
On Randomized Leader Election Algorithms based
on Extrema Propagation∗

Dominik Bojko1, Jacek Cichoń2, and Bogdan Węglorz3

1 Department of Computer Science, Faculty of Fundamental Problems of
Technology, Wroclaw University of Science and Technology, Poland
dominik.bojko@pwr.edu.pl

2 Department of Computer Science, Faculty of Fundamental Problems of
Technology, Wroclaw University of Science and Technology, Poland
jacek.cichon@pwr.edu.pl

3 Faculty of Mathematics and Natural Sciences, School of Exact Sciences,
Cardinal Stefan Wyszyński University of Warsaw, Poland
b.weglorz@uksw.edu.pl

Abstract
We consider a general framework for randomized leader election algorithms. The randomization
is used only for generation of nodes identifiers and the other part of considered algorithms are
deterministic. Its most important part is based on the extreme propagation technique. We
consider both multi-hop and single-hop networks model. The correctness of considered algorithm
is based on such random generation of nodes identifiers from a linearly (totally) ordered set that
there is only one node with the maximal identifiers - the node which generate the maximal
identifier will become leader in our algorithms. We will show that this approach cover some
previously considered algorithms.

1998 ACM Subject Classification C.2.4 Distributed applications, G.3 Probabilistic algorithms

Keywords and phrases leader election, extrema propagation, randomized algorithm, probability

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.23

1 Introduction

Electing a leader is a fundamental problem in distributed systems and it is studied in a
variety of contexts and scenario. It is a broadly studied useful building block in distributed
systems, whether wired or wireless, especially when failures can occur. For example, if a
node failure causes the token to be lost in a mutual exclusion algorithm, then the other nodes
can elect a new leader to hold a replacement token.

There exists a huge literature on leader election algorithms. There are many of them
which assume that each participating node has a unique identifier. They are used to identify
participants during the election process. Node identifiers are used to break ties among nodes
which have the same value. For example, H. Garcia-Molina in famous paper [12] introduced
Bully Election Algorithm which explicitly assumes that the nodes have unique identifiers.
The same assumption may be found in a lot of more recent algorithms (see, for example [19]).

The standard definition of the leader election problem for static networks (see e.g. [2]) is
that

∗ This paper is based on work supported by Polish National Science Center (NCN) grant number
2013/09/B/ST6/02258 and by Wrocław University of Technology grant S50129/K1102

© Dominik Bojko, Jacek Cichoń, Bogdan Węglorz;
licensed under Creative Commons License CC-BY

The 20th International Conference on Principles of Distributed Systems.
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On Randomized Leader Election Algorithms based on Extrema Propagation

1. eventually there is a leader and
2. there should never be more than one leader.
We shall slightly weaken this requirements into the following ones:
1. eventually there is a leader and
2. with a very high probability there should never be more than one leader.
By a very high probability we mean, for example, a probability at least 1− 1

1020 . We claim
that for any practical application such probability is sufficient.

We will discuss several variants of leader election algorithms which are based on the
extrema propagation techniques for networks, popularized in [3], [4]. One of advantages
of this technique is its logical clarity and simplicity for implementation. All algorithms
considered in our paper start from random assignment of temporary identifiers to all nodes.
The problem of assigning distinct labels to nodes of an unknown anonymous network was
considered by other authors. For example, in [11] author show an algorithm for assigning
short distinct labels, but their approach cannot be used for leader election, since they assume
that there exists one distinguished node in the network. Our approach is different: we are
assigning rather long labels, but in a very quick way. We shall examine carefully how long
random we should use.

Networks are modeled as simple (unordered) connected graphs (V,E), where V repres-
ents the set of nodes taking part in the protocol and the set E of edges represent direct links
between nodes. In the case of arbitrary connected graph we assume that we know an upper
bound on the diameter of the graph. We also assume that we know an upper bound on the
number of nodes and that the network is synchronized and the time is divided into discrete
rounds.

