while neither users nor the data owner have to
know this structure or the joint distribution of the data. The param-
eter necessary to use our results is the upper bound for D. Note that
the data owner might do some tests for independence of the data (or
subsets of the data), i.e. using x>-test or other well known statis-
tical methods for testing independence. Information about the up-
per bound for the size of dependent subsets might also come from
strictly engineering knowledge, say due to physical proximity of
the subset of sensors or some social knowledge, say subset of users
having the same age. This approach to dependencies essentially
boils down to the known notion of dependency neighborhoods de-
fined as below

DEFINITION 4. A collection of random variables X1, ..., Xy,
has dependency neighborhoods N; C {1,...,n}, i € {1,...,n}
ifi € N; and X; is independent of {X;} g n,.

Observe that the definition of dependency neighborhoods actu-
ally says that for specific X; we know that it is independent of
those that are not in its neighborhood. We want to give a general
approach to local dependencies scenario, so in our analysis we do
not assume anything about joint distributions of the dependent sub-
sets (i.e. the dependency in subset might even mean ’equality’) .
Note that in [5] the authors gave results for dependent data only for
the simplest case of boolean (true/false) data and queries, that is for
queries f such that f : {0,1}" — {0,1}. They did not discuss
dependencies for more complicated queries and data types. Here,
on the other hand, we aim to give a non-asymptotic formula for
privacy parameters for any distribution of data and a sum query
under dependency regime.

To sum it up, we present a formal definition of adversarial model.

DEFINITION 5. We will denote a specific instantiation of ad-
versarial model for data vector X by Advx (D, ), where

e D is upper bound for the size of the greatest dependent sub-
set,

o~ is the upper bound for the fraction of the data which values
the adversary exactly knows,

o adversary knows the distribution of data vector X.

We believe that while our adversarial model give significantly
less power to the adversary than in standard differential privacy no-
tion (which basically gives the adversary almost full knowledge of
the data), they still are reasonable and applicable in real-life sce-
narios. One important remark is that we do not need to predict the
exact adversaries knowledge about the dependencies. We only need
to know the maximum size of dependency neighborhood, namely
the size of largest non-independent subset of data. In fact, we only
need an upper bound for that size. Same with the fraction of data
values which the adversary knows. To apply our results, which are
presented in the next sections, one will also need a lower bound for
the variance of data and upper bound for the sum of third and fourth
centralized moments for the specific data vector.

2.3 Applications

o In the case of distributed systems, the users themselves have
to secure their privacy using both cryptography and privacy
preserving techniques (see for example [35, 8]). The no-
tion of noiseless privacy and our bounds for privacy parame-
ters are useful especially in distributed case for two reasons.
First, in distributed systems quite often the noises which have
to be added by users render the data practically useless (too
much disturbance). Second, in such systems it is more com-
mon to assume that the adversary does not have full knowl-
edge, i.e. can know only at most some fraction of the data.
Note also that this paper is solely about privacy and we fo-
cus on showing that there are certain data types which does
not need any noise added to the final output whether it is a
centralized or a distributed case. More details on specific
applications for distributed data aggregation can be found in
[35]. See that, if the noiseless privacy assumptions are met
and the privacy parameters are satisfying, one could for ex-
ample run protocols from [35, 8] with only the cryptographic
part, without adding noises to the values. The noises added
in standard approach turn out to be quite too big for practical
applications in various scenarios (see [20]).

e The idea of noiseless privacy can be used for a wide range
of applications including networks of sensing environmen-
tal parameters, smart metering (e.g, electricity), clinical re-
search, population monitoring or cloud services. Most im-
portant is however that in all these areas there are natural
cases, where we can make some assumptions about the ad-
versaries knowledge.

e Imagine a situation where we have a cloud service which
holds shopping preferences of its users. The data is dis-
tributed amongst many servers which are completely sepa-
rated from each other. We assume that at most some (say, 50
percent) of these servers became compromised, which means
that at most 50 percent of the values are known to the adver-
sary. Assume that he somehow knows the distribution of the



rest (this means that he still has a lot of knowledge about
the rest of data) and even some dependencies due to geo-
graphical or other reasons. We might know that the greatest
dependent subset of our data has size at most D (due to inde-
pendence tests). This is our model (Advx (D, )) for known
(or at least upper bounded) ~y, D and distributions of the rest
of the data.

3. EXPLICIT BOUNDS FOR
INDEPENDENT DATA

Assume that we have a database X which consists of n values so
X ={Xi,...,X,}. Recall that i.i.d. means independent, iden-
tically distributed. Let us consider a simple, warm-up scenario,
where X; are i.i.d. random variables and X; ~ Bin(1,p). We
want to aggregate the sum of all these variables so we set the mech-
anismas M (X) = >0 | X; ~ Bin(n,p).

Now we can state a theorem which shows that i.i.d. binomial
data has very strong noiseless privacy properties for a wide range of
parameters. First we consider the case where ¢ is fixed and obtain
¢ so that the data with summing mechanism is (g, §)-NP. Then we
fix € and calculate §. Both cases are considered in the following

THEOREM 1. Let X = (X1,...,Xn) be a data vector where
X; ~ Bin(1,p) are i.i.d. random variables. If we use mechanism
M(X) =321 (Xs) and fix 6 > P(M(X) = 0) + P(M(X) =
n), we obtain that it is (¢, 0)-NP for the following

In(2) 1 1 1
27;5 ﬂ - \/@ » D g 29
2n P
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On the other hand, if € > 0 is fixed, we get
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Proof of this Theorem is quite long and laborious, albeit not very
complicated, as it mostly consists of straightforward observations
and application of Chernoff bounds. Due to space limitations and
mathematical technicalities, the proof has been moved to the Ap-
pendix.

Let us observe that in Theorem 1 for constant parameters p and

)=

N

vn
orl — % e can be large, although as long as p is constant, ¢ still
approaches 0 with n — oo.

Similarly, for p very close to 0 or 1 and for small n, the value of
0 can be large. Nevertheless we see that ¢ is decreasing exponen-
tially to 0 with n — oo, so for sufficiently large n we still get very
small values of §, even if p was strongly biased.

One can easily see that this theorem is essentially equivalent to
Theorem 5 in [5], but our bounds are tighter and more useful in a
practical way, as we give straightforward, non-asymptotic, formu-
las for € and 4. On the other hand, authors of [5] proved only that
due to Chernoff bounds, for a fixed parameter ¢ the parameter &
is asymptotically negligible. However, we completed their proof
and actually plugged the Chernoff bounds. In Figures 1 and 2 one
can see the comparison of our guarantee for parameters, and the
guarantee which are given by the (completed) proof in paper [5].

odwegete =0 (i) It is also worth noting that for p close to %

As one can see in Figures 1 and 2, our Theorem does not only
give non-asymptotical, explicit parameters (both for the case where
¢ is fixed and the case where ¢ is fixed), but also, due to slightly
more careful reasoning, our bound is tighter than the bound which
authors of [5] have implicitly shown in their proof.