1.1 Our Contribution
Most of leader election algorithms require existence of unique nodes identifiers. We show that
we can use instead random identifiers. We show how to implement this method in multi-hop
model and in a single-hop model (the beeping model). We derive a formula connecting
the problem of proper generation of identifiers with the classical sum of powers of integers
problem (Theorem 4). Finally we show that several known leader election algorithms (among
other algorithms from [17], [14]) are covered by the framework discussed in this paper.

1.2 Organization of the Paper
In Section 2 we discuss the general framework of leader election algorithms based on the
maximum propagation. In Section 4 we discuss randomized methods for generation of unique
identifiers. In Section 5 we compare discussed algorithms with some algorithm from the
literature.

2 General framework

The listing Algorithm 1 contains a general framework of analyzed algorithms. They are
divided into three parts: choosing identifiers, spreading information about chosen identifiers
in the network and informing whole network about final decision.

Part 1 of this framework will be discussed in Section 4. Two scenario for the realization of
the part 2 will be discussed in Section 3. The part 3 of this framework will not be discussed
in this paper, since it can be realized in a standard way using simple flooding algorithm (as
a result we may obtain a spanning tree with root being the leader).

D. Bojko and J. Cichoń and B. Węglorz 23:3

Algorithm 1 General Framework
1: each node generate its temporal identifier
2: network runs an algorithm which inform the node with the highest identifier that it is

the leader
3: (if required) the selected node inform all other nodes

3 Selection of leader

In this section we show two different realizations of the framework described in Algorithm
1. The first one is designed for multi-hop environment. The second one is designed for
single-hop ones. Both algorithm are designed for each node in the network. They start with
a sub-procedure of choosing a random identifiers. We do not specify here how it can be done
- this will be explained in Section 4.

3.1 Multi-hop flooding model
Let us consider an arbitrary simple connected graph and let D denotes an upper bound the
its diameter. We assume that at the beginning of the round each node can read all messages
from all of its neighbors and that at the end of each round each node can send messages
to all of its neighbors. We fix a finite linearly ordered set (Ω,�) and we assume that each
node v ∈ V generates in some way an element Xv ∈ Ω. We will show that if there exists an
unique node u such that Xu =� −max{Xv : v ∈ V } then the Algorithm 2 correctly selects
the leader.

Algorithm 2 Maximum Based Leader Election
1: procedure Select(D,Ω) . For each node
2: generate randomly an identifier X ∈ Ω
3: actMax = X;
4: Leader = true
5: send actMax to all neighbors
6: for I = 1 to D do . D is an upper bound on graph diameter
7: T = list of all numbers received from all neighbors
8: if Max(T) � actMax then
9: Leader = false

10: actMax = Max(T)
11: send actMax to all neighbors
12: end if
13: end for
14: end procedure

I Theorem 1. Is there is a unique node which selects a maximal element from the set
{Xv : v ∈ V } then the Algorithm 2 selects this node as the unique leader.

Proof. Let u be the node with maximal identifier and let M = Xu be the biggest identifier.
Let V0 = {u} and let Vk = {v ∈ V : v.actMax = M after k-th round}. It is easy to see
that Vk = {v ∈ V : d(u, v) ≤ k} (where d(x, y) counts the number of hops between nodes
x, y ∈ V). Therefore VD = V (D is un upper bound on the graph diameter). Observe also if
v ∈ VK and v 6= u then we have v.Leader = false. J

OPODIS 2016

23:4 On Randomized Leader Election Algorithms based on Extrema Propagation

Remark 1

Let ∆ denotes the graph diameter. Then ∆ ≤ D. From the above proof we deduce that
V∆ = {u}. Moreover, it is easy to see that after ∆-th round no message is send in Algorithm
2. Therefore this algorithm posses self-stabilization property. We do not require to implement
any counters controlling the distance traveled by messages.

Remark 2

Algorithm 2 can be optimized in several ways. For example, in line 11 sending a message to
a node from which the given node hear about Max(T) value is not necessary. This slight
improvement decrease significantly the number of transmissions, specially in linear graphs.
Another improvement (or rather extension) is an embedding the process of building the
spanning tree rooted at the leader into the main loop.

Remark 3

Algorithms based on extrema propagation technique are quite fault-tolerant both on nodes
and links damages. Moreover, the average message complexity in the case of using uniform
distribution for generating random identifiers is of order O(n logn), where n = |V | (see [7]).

3.2 Single-hop "beeping model
We consider now the complete graph topology of the network, i.e. a single-hop situation.
We will consider a "beeping - model" (see e.g. [8], [1], [9], [15], [5]). In this model the
time is divided into rounds and in each round each station can send a short signal, call a
"beep", or may listen. When listening it can recognize a signal send by any other node - the
distinction between "SINGLE" and "COLLISSION" (the situation when two or more nodes
sends a BEEP) is not necessary. This model, introduced by Cornejo and Kuhn [8] in 2010,
is a very weak network communications model. The model is related to the ad-hoc radio
network model, and can used, for example, as a surrogate model in results concerning radio
networks with collision detection. The beep model is interesting in its own right because of
its generality and simplicity.

We assume that the identifiers are from the set Ω = {0, . . . , L−1}. Let K = blog2(L)c+1.
We write each number X ∈ Ω in base 2:

X = a0 + a1 · 2 + a2 · 22 + . . .+ aK2K

(where ai ∈ {0, 1}) and we define the string binK(X) = aKaK−1 · · · a1a0 (note the reverse
order). The sequence bin(X) is used in the Algorithm 3 for selection of the leader.

I Theorem 2. Is there is a unique node which selects the maximal number from the set
{Xv : v ∈ V } then the Algorithm 3 selects this node as the unique leader.

Proof. Let us call a node eliminated after the k-th round if its variable leader takes value
false after this round.

We shall proof this by an induction of the number K. Suppose first that K = 0. Let u
be the node with maximal identifier and let v be an arbitrary other node. Then su = 1 and
sv = 0, so the node v is eliminated after (the only) first round.

Suppose now that K > 0 and that the theorem if true for all K ′ < K. Let u be the node
with maximal identifier and let k = min{i : su(i) = 1}. Then for any node v and i < k we
have sv(i) = 0. All nodes v such that sv(k) = 0 are eliminated ot the end of k-th round.

D. Bojko and J. Cichoń and B. Węglorz 23:5

Algorithm 3 Leader Election in Beeping Model
1: procedure Select(L) . For each node
2: generate randomly an identifier X ∈ {0, . . . , L− 1}L

3: K = blog2(L)c+ 1
4: S = binK(X)
5: Leader = true
6: for I = 1 to K+1 do
7: if (S[I] = 1) then
8: Send BEEP;
9: else

10: listen;
11: if hear BEEP or COLLISION then
12: Leader = false
13: exit loop
14: end if
15: end if
16: end for
17: end procedure

Let Vk = {v ∈ V : sv(k) = 1}. This is the set of nodes which are not eliminated after k-th
round. Clearly u ∈ Vk. If Vk = {u} then the leader is selected. Suppose hence that Vk 6= {u}
From this moments all nodes from the set V1 are using sequences ak+1ak+2 . . . a1a0, which
corresponds to sequences bin(Xv − 2k). Therefore we reduce the problem to sequences of
length K + 1− k = (K − k) + 1, hence to K ′ = K − k < K. So, we may use the inductive
hypothesis. J

4 Generating unique identifiers

In the analyzed in this paper framework of leader election algorithms each node u at
the beginning of protocol generate a random number ξu using its pseudo-random number
generator (PRNG), transform the generated number ξu into an element Xu from an linearly
ordered set (Ω,�) and use it as its temporary identifier. If there exists only one node u
which selects the element � −max{Xv : v ∈ V } then the node u with the � - maximal
temporary identifier Xu may be selected as the leader. We start with one general result
about the probability of this event.