I
i
L

Figure 1: € = 0.5, p = 0.95, red dashed line is a guarantee for
parameter § in paper [5], blue thick line is guarantee from our The-

orem 1.
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Figure 2: ¢ = 1, p = 0.2, red dashed line is a guarantee for param-
eter ¢ in paper [5], blue thick line is guarantee from our Theorem 1.

That was just a warm-up scenario to show how does noiseless
privacy work with simple data distribution. Let us move to a more
interesting model where users data has different, but still indepen-
dent distributions. Note that from now on we do not assume any
specific distribution of the data. Let us recall two facts. First one is
a known result in differential privacy literature.

FacT 1 (FROM [16]). Fix e > 0 and 6 > 0. Let ¢ such
that ¢ > 21n(222). For random variable Z ~ N(0,07), where

a}%wehave
Plu+Z eS| <ePlv+Ze S|+,

where u and v are any real numbers such that |u — v| < A.

Second fact is a well known theorem in probability theory, one
can find it for example in [18] .

FACT 2 (BERRY-ESSEEN THEOREM). Let X1,..., X, be a
sequence of independent random variables. Let EX; = 0, EX? =



o2 > 0and E|X¢|3 = p; < oo. Let F, denote the cumulative dis-
tribution function of their normalized partial sum and ® denotes
the cumulative distribution function of standard normal distribu-
tion. Then
n
sup Py () - @(a)] < =1l
ver (i, 07)?

where C' < 0.5591.

The upper bound for constant C' comes from [36].
After stating all necessary facts and definitions, we are ready to
present the general theorem for independent data.

THEOREM 2. Let X = (X1,...,X,) be a data vector, where
X, are independent random variables. Let u; = EX; and o2 =

M and E|X;|* < oo for everyi € {1,...,n}. Con-

sider mechanism M (X) = >, (X;). We denote data sensitivity
of vector X and mechanism M as A. M(X) is (¢,0)-NP with

following parameters
[A?1n(n)
e=1—>,
no?

L1230 EIXG - wl?

(no?)

and

5 (1+¢€%)+

4
5vn

The main idea for proving this theorem is to use Berry-Esseen
theorem to deal with random variables of normal distribution in-
stead of the actual distribution of the data. Then we use normal
distribution properties to obtain appropriate € and . The proof of
this theorem is moved to the Appendix. See that Theorem 2 is es-
sentially a generalization of Theorem 7 in [5], which is a simple
consequence of Theorem 2. In our case we give explicit formula
with all constants, which asymptotically, after using big oh no-
tation simplifies to the same as in [5]. As we emphasized before,
explicit formulas for privacy parameters is much more useful for
a practitioner than the order of magnitude. Moreover, we do not
suffer from limitations of Theorem 7 in [5], where the authors as-
sumed that the result of the query has to be O(log(n)). In Section 4
we also give a generalization for locally dependent data.

Theorem 2 gives us very general notion of privacy parameters
for summing independent data. Note that in Theorem 2 we as-
sumed nothing about the distribution of the data, apart from being
independent. The only values we need to know is the variance and
sum of appropriate central moments (or upper bounds for these val-
ues). Data independence is obviously a strong (and generally false)
assumption in real world, but it is commonly used. However, we
will also work with dependent data in the next section. We also
present an example.

EXAMPLE 1. We consider a data vector X = (X1,...,Xn),
where X; are independent random variables. Let A = 30. Let
o? = %ﬂ? =4. Letalso Y7 | E|X; — u;|> = 3 n. We use
mechanism M (X) = >-"_, (X;). Using Theorem 2 we obtain that
it is (g, 0)-NP. Figure 3 shows how the ¢ decreases with n, while
Figure 4 shows how § decreases with n.

We can see that for n around 10000 parameter ¢ is smaller than
0.05, which is a constant widely used in differential privacy liter-
ature, and decreases further. Also, note that for n > 10000 the
parameter ¢ is below 0.5 which also is a widely used constant in
differential privacy papers (see for example [8]). Clearly, the pa-
rameters keep improving with more users.
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Figure 3: Parameter € in Example 1.
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Figure 4: Parameter ¢ in Example 1.

4. EXPLICIT BOUNDS FOR LOCALLY
DEPENDENT DATA

In the previous section we gave a general treatment for privacy
parameters of independent variables. However, in many cases the
data has some local dependencies involved. Imagine a situation
where we want to collect the data of yearly salary from former stu-
dents of a specific university. Say, those that finished their educa-
tion at most 5 years ago. Our goal is to obtain the average yearly
salary of all students that finished their education during last five
years. Now one can easily see that there will be some local de-
pendencies between the participants as some of the students might
work in the same company, launch a startup together or just work
in the same field. This will affect their salary and therefore make
it locally dependent. Such dependencies are modeled using depen-
dency neighborhoods notion, which we defined in Subection 2.2.

As previously, we want to take the sum of all our data and show
privacy parameters for this mechanism. We are going to take a sim-
ilar approach as in Theorem 2. That is, we want to bound the dis-
tance between the sum of our data and normal distribution. Then,
using standard differential privacy properties of normal distribution
(described in Fact 1) we derive privacy parameters. However, this
time we cannot use Berry-Esseen theorem to bound the mentioned
distance, as the data is not independent. Instead, we use Stein’s
method (see for example [3, 33]), which allows to bound the Kol-
mogorov distance between two random variables. Apart from that,
the presented reasoning is very similar to Theorem 2. Firstly, we
introduce some notation and facts.



DEFINITION 6. Let X andY be a random variables. Let v and
v be their corresponding probability measures. We denote their
Kolmogorov distance as di (X,Y) which is defined as

di (X,Y) = sup [Fx(t) — Fy (t)],
teR

where Fx (-) denotes the cumulative distribution function of X.
Furthermore, we denote Wasserstein distance as dw (X,Y") which

is defined as
dw (X = 21612'/ x)du(z /h(m)dl/(az) ,
where H = {h:R — R: |h(z) — h(y)| < |z — y|}.

These are standard probability metrics, their definition is also given
in, for example, [33]. We also recall a useful relation between Kol-
mogorov and Wasserstein distance.

FAcT 3 (FrROM [33]). Suppose that a random variable Y has
its density bound by some constant C. Then for any random vari-
able X we have

dx(X,Y) < /2Cdw (X, Y).

Moreover, if Y ~ N(0,1), then for any random variable X we
have

dic(X,Y) < (i)i dw (X,7).