I Theorem 3. Let X1, . . . , Xn be a sequence of independent random variable with the same
distribution and with values in the set {1, . . . ,∞}. Let n > 1 and let S denotes the event
(∃i)(∀j 6= i)(Xj < Xk). Then

Pr[S] = n

∞∑
k=2

Pr[X1 = k] Pr[X1 < k]n−1 (1)

Proof. Notice that each random variables X1, . . . , Xn are equally distributes, so Pr[(∀j 6=
a)(Xj < Xa)] = Pr[(∀j 6= b)(Xj < Xb)] for all a, b ∈ {1, . . . , L}. Hence Pr[S] = nPr[(∀j >

OPODIS 2016

23:6 On Randomized Leader Election Algorithms based on Extrema Propagation

1)(Xj < X1)]. Therefore

Pr[S] = n

∞∑
k=1

Pr[(∀j > 1)(Xj < X1)|X1 = k] Pr[X1 = k] =

n

∞∑
k=1

Pr[(∀j > 1)(Xj < k)] Pr[X1 = k] = n

∞∑
k=2

Pr[X1 < k]n−1 Pr[X1 = k] .

J

The general formula (1) from Theorem 3 for some distributions can give specific formulas
which can be approximated with required precision. We apply it to two kind of distributions:
uniform distribution on finite set {1, . . . , L} and a geometric distributions on the set of
positive natural numbers.

4.1 Uniform Distribution
We will apply the Theorem 3 to the uniform distribution on a finite set.

I Theorem 4. Let X1, . . . , Xn be independent random variable uniformly distributed in the
set {1, . . . , L}. Let n > 1 and let Sn,L denotes the event (∃k)(∀j 6= k)(Xj < Xk). Then

Pr[Sn,L] = n

Ln

L−1∑
j=1

jn−1 (2)

Proof. Let us notice that in the case of uniform distribution we have Pr[X1 = j] = 1
L and

Pr[X1 < j] = j−1
L . Hence from Theorem 3 we get

Pr[S] = n

L∑
j=2

1
L

(
j − 1
L

)n−1
= n

Ln

L−1∑
j=1

jn−1 .

J

I Corollary 5. With the same notations and assumptions as in Theorem 4 we have

Pr[Sn,L] = 1− n

2L + rn ,

where 0 ≤ rn ≤ 1
6
(

n
L

)2
Proof. The sum

∑L−1
j=1 j

n−1 can be expressed by the classical Faulhaber’s formula. But
computationally, Faulhaber’s formula become unwieldy as n becomes large. The Bernoulli
numbers, which appears in it vanish for odd index ≥ 3, but for even index they increase in
magnitude very rapidly and alternate in sign. Instead of this approach we use the Euler
summation formula (see e.g. [13]) for the function xn−1 and get

L−1∑
j=0

jn−1 = 1
n
Ln − 1

2L
n−1 + n− 1

12 Ln−2 +R2

where R2 = −
∫ L

0
B2({x})

2 (n− 1)(n− 2)xn−3dx and B2(t) = t2− t+ 1
6 is the second Bernoulli

polynomial. Since |B2(t)| ≤ 1
6 for t ∈ [0, 1] we get |R2| ≤ n−1

12 Ln−2. The final equality follows
directly from this upper bound and Theorem 4. J

D. Bojko and J. Cichoń and B. Węglorz 23:7

Remark 1

We will use the above result only when n� L. In this case the approximation Pr[Sn,L] ≈
1− n

2L is very precise.

Remark 2

Let us compare this result with the probability bn,L that in a random uniform sample of
n elements from the universe consisting with L elements (a problem connected with the
Birthday Paradox) there are no duplicates. Namely, for n�

√
L we have bn,L ≈ 1− n2

2L and
in our case we have Pr[Sn,L] ≈ 1− n

2L .

The next property of the probability of the event Sn,L we will use in Section 5.2.

I Theorem 6 (monotonicity). With the same notations as in Theorem 4 we have Pr[Sn,L] >
Pr[Sn+1,L] for each n and L ≥ 2.

Proof. We may assume n > 1. Let us observe that Pr[Sn+1,L] − Pr[Sn,L] = 1
Ln+1 ∆n,L,

where ∆n,L =
∑L−1

j=1
(
(n+ 1)jn − Lnjn−1). We need to show that ∆n,L < 0. Observe that

∆n,2 = 1− n < 0. Let us fix the number n and let Hn,L = ∆n,L+1 −∆n,L. We shall show
that for each L ≥ 2 we have Hn,L < 0, which will show that ∆n,L+1 < ∆n,L for each L ≥ 2,
so the theorem will be proved. It is easy to check that Hn,L = Ln − n

∑L
j=1 j

n−1. But∑L
j=1 j

n−1 >
∫ L

0 xn−1dx = 1
nL

n, hence

Hn,L < Ln − n 1
n
Ln = Ln − Ln = 0 ,

hence the theorem is proved. J

4.2 Geometric distribution
Let us fix a number p ∈ (0, 1). Let us recall that a random variable with values in the set
of positive natural numbers has a geometric distribution with parameter p (x ∼ Geo(p))
if Pr[Xu = k] = (1 − p)k−1p for k ∈ {1, 2, 3, . . .}. Let X1, . . . , Xn be independent copy
of random variables with Geo(p) distribution and let Mn,p = max{Xi : 1 ≤ i ≤ n}} and
Wn,p = |{k : Xk = Mn,p}|. Then we have

I Lemma 7 ([6]). If C > 1 then Pr[Mn,p > C ln n
ln 1

1−p

] ≤ 1
nC−1 .

Using an approach similar as in the proof of Theorem 3 one can derive the formula
Pr[Wn,p = a] =

(
n
a

)
pa
∑n−a

b=0
(

n−a
b

) (−1)b

1−qa+b , where q = 1 − p, and then using the Mellin
transform or the Rice method one can derive the following approximation

I Theorem 8 ([16], [6]). Pr[Wn,p = a] ≈ 1
ln 1

1−p

pa

a

Lemma 7 may be used for finding such a number L that Pr[Mn,p > L] is very small
and Theorem 8 we will used in Section for finding probability of success in leader election
algorithms based on geometric distributions.

Remark

It worth to notice that right side of formula from Theorem 8 does not depend on n. In
fact the number Pr[Wn,p = a] depends on n, but the influence of n on this probability
is very small for all p < 1

2 (see [6]). Moreover from Theorem 8 we easily deduce that
Pr[Wn,p = 1] = 1− p

2 +O(p2) (as p tends to 0).

OPODIS 2016

23:8 On Randomized Leader Election Algorithms based on Extrema Propagation

5 Applications

We discuss in this section several possible realizations of algorithm described in Section 3.

5.1 Uniform distribution
Let us consider usage of pseudo-random number generator (PRNG’s) for selection nodes
identifiers. Hence we assume that each node is equipped with a high-quality pseudo-random
number generator. Moreover, we assume that this PRNG’s are initialized using independent
seeds. Let the PRNG’s produces sequences of bits of length L in an uniform way, i.e. that
each sequence s ∈ {0, 1}L is generated with the same probability. We may transform this
sequence of bits into a number from the {0, . . . 2L − 1}. Let n = |V | denotes the number
of nodes in the network. Let S denotes the event |{u ∈ V : Xu = max{Xv : v ∈ V }}| = 1.
From Corollary 5 we deduce that if n� 2L then

Pr[S] ≈ 1− n

2L+1 .

Notice that (
1− n

2L+1 > 1− 1
10a

)
≡ (L > a log2 10 + log2 n− 1) .

Observe that log2 10 = 3.32193 Therefore if we wold like to guarantee a probability of
success of the order 1− 1

1020 then we need 66 + log2 n bits. Surely 64 bits do not suffice. But
if we use PRNG’s to generate random sequences of length 128 then the event S holds with
probability at least 1 − 1

1020 and any n < 262 ≈ 4.6 · 1019. Hence we derive the following
result:

I Corollary 9. If we use the uniform distribution on the set {0, . . . , 2128 − 1} then both
Algorithms 2 and 3 select an unique leader with probability at least 1− 1

1020 for any number
of nodes n ≤ 1019.