Lastly, we recall a theorem from [33].

FAcT 4 (THEOREM 3.6 IN [33]). Suppose X1,..., X, are
mndom variables such that for every i we have E X f < oo FX; =

0, 0® = Var[>r |, Xi] and define W = ’71)( Let the col-
lection (X1,...,Xn) have dependency netghborhoods N;, 1 €
{1,...,n} and also define D = maxi<i<n |Ni|. Then, for ran-

dom variable Z with standard normal distribution we have

This fact is obtained by using Stein’s method. Note that the Stein’s
method does not assume anything about joint distribution of depen-
dent subsets, only the size of the greatest dependent subset. We will
use these facts to prove a following

THEOREM 3. Let X = (X1,...,Xn) be a data vector. We
consider mechanism M(X) = 37 (X;). Let EX; = p; and
EX} < co. Suppose there are dependency neighborhoods Ny, i €
{1,...,n}, where D = maxigicn |Ni|. Let 0* = Var(M(X)).
If the data sensitivity is A then M (X) is (g, 0)-NP with following
parameters
AZ1In(n)
oz
and

D?%/26
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where X = (X; — p;) and

o) = 2(1 + ¢) (%)

Proof of this theorem is presented in the Appendix. Note that we
_ Xty Var(Xy)
= =i=l_———1 ag

ESE

denote 0> = Var(}_7_, X;) in contrast to o>
in previous section.

S. ADVERSARY WITH AUXILIARY
INFORMATION

So far we have not discussed auxiliary information of the adver-
sary, namely we assumed that the adversary only knows the correct
distribution of the data vector and dependencies in the data (if they
exist). We would like to extend our results from Subsections 3 and 4
to take into account the adversary’s knowledge about the exact val-
ues of at most fraction v of users. Let us assume that the auxiliary
information of the adversary consists of all records (values) of a
subset I" of the data. Let |I'| = « - n. Instead of n users contribut-
ing to adversarial uncertainty, we will have (1 — +) - n users who,
due to randomness in their data, make the aggregated value private.
This is stated in the following observation

OBSERVATION 1. Let us consider an adversary with knowl-
edge of exact values of all records of a subset I" of the data. Let
IT| = ~ - n. Then all previous theorems from this paper can be
easily adapted to such an adversary by considering data of size
(1 — ~)n instead of n contributing to randomness. This essentially
captures the fact that all other users (about whom adversary has no
information) still contribute to the randomness of the query. More-
over, if we assume that the adversary has auxiliary information
about every record of the data (that is |I'| = n) then this model col-
lapses to standard differential privacy, where no uncertainty comes
from the data itself. This shows that indeed the standard differential
privacy is a special, most pessimistic, case of this model.

Let us first introduce an extension to Theorem 2, which takes
into account the adversary’s knowledge about the exact values of
fraction of users.

THEOREM 4. Let X = (X1,...,X,) be a data vector, where
X, are independent random variables. Denote set of all indexes
by [n]. Assume that adversary knows the exact values of at most

fraction v of users. Denote the set of indexes of compromised users
. Var(X;
byT, where |T'| = yn. Let p; = EX; and o} = %
and B|X;|® < oo for everyi € {1,...,n}. Consider mechanism
M(X) =>"_,(X:). We denote data sensitivity of vector X and

mechanism M as A. M(X) is (e, )-NP with following parame-
ters

AZIn((1 —v)n)

(1 —7)not
and
L12Y, g BIX — wal? 4
= =R (L e) + =
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PROOF. Proof of this theorem is analogous to proof of Theo-
rem 2, with the single difference that only non-compromised users
contribute to the randomness, namely variance of the sum con-
sists of the uncompromised users variance. Therefore when using
Berry-Esseen theorem the sum weakly converges to normal distri-
bution with smaller variance than in the case where v = 0. Note
that in the proof we assume that we know which subset of users is
compromised. This might obviously be unknown to the data owner,
so we can assume the worst case, namely that the compromised
subset I is the subset of size yn with the greatest variance. This
might be checked by the owner (which such subset has the greatest
variance) and then the theorem holds, no matter which users are
really compromised. [

Similarly we can introduce an extension to Theorem 3



THEOREM 5. Let X = (Xu,...,Xn) be a data vector. Denote
set of all indexes by [n]. Assume that adversary knows the exact
values of at most fraction ~y of users. Denote the set of indexes of
compromised users by T, where |I'| = yn. We consider mechanism
M(X) =" (Xi). Let EX; = p; and EX;' < oo. Suppose
there are dependency neighborhoods N;, i € {1,...,n}, where
X = maxigicn | Ni|. Let of = Var(X\T). If the data sensitivity
is A then M (X) is (g, 8)-NP with following parameters

S FSTEE)
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PROOF. Here also the proof is analogous to the proof of Theo-
rem 3, and also the difference is that only non-compromised users
contribute to the randomness, namely variance of the sum con-
sists of the uncompromised users variance. When we bound the
Kolmogorov distance (using Stein method) between the sum and
a normal distribution, we use one with smaller variance (namely
variance of X \ T') than in the case where v = 0. As in the previ-
ous theorem, a practitioner can assume the worst case, namely that
the compromised subset I is the subset of size yn with the greatest
variance. [

These simple extensions of our previous theorem give us a com-
plete insight into noiseless privacy in adversarial model presented
in Subsection 2.2. The owner of the data (or any party responsible
for the privacy in central or distributed database) can give his users
a rigorously proved guarantee that as long as at most a fraction y
of users is compromised and (in dependent case) if the size of the
greatest dependent subset is at most D, then the privacy parameters
at least as good (we have shown the upper bound for the parame-
ters) as given in Theorem 4 if the data is independent or Theorem 5
if there are dependencies (known to adversary) in the data.

6. SYNERGY BETWEEN ADVERSARIAL
UNCERTAINTY AND NOISE ADDITION

In previous sections we have shown what are the privacy param-
eters for the randomness inherently present in the data. However,
it is easy to imagine that in many cases the amount of randomness
(adversarial uncertainty) might be too small to ensure desired size
of privacy parameters. Does it mean that in such case we have to
step back and use only standard differential privacy methods? For-
tunately, it does not. It turns out that the proofs of our theorems are
constructed in such a way, that it is possible to extend them to the
case where we add some noise to increase the randomness in the
data. Even more importantly, it is also easy to quantify how much

noise has to be added to improve privacy of the data to the desired
parameter in our adversarial model.

To the best of authors knowledge, so far there has not been any
approach in the privacy literature to combine the idea of utilizing
adversarial uncertainty (randomness in data) and standard approach
which is adding appropriately calibrated noise. The idea of adding
noise to already somewhat random data is quite simple, yet it needs
to be carefully analysed so that one may know exactly how much
does it enhance the privacy. It is intuitively very natural to think that
the more randomness is present in the data, the less noise (or none,
if the randomness itself is enough) we have to add to satisfy desired
level of privacy. However, to become a state-of-the-art approach
to preserving privacy, this intuition has to be formally introduced,
rigorously quantified and proved.

We now introduce a following

THEOREM 6. Let X = (X1,...,Xn) be a data vector, the
data sensitivity is A and Var(3Y" | X;) = o>. We consider
mechanism M (X)) which, due to adversarial uncertainty has cer-
tain privacy parameters (g1, ). We can improve this parameter by
adding unbiased noise of variance og. We show that M*(X) =
M (X + &) where & is noise (namely random variable such that
E¢ = 0and Var(§) = 052) preserves privacy with parameters

(e,0), where
[AZ1n(n)
E = 5, 2 -
o? + of

PROOF. This formula can be obtained in a straightforward man-
ner from our previous proofs. Similarly as in Theorems 4 and 5 one
can easily see that the sum of data with added noise has variance
o+ ag, because the noise is independent from data. Therefore ap-
propriate normal random variables to which we bound the distance
of our sum (as in Berry-Esseen theorem and Stein method) will
have greater variance, which in turn gives smaller varepsilon. []

This approach is quite similar as in the case where the adversary
has information about exact values of some fraction of the data, but
this time we add variance instead of subtracting it. Improving ¢
parameter by adding noise seems to be more difficult, as it might
require different approach to previous theorems. We leave it as an
interesting problem for future work. After this theorem we can also
present an useful observation

OBSERVATION 2. We can state Theorem 6 in a different way,
namely for a fixed privacy parameter €, we obtain that necessary
variance of the noise to obtain desired level of privacy is

A2 1 2.2
o2 = max (M()) 4
€
PROOF. This observation is obtained from Theorem 6 and quite
straightforward algebraic manipulations. []

We also give more specific observation concerning noise hav-
ing Laplace distribution, which is a common technique in standard
differential privacy approach (see for example [16])

OBSERVATION 3. Let X = (Xu,...,Xn) be a data vector,
the data sensitivity is A and Var(3.}_| X;) = o>. We consider
mechanism M (X) which, due to adversarial uncertainty has cer-
tain privacy parameters (€1, 9). We show that M*(X) = M (X +
&) where & ~ Lap(%) preserves privacy with parameters (g, 9),
where

e?-e2-In(n)
2e? +e2In(n)’



PROOF. This observation is obtained by application of Theo-
rem 6 for & ~ Lap(%). O

Theorem 6 allows the party responsible for preserving privacy
to enhance parameter ¢ of the data itself by using standard meth-
ods of differential privacy. See however, that the noise necessary to
achieve the desired level of privacy is smaller than using standard
differential privacy methods due to the fact, that we already have
some level of privacy achieved by the randomness present in the
data. We conclude our discussion concerning synergy between ad-
versarial uncertainty and differential privacy approach by showing
a following

EXAMPLE 2. We consider a data vector X = (X1,...,X,)
and mechanism M (X) having the data sensitivity A = 10 and

Var(M(X)) = o* = 1. We enhance the privacy by adding

Laplace noise of variance ag. Using Theorem 6 and Observa-
tion 2 we can compute what is the necessary variance of noise
to obtain privacy parameter ¢ = 0.2 depending on the number of
users. See Figure 5. See that we have also plotted the variance of

Var(Noise)
5000

4000
3000
2000

1000

1 1 1 1 L L 1 n
1200 1300 1400 1500

Figure 5: Example 2, red dashed line shows the variance of neces-
sary noise for Laplace mechanism using standard differential pri-
vacy approach. Blue thick line shows the variance of necessary
noise after taking into account the adversarial uncertainty.

noise using differential privacy approach, namely Laplace mecha-
nism (see [16]). We can see that in this example, for n up to around
1050 we have to apply standard differential privacy mechanism.
Moreover, for n greater than approximately 1350 we know from
our previous results that noise is unnecessary, because the data has
sufficient privacy parameters due to inherent randomness. Most
interesting, in terms of synergy of adversarial uncertainty and dif-
ferential privacy methods is the case where n is between 1050 and
1350. Here one can see that adding significantly less noise than
using standard differential privacy approach is sufficient to obtain
desired parameter ¢ = 0.2.

To sum up all our results, we present a flowchart, which shows
on high level of abstraction how should the data owner approach the
problem of preserving privacy in a general manner. See Figure 6.

7. PREVIOUS AND RELATED WORK

Our paper can be seen as an extension of the ideas introduced
in [5]. The authors of [5] proposed a new insight considering re-
laxation of differential privacy which utilizes the uncertainty of the
adversary. This was done in a contrast to standard differential pri-
vacy, which assumed that the uncertainty has to be injected by the
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Figure 6: A flowchart for privacy preserving in a general way.



randomized mechanism. Obviously the notion of differential pri-
vacy is quite pessimistic, as we assume that the adversary knows
almost everything. In many cases it makes differential privacy un-
usable in practice. The necessity to add noise to the final output
may render the data completely useless. Imagine situation where
we want to do a taxation audit. The aggregator collects the amount
of taxes paid by the individuals and then publish their sum. After
adding a noise, this sum will be different than the tax due, but now
we do not know whether it is because of the noise added, or if there
is some tax evasion undergoing. Very similar example, and also
some other, were given in [5]. This might be an extreme example,
but nevertheless, a big magnitude of noise (say linear of the size of
the data itself) would be problematic in most practical situations.
One such case is discussed in paper [20], where the magnitude of
noises for practical cases is huge, despite good asymptotic proper-
ties of the protocol.

In our paper we use the same model as in [5]. However, here it
is presented in a different way, which is more convenient for our
proofs. The results we give are more detailed (non-asymptotic) and
easy to use in practice and concern any type of data. To the best of
our knowledge, previous work in noiseless privacy and its deriva-
tives or generalizations consisted of asymptotic analysis only. The
unknown constants hidden in the big oh notation makes it difficult
to construct practical algorithms. Furthermore, we also give results
for data with (limited) dependencies, which did not appear in [5]
(apart from simple examples). Moreover, we showed that one can
combine noiseless privacy with standard approach, namely adding
some noise. It turns out that one can enhance the inherent random-
ness and reach desired level of privacy with less noise than using
standard approach.

There are many other papers that should be mentioned as a re-
lated work. Apart from [5] there were also very interesting and
important papers concerning various approaches to leveraging ad-
versarial uncertainty in privacy, especially [4, 24].