How to select a loser

The precise probability of a success in the case of uniform distribution on the set {0, . . . , 2L−1},
according to Theorem 4, is given by formula Pr[S] = n

2L

∑2L−1
j=1 jn−1. This formula may be

found in [10] in a slightly different context. In fact, this paper is devoted to a detailed analysis
of Leader Election Algorithm published in [17] (How to select a loser, Discrete Mathematics,
1993). Prodinger’s algorithm from [17] may be directly transformed into Algorithm 3, and
as a by-product of our considerations may be also easily implemented in the multi-hop
environment.

5.2 Best-node-based leader election algorithms
Best node based leader election algorithms try to select as a leader the node which is the
best one according to some nodes capabilities. An overview of such algorithms may be found
in [18]. Most of such algorithms require unique nodes identifiers to resolve collisions. We
can combined random node identifiers developed in this paper with this kind of algorithms.
Namely, suppose that nodes capabilities are from a finite linearly ordered set (C,�C). Let
(Ω,≤) be also a finite linearly ordered set. We consider the lexical ordering on the set C ×Ω
defined by

(x1, y1) ≺ (x2, y2) ≡ (x1 ≺C x2) ∨ ((x1 = x2) ∧ (y1 < y2) .

D. Bojko and J. Cichoń and B. Węglorz 23:9

Since ≺ is an linear order, we may use it in both algorithm discussed in this paper. At the
beginning of this algorithms each node calculates its capability Cv ∈ C , select a random
identifier Xv and uses the element (Cv, Xv) in further computations. It is clear the the
randomly generated parts of identifiers are used to resolve collisions between nodes from the
set {u ∈ V : Cu = max{Cv : v ∈ V }}, hence the results from the previews subsection are
applicable in this setting (see Theorem 6).

5.3 Leader Green Election
Leader Green Election (LGE) Algorithm was introduced by P. Jacquet at al. in [14]. This
is the main idea of this algorithm: we fix a small number p ∈ (0, 1) (say p = 10−2); each
node u generates a random number Xu from the geometric distribution with parameter p
(i.e. Pr[Xu = k] = (1 − p)kp for natural numbers k). A winner (leader) is the node with
maximal identifier Xu. In original paper LGE was based on beeping model.

At first glimpse this solution are not in the framework discussed in this paper - the
values of Xu are not bounded. But from Lemma 7 we may conclude that Pr[Y > (ln 1020 +
lnn)/ ln 1

1−p] < 10−20, and hence from a practical point of view it is negligible. Putting
into this formula p = 0.01 and n = 1020 we get Pr[Y > 104] < 10−20. Notice also that⌊
log2 104⌋+ 1 = 14, hence only 14 bits are required to run LGE algorithm in the framework
of Algorithm 3 (the “beep-model”). And we also see that we can easily implement LGE
algorithm in multi-hop environment.

From Theorem 8 we get Pr[Wn,p = 1] ≈ 1 − p
2 , hence is quite small. Authors of [14]

propose using this method several times, i.e. they propose to use it k times, where k is such
that (p

2)k is sufficiently small. However, there is a better solution. Namely, from Theorem 8
we may deduce (see [6] for details) that

Pr[Wn, 1
100

> 10] < 1
1021

for any n > 1. So we may treat LGE as a method for quick reduction of an arbitrary
collection of nodes to small subgroup - using parameter p = 1

100 with probability at least
1− 1

1021 this subgroup has cardinality at most 10. From discussion in Section 5.1 we deduce
that we need 73 bits to select from any group of size at most 10 nodes a leader using uniform
distribution. Therefore we need 87 bits (14+73=87) for a successful leader election from
any group of nodes of cardinality less that 1020 with probability at least 1 − 1

1020 using a
mix of two methods: first we use LGE algorithm and next we use uniform distribution. The
mixture can be realized, for example, using the lexicographical product of ordering, which
was discussed in previous section.

6 Conclusions

The initial assumption of many leader election algorithms based on assumption that nodes
in a network have distinct identifiers is not necessary: nodes temporary identifiers may be
generated randomly and we may control the account of necessary randomness by a careful
choice of distribution. We claim that such solution improve flexibility of many leader election
algorithms.