Both in [4] and [24] the authors proposed a frameworks (called
”coupled-worlds privacy” and ”Pufferfish”, respectively) for spec-
ifying privacy definitions utilizing adversarial uncertainty. They
could be instantiated in various ways, one of which boils down to
noiseless privacy. These papers are important generalizations of
ideas in [5], however the main goal of its authors is extending and
generalizing privacy definitions. Our paper, on the other hand, fo-
cuses on extending the types of data which have good noiseless
privacy parameters, on introducing dependencies in the data and
combining noiseless privacy with standard approach. Moreover,
we focus on detailed results which can be easily applied in real-life
scenarios of data aggregation.

Another paper that is somehow related to this one is [26], where
the authors utilized sampling to enhance privacy. They have also
given non-asymptotic privacy guarantees. However, the authors
of [26] show how we can get differentially private data using k-
anonymity by a simple sampling. On the other hand we consider
the problem of aggregation of dependent data. We believe that such
approach is more adequate for real-life scenarios. The model we in-
vestigated (revealed data) is substantially different. In particular we
deal with aggregated data from (possibly) dependent sources. The
authors of [26] have also proposed a theorem which is essentially
very similar to our Theorem 1. Note, however, that this theorem is
just a toy scenario in our paper, as we focus on any kind of data, not
limiting ourselves to specific distribution. Moreover, we introduce
local dependencies in the data.

Obviously, our paper is also strongly related to any work con-
cerning data aggregation under differential privacy regime, whether
the data is centralized or distributed.

Our results can for example be used in [35] wherein authors con-
struct a mechanism that allows the untrusted aggregator to learn
only the intended statistics but no additional information. More-
over the statistics revealed to the aggregator satisfy differential pri-
vacy. The result is obtained by combining applied cryptography
techniques to hide partial results with regular methods used for pri-
vacy preserving for the final result, which can be omitted under
noiseless privacy regime, thus not introducing any errors.

There is a long line of papers concerning similar problems as in
[35], for example two other notable papers [31] and [32]. In both
of them, the authors use a substantially different model of security.
Moreover in the latter the users communicate between each other,
while in [35] as well as in our paper we assume that there is a
communication between aggregator and individual users only.

Note that most of protocols described in these related papers fail
to provide the correct output even if only a single user abstains from
sending his share of the input. The solutions for dynamic networks
have been presented in [20] and [8]. Approach based on [35] was
also focused on more advanced particular processing of aggregated
data (e.g., evaluation and monetization) while keeping privacy of
users is discussed in several papers ([2, 17, 6, 30]). Another vain
of protocols represent [1, 21] wherein authors present some aggre-
gation methods that preserve privacy, however they do not consider
dynamic changes inside of the network. The latter also considers
data poisoning attacks, however the authors do not provide rigid
proofs. In [29, 34] the authors present a framework for some ag-
gregation functions and consider the confidentiality of the result,
but leaving nodes’ privacy out of scope. Clearly there are many pa-
pers discussing aggregation protocols without considering security
nor privacy issues (e.g., [22, 27]). There is a long list of papers
devoted to fault tolerant aggregation protocols ([19, 23, 25]) for
significantly different settings.

One could use the notion of noiseless privacy, especially the ex-
plicit results given in our paper, to get rid of the noise addition
(thus, the error introduced in result of a query) in many protocols
in papers mentioned in this section.

As a related work we shall point also a huge body of papers
dealing with differential privacy notions and their extension. The
idea of differential privacy has been introduced for the first time
in [15], however its precise formulation in the widely used form
appeared in [11]. Most important properties have been introduced
in papers [13, 14]. There is a long list of papers that can be seen as a
direct extension of [15] i.e., [6, 13]. In all that papers a substantially
different trust model is used. Namely there is a party called curator
that is entitled to see all participants’ data in the clear and releases
the computed data to wider (possibly untrusted) audience.

Paper [28] presents aggregation of elements of dataset from per-
spective of preserving differential privacy. The presented frame-
work significantly differs from our approach in a few points. First
of all, it uses adding noise to raw data.

An introduction to differential privacy can be found in [12]. An
excellent, comprehensive description of recent results can be found
in [16].

8. CONCLUSIONS AND FURTHER WORK

We have shown an explicit bounds for privacy parameters in the
case where we can utilize adversarial uncertainty. We have pre-
sented specific model of privacy (which boils down to the one given
in [5]) and introduced model of the adversary. To the best of our
knowledge, in the papers concerning leveraging inherent random-
ness in the data there were only asymptotic results so far. By show-
ing an explicit guarantees for privacy parameters, we have made
the whole idea more approachable in practice.



Another important contribution of this paper is approaching de-
pendent data, namely using the notion of dependency neighbor-
hoods. To the best of authors knowledge, such approach has not
appeared yet in the literature concerning utilizing adversarial un-
certainty to give privacy guarantees. There were some very simple
cases, but here we give privacy guarantees for any distribution for a
wide class of dependencies. Namely we only need to know the size
of the largest dependent subset (or the upper bound for the size)

Moreover, we have shown the parameters regardless of the distri-
bution of the data. The data owner only has to plug the variance of
the data (or the lower bound for variance), data sensitivity (which
is also necessary in standard differential privacy approach) and ap-
propriate central moments. Then he can give a specific privacy
guarantee to its users that as long as at most «y is compromised and
as long as the greatest dependent subset has size D. The simplic-
ity of usage for practitioners was very important in this paper. We
want these theorems to be usable not only by the privacy experts,
but any specific domain experts, so we have made the theorems sort
of *off-the-shelf” formulas to use.

Furthermore, we have shown how does the standard differential
privacy approach combines with the notion of inherent randomness
in the data. It turns out that the intuition that if the data is more
’random’, then less noise is necessary to achieve specific privacy
parameter. We formalize and quantify the level of privacy enhance-
ment. To the best of our knowledge, such attempt was not presented
before in the privacy literature. So far the only attempts were either
’all’ (as in standard differential privacy methods) or 'none’ (as in
for example [4, 5, 24]). Here we give the data owner the possibility
to maintain a tradeoff between these two approaches.

Some questions are still left unanswered and they might be quite
interesting both from practicioner’s point of view as well as for the
theory. We leave them as a future work.

e How the database (or distributed system) designer should de-
cide about the level of randomness in the database? In other
words, even though in many papers we are given various
frameworks to instantiate a specific scenario, how should the
practitioner decide which instance to use? Even though we
give quite a wide choice for the practitioner (he only needs
upper bounds for compromised users, variance and, in de-
pendent case, the size of greatest dependent subset) it still
might be cumbersome in some cases. A general method for
such a problem would be of great practical value.

We hope to find an even more precise approach to connect
the randomness in data with its privacy level. A promising
direction is to use notion of min entropy notion (see e.g., [9])
of data source assuming limited dependencies between val-
ues kept by users.

e Finding a way to improve also the § parameter (we have al-
ready shown how to improve €) by adding some noise (albeit
less than in standard differential privacy) might be very in-
teresting and useful as well.

9. ACKNOWLEDGMENTS

Krzysztof Grining is supported by NCN Polish National Science
Center (grant number 2015/17/B/ST6/01897). Marek Klonowski is
also supported by NCN (grant number 2013/09/B/ST6/02258).

10. REFERENCES

[1] PDA: Privacy-Preserving Data Aggregation in Wireless
Sensor Networks, 2007.

[2] G. Acs and C. Castelluccia. I have a dream! (differentially
private smart metering). In T. Filler, T. Pevny, S. Craver, and
A. D. Ker, editors, Information Hiding - 13th International
Conference, IH 2011, Prague, Czech Republic, May 18-20,
2011, Revised Selected Papers, volume 6958 of Lecture
Notes in Computer Science, pages 118—132. Springer, 2011.

[3] A.D. Barbour and L. H. Chen. ’An Introduction to Stein’’s
Method’, volume 4. World Scientific, 2005.

[4] R. Bassily, A. Groce, J. Katz, and A. Smith. Coupled-worlds
privacy: Exploiting adversarial uncertainty in statistical data
privacy. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 439-448. IEEE,
2013.

[5] R. Bhaskar, A. Bhowmick, V. Goyal, S. Laxman, and
A. Thakurta. Noiseless database privacy. In International
Conference on the Theory and Application of Cryptology
and Information Security, pages 215-232. Springer, 2011.

[6] I. Bilogrevic, J. Freudiger, E. D. Cristofaro, and E. Uzun.
What’s the gist? privacy-preserving aggregation of user
profiles. In M. Kutylowski and J. Vaidya, editors, Computer
Security - ESORICS 2014 - 19th European Symposium on
Research in Computer Security, Wroclaw, Poland, September
7-11, 2014. Proceedings, Part II, volume 8713 of Lecture
Notes in Computer Science, pages 128—145. Springer, 2014.

[7] T.-H. H. Chan, E. Shi, and D. Song. Optimal lower bound for
differentially private multi-party aggregation. IACR
Cryptology ePrint Archive, 2012:373, 2012. informal
publication.

[8] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving
stream aggregation with fault tolerance. In A. D. Keromytis,
editor, Financial Cryptography, volume 7397 of Lecture
Notes in Computer Science, pages 200-214. Springer, 2012.

[9] T. M. Cover and J. A. Thomas. Elements of information
theory (2. ed.). Wiley, 2006.

[10] D. P. Dubhashi and A. Panconesi. Concentration of measure
for the analysis of randomized algorithms. Cambridge
University Press, 2009.

[11] C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Automata, Languages
and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II,
volume 4052 of Lecture Notes in Computer Science, pages
1-12. Springer, 2006.

[12] C. Dwork. Differential privacy: A survey of results. In
M. Agrawal, D.-Z. Du, Z. Duan, and A. Li, editors, TAMC,
volume 4978 of Lecture Notes in Computer Science, pages
1-19. Springer, 2008.

[13] C. Dwork, K. Kenthapadi, F. McSherry, 1. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In S. Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 486—503. Springer, 2006.

[14] C. Dwork and J. Lei. Differential privacy and robust
statistics. In M. Mitzenmacher, editor, Proceedings of the
41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 371-380. ACM, 2009.

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In




[16]

(7]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Halevi and T. Rabin, editors, Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876
of Lecture Notes in Computer Science, pages 265-284.
Springer, 2006.

C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211-407, 2014.

Z. Erkin, J. R. Troncoso-Pastoriza, R. L. Lagendijk, and

F. Pérez-Gonzdlez. Privacy-preserving data aggregation in
smart metering systems: An overview. IEEE Signal Process.
Mag., 30(2):75-86, 2013.

W. Feller. An introduction to probability theory and its
applications, volume 2. John Wiley & Sons, 2008.

Y. Feng, S. Tang, and G. Dai. Fault tolerant data aggregation
scheduling with local information in wireless sensor
networks. Tsinghua Science & Technology, 16(5):451 — 463,
2011.

K. Grining, M. Klonowski, and P. Syga. Practical
fault-tolerant data aggregation. In International Conference
on Applied Cryptography and Network Security, pages
386—404. Springer, 2016.

W. He, X. Liu, H. Nguyen, and K. Nahrstedt. A cluster-based
protocol to enforce integrity and preserve privacy in data
aggregation. In ICDCS Workshops, pages 14-19. IEEE
Computer Society, 2009.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor
networks. In Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and
Networking, MobiCom "99, pages 174—185, New York, NY,
USA, 1999. ACM.

A. Jhumka, M. Bradbury, and S. Saginbekov. Efficient
fault-tolerant collision-free data aggregation scheduling for
wireless sensor networks. Journal of Parallel and Distributed
Computing, 74(1):1789 — 1801, 2014.

D. Kifer and A. Machanavajjhala. Pufferfish: A framework
for mathematical privacy definitions. ACM Transactions on
Database Systems (TODS), 39(1):3, 2014.

M. Larrea, C. Martin, and J. Astrain. Hierarchical and
fault-tolerant data aggregation in wireless sensor networks.
In Wireless Pervasive Computing, 2007. ISWPC *07. 2nd
International Symposium on, Feb 2007.

N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy or, k-anonymization meets
differential privacy. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications
Security, pages 32-33. ACM, 2012.

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(S1):131-146, Dec. 2002.

K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
Proceedings of the Thirty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’07, pages 75-84, New York,
NY, USA, 2007. ACM.

S. Papadopoulos, A. Kiayias, and D. Papadias. Exact
in-network aggregation with integrity and confidentiality.
Knowledge and Data Engineering, IEEE Transactions on,
24(10):1760-1773, Oct 2012.

A. M. Piotrowska and M. Klonowski. Some remarks and
ideas about monetization of sensitive data. In

J. Garcia-Alfaro, G. Navarro-Arribas, A. Aldini,

F. Martinelli, and N. Suri, editors, Data Privacy
Management, and Security Assurance - 10th International
Workshop, DPM 2015, and 4th International Workshop,
QASA 2015, Vienna, Austria, September 21-22, 2015.
Revised Selected Papers, volume 9481 of Lecture Notes in
Computer Science, pages 118-133. Springer, 2015.

V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption.
In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD 10, pages
735-746, New York, NY, USA, 2010. ACM.

E. G. Rieffel, J. T. Biehl, B. van Melle, and A. J. Lee.
Secured histories for presence systems. In W. W. Smari and
G. Fox, editors, 2011 International Conference on
Collaboration Technologies and Systems, CTS 2011,
Philadelphia, Pennsylvania, USA, May 23-27, 2011, pages
446-456. IEEE, 2011.

N. Ross et al. Fundamentals of stein’s method. Probab. Surv,
8:210-293, 2011.

S. Roy, M. Conti, S. Setia, and S. Jajodia. Secure data
aggregation in wireless sensor networks: Filtering out the
attacker’s impact. Trans. Info. For. Sec., 9(4):681-694, Apr.
2014.

E. Shi, T. H. Chan, E. G. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In
Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th
February - 9th February 2011. The Internet Society, 2011.
I. Tyurin. A refinement of the remainder in the lyapunov
theorem. Theory of Probability & Its Applications,
56(4):693-696, 2012.




APPENDIX
A. TECHNICAL PROOFS

A.1 Proof of Theorem 1

PROOF. First, we will prove the following lemma.

LEMMA 1. Let X ~ Bin(n,p). Fix an arbitrary A > 0 such
that (np—A) > 0and (np+X) < n. Letu € [np— A\, np+ANZ
and let v € Z such that |u — v| = 1. We have

P(X =u) < eP(X =),

where

A 1 1 1
n <1_p - \/X_P> P < 29

AL 1 1
n (p @7(17p>),p> 2°
PROOF. We want to bound I;gzz)), where |u — v| = 1 and

X ~ Bin(n,p). Furthermore, we know thatu € [np—\, np+A]N
Z. First observe that we get the biggest ratio either for the smallest
or greatest possible u. Moreover, if p < % we get the biggest ratio
for the smallest possible u. Therefore it remains to check these two
cases, calculate €1 and &2 and pick € = max(e1, €2).

Let us begin with the case where p < % Then we have X ~
Bin(n,p). One can easily check that the greatest possible ratio
isforu = [np — A] and v = (u — 1). We can bound it in the
following way

_n—[np=A] p

P(X=[np—A) _
P(X =[np-Al-1) [np—X]  1-p =
<nfnp+)\. P

np— A 1—p
A A
Tt aa _ i)

= <
np np

Ultimately we are interested in the natural logarithm of that ratio.
We have

eXp(ﬁ) A A
51:1°g< x| T aiop) _log<1_7p) s

np

A 1 1 1
< -1 =\ -
n(l —p) plp (n(l—p) * np—A)

np

A1
S \l-p 2_p)’

where the inequality comes from the fact that (1 — 1) < log(x)

for x > 0. See also that 1 — %p > 0, because we assumed that

(np — A) > 0. We also have p > % so all performed derivations
are correct. Note that we picked the biggest possible ratio, so for
p < % it is true for every u € [np — A, np + \] N Z that

P(X =u)

A T < et =) < et =
P(X =) L€' <= P(X =u)<e'P(X =v),

where [u — v| = 1. Now let us assume that p > 1. In that case
the greatest possible ratio is foru = (np + ) and v = (u + 1).
One can easily see, that we can simply consider Bin(n, 1 — p) and
apply exactly the same reasoning as before. That leaves us with

Similarly, we have (1 —p) > %, so there is no division by 0. In the
end, we conclude that for a fixed A we have the following:

A1 1 1

n <§ - \F_p> P < 3
i_ 1 1

In the end we found €, which has a property that for all

u € [np— A\, np+ A]NZ and |u — v| = 1 it holds that

P(X =u) < eP(X =),

E =

3>

which concludes the proof of this lemma. [

Now we can continue with the proof of our Theorem. Let us
begin with the first case, where ¢ is fixed. One obvious observa-
tion is that M (X) ~ Bin(n,p). Using Chernoff bounds (see for
example [10]) for binomial distribution we get

2

P(M(X) > np+A) + P(M(X) < np—\) < 2exp G&) .
n

We want to limit the tail probability by parameter §, so we want to

find a A such that the right side of this inequality is equal to §. This

yields

2
nln
2

2
2 exp (7&) =§ <= \=
n

Letus denote theset S = {[pn— A1, ..., [+ A}, which is exactly
the support of M (X) without the tails which probability we just
limited by §. Now we have to find ¢ such that, apart from the tails,
the following condition is satisfied

< 5) .

Vacs ( log (W>

P(M(X') € B)

It is easy to see that instead of checking all subsets of .S, we can
check only the single values, because taking a single value with a
bigger ratio yields worst case bound. For that, we can use Lemma 1.
We indeed have M (X) ~ Bin(n,p). Recall that we assumed
0 > P(M(X) =0)+ P(M(X) = n). This means that at least
0 and n are in the tail that we already limited by . Therefore,
(np—A) > 0and (np 4+ A\) < n. Applying Lemma 1 for M (X)
and A we obtain that

P(M(X) =u) < eP(M(X) =v),

M

n(3)

for u € S and [u — v| < 1. Observe that 2 = 5~ so from
Lemma 1 we have
n(3) 1 1 p<t
2n 1-p 1n(%) TS 20
e=¢(n,p,0) = ot
n(3) [ 1 1 1
1 p> 3.
2n P n(2 ) 2
VR

Now see that in our case, for X; ~ Bin(1,p) i.i.d. we have data
sensitivity 1. One can easily see that adding or removing a single
data point can change the sum only by 1. Therefore we have

P(M(X)eS)<eP(M(X')eS)+6,

where X and X' are adjacent vectors and € = &(n,p,d). The
addition of § comes from the fact that we bound the tails of M (X).

Now we assume that we have a fixed ¢ > 0. Let @« = ¢® and

w = ﬁ. We use similar reasoning as in Lemma 1. First let us



consider p < % We are interested in the greatest integer k£ smaller
than np, which does not satisfy the following
P(M(X) = k)
P(M(X ) =k—-1)

We have
PM(X)=k) n—k w>a o< W
PMX)=k-1) &k a+w’
Now letus pick A\ = pu—k > p— a+w We will bound the tail
using Chernoff bound
—2)7
Ak)
crn o ()
_2 a+w
< exp =

a—l
_exp< 2np a+w>>'

Now we can pick ¢; in the following way

81 =PM(X)<p— ) +PM(X) >

2
-1
< 26Xp (—2np2 <ej<}>p> > .
1-p

When p > % we can do similar symmetric reasoning as before, we

obtain
£ 1 2
6 < 2exp | —2n(1 —p)* [ =2 ).
2 Xp< ( P) (6€+lpp> >

Now we pick 6 which is max(d1, d2), so we have

2
2eXp —2"1172 (e:j—i> ) D < %7
1-p
2
2exp | —2n(1 — p)? (EE‘:_L) ) ,p > %
p

This concludes the proof, because we have found a bound for the
subset of possible values which did not satisfy our required ratio.
In the end we have

PM(X)eS)<eP(M(X')YeS)+6
which concludes the proof.

A.2 Proof of Theorem 2

PROOF. To prove this theorem, we will use Facts 1 and 2 from

Section 3. Let X = >" | X; and 0® = %ﬂ? Let u,v €
supp(X) and |u—v| < A. For any Borel set B let us denote B,, =
{b+wu : b € B}. For simplicity let us, for now, assume that EX; =
0 for every i. From assumptions we also know that F|X;|* < oo
for every i, so we can use Fact 2. Let Z ~ N (0, no?). For every
B, we have

w4 Ag) <

5=

P(X € B,) < P(Z € By,) + 241,
where §; < W% is the rate of convergence described
'?:1 I; 2

in Fact 2. Now we can use Fact 1:

P(Z € By) + 251 < e P(Z € By) + 261 + 62.

Both ¢ and §5 are parameters from Fact 1 for the normal distribution
with variance no? and in case where |u — v| < A. In particular,

we can fix do = ﬁ. From Fact 1 we get
_[AZIn(n)
o no?

Now we have to return to our initial distribution. Again, we use
Fact 2.

e"P(Z € By) + 201 + 02 <
< e*P(X € By) +261(1+¢€%) + 6.
During this reasoning we already obtained €. We also have

11230, E|X,)? (14e) +

6 =201(1 N
1(1+4e (2?2103)3 5f

)+ 02 <

Note that for simplicity we assumed E'X; = 0. One can easily see

that for Y; = (X; — s ), where u; = EX; the proof is still correct.
Therefore we have
. L1230 EIXG — wil? 4
6 =201(14€")+0d2 < 21 Bl . il (1+e*)+—=
( i1 ‘72) 2 v

Finally we have

P(X € By)

which concludes the proof. [

A.3 Proof of Theorem 3

PROOF. To prove this lemma, we use facts stated in Section 4,
namely Fact 3 and 4. We also use Kolmogorov and Wasserstein
distances, which were defined in Section 4 in Definition 6. We have
X =" X;ando® = Var(X). Letu,v € supp(X) and |u —

v| < A. For any Borel set B let us denote B, = {b+u: b € B}.
Moreover, throughout the proof we denote B“ ={2:be B,}
For simplicity let us, for now, assume that EXi = 0 for every .
Let Z ~ N(0,n0?). For every B, we have

P(XeBu):P(Ee&).
g g

Recall that we assumed FX; = 0 and EX:I < 00. Now let Z ~
N(0,1). From Fact 4 we have

X
w(57) <2
Note that for simplicity we assumed EX; = 0. One can easily

see that for X; = (X; — p,), where p; = EX; the proof is still
correct. We have

ZE\XI + :/f%

n

X D? .3 D226
dw | =, Z) < = D) _BIX;["+ —F5=
W(U’ ) 03; X+ o2/

n

> B!

We can use Fact 3 to get Kolmogorov distance of % and Z.

Namely
%
(7)< () o (52)
o m o




Having Kolmogorov distance of % and Z, we can proceed further

g g

p<ZG i) T 2dx (5,2) _
ag

=P (Z 0 € By +2dx (5,2).
g

Now we can use the property of the normal distribution stated in
Fact 1.

P(Z -0 € By) + 261 <
e*P(Z -0 € By) + 2dk (E,Z) + 67.
ag

Both ¢ and 67 are parameters from Fact 1, for the normal distribu-
tion with variance ¢ and |u — v| < A. In particular, we can fix
01 = \F From Fact 1 we get

AZ1In(n)
o2
Now we have to return to our initial distribution. Again, we use
Facts 3 and 4.

X
e P (Z -0 € B,U) + 2dx (*,Z) + 01 <
g
X X
<eP (— € B—) + 2dx (—,Z) (1+e) 16 =
g
1> X [
=e"P(X €By)+2dx | =,Z ) (1 +¢€%) + b1.
o
We already obtained €. We also want to find an upper bound for
§ =2dk (£, Z) (1 + €°)+ 2. For this purpose we can use previ-

ously shown inequalities concerning Kolmogorov and Wasserstein
distance

6 = 2dx (?Z) (I1+e°)+61 <

5v/n’

Summing it up we obtain
X
P(X € B,) <e*P(X € By) +2dk (;,Z) (I+e)+4d0 <

< BSP(X € Bv)+6,

which concludes the proof. [J

B. COMPARISON TO STANDARD
DIFFERENTIAL PRIVACY

Clearly noiseless privacy is an extension of the regular differen-
tial privacy from [15] that is applicable to the case when we can
assume that the observer/attacker may treat the raw data of users

(before being processed) as random variables. In particular if we
assume that all data items are concentrated in single points (i.e,
P(X; = xz;) = 1 for all i ) we get the original (e, §)-differential
privacy.

While the standard differential privacy definition guarantees im-
munity against attacks based on auxiliary information (i.e., from
publicly available datasets or even personal knowledge about an in-
dividual participating in the protocol), the noiseless privacy is more
general as we can either assume that the adversary has no auxiliary
information, or assume that there is an upper bound on the size of
subset of database entries about which he has some external knowl-
edge. Note that if we assume full auxiliary information, this renders
noiseless privacy completely unacceptable, which is very intuitive,
as the whole notion of adversarial uncertainty demands that the ad-
versary does not have full knowledge. Moreover, it is often quite
too pessimistic to assume that the adversary knows everything ex-
cept for the single data record which privacy he wants to breach.

REMARK 1. See that in the standard differential privacy defi-
nition (e.g. [16]) we essentially want

P(M(X)€ B|X =) <eP(M(X') € BIX' =1') +,

where x and x' are adjacent, deterministic vectors.

This captures the notion of neighboring databases. Our approach
is indeed a relaxation of that definition, as we do not necessar-
ily condition the data to have some fixed, deterministic value. We
rather treat the data inputs as random variables. In particular, if
we have X = x with probability 1 then our model collapses to
standard differential privacy.

Differential privacy has some very useful properties. First of all, it
is immune to post-processing, so the adversary cannot get any ad-
ditional information, and consequently cannot increase the privacy
loss by convoluting the result of a mechanism with some determin-
istic function.

FACT 5. Noiseless privacy is, similarly to standard differential
privacy as stated in [16], resilient to post-processing. The proof
goes almost exactly the same way as for standard differential pri-
vacy. Let f : R — R’ be a deterministic function. Let also
T ={reR: f(r) € S}. Nowfix S C R/, privacy mecha-
nism M and a random vector X. We have

P(f(M(X)) € S) =P(M(X)eT) <
<eEP(MX)eT)+5=eP(f(M(X') €S)+56,
which completes the proof of this remark.

Another important property of differential privacy is its compos-
ability. There has been an extended discussion concerning compos-
ability of noiseless privacy and its derivatives in [4, 5, 24].