References
1 Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and

Fabian Kuhn. Beeping a maximal independent set. In Proceedings of the 25th International

OPODIS 2016

23:10 On Randomized Leader Election Algorithms based on Extrema Propagation

Conference on Distributed Computing, DISC’11, pages 32–50, Berlin, Heidelberg, 2011.
Springer-Verlag.

2 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, 2004.

3 Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. Fast estimation of aggregates
in unstructured networks. In ICAS, pages 88–93, 2009.

4 Carlos Baquero, Paulo Sérgio Almeida, Raquel Menezes, and Paulo Jesus. Extrema
propagation: Fast distributed estimation of sums and network sizes. IEEE Trans. Par-
allel Distrib. Syst., 23:668–675, 2012.

5 Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pająk, and Roger Watten-
hofer. Approximating the size of a radio network in beeping model. In 23rd International
Colloquium on Structural Information and Communication Complexity, Helsinki, Finland,
Jul 2016.

6 Jacek Cichoń, Rafal Kapelko, and Dominik Markiewicz. On leader green election. In Pro-
ceedings of the 27th International Conference on Probabilistic, Combinatorial and Asymp-
totic Methods for the Analysis of Algorithms, AofA’16, Kraków, Poland, July 2016. URL:
http://arxiv.org/abs/1605.00137.

7 Jacek Cichon, Jakub Lemiesz, and Marcin Zawada. On message complexity of extrema
propagation techniques. In Xiang-Yang Li, Symeon Papavassiliou, and Stefan Rührup,
editors, Ad-hoc, Mobile, and Wireless Networks - 11th International Conference, ADHOC-
NOW 2012, Belgrade, Serbia, July 9-11, 2012. Proceedings, volume 7363 of Lecture Notes
in Computer Science, pages 1–13. Springer, 2012.

8 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Pro-
ceedings of the 24th International Conference on Distributed Computing, DISC’10, pages
148–162, Berlin, Heidelberg, 2010. Springer-Verlag.

9 Samir Elouasbi and Andrzej Pelc. Deterministic rendezvous with detection using beeps.
In Revised Selected Papers of the 11th International Symposium on Algorithms for Sensor
Systems - Volume 9536, ALGOSENSORS 2015, pages 85–97, New York, NY, USA, 2015.
Springer-Verlag New York, Inc.

10 James Allen Fill, Hosam M. Mahmoud, and Wojciech Szpankowski. On the distribution for
the duration of a randomized leader election algorithm. Ann. Appl. Probab, 6:1260–1283,
1996.

11 Pierre Fraigniaud, Andrzej Pelc, David Peleg, and Stéphane Pérennes. Assigning labels
in unknown anonymous networks (extended abstract). In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, pages 101–
111, New York, NY, USA, 2000. ACM. URL: http://doi.acm.org/10.1145/343477.
343527, doi:10.1145/343477.343527.

12 Hector Garcia-Molina. Elections in a distributed computing system. IEEE Trans. Com-
puters, 31(1):48–59, 1982. URL: http://dx.doi.org/10.1109/TC.1982.1675885, doi:
10.1109/TC.1982.1675885.

13 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics - a
foundation for computer science (2. ed.). Addison-Wesley, 1994.

14 Philippe Jacquet, Dimitris Milioris, and Paul Mühlethaler. A novel energy efficient broad-
cast leader election. In MASCOTS, pages 495–504. IEEE, 2013.

15 Marcin Kardas, Mirosław Kutyłowski, and Jakub Lemiesz. On distributed cardinality
estimation: Random arcs recycled. In Proceedings of the Meeting on Analytic Algorithmics
and Combinatorics, pages 129–137, Philadelphia, PA, USA, 2015. Society for Industrial
and Applied Mathematics.

http://arxiv.org/abs/1605.00137
http://doi.acm.org/10.1145/343477.343527
http://doi.acm.org/10.1145/343477.343527
http://dx.doi.org/10.1145/343477.343527
http://dx.doi.org/10.1109/TC.1982.1675885
http://dx.doi.org/10.1109/TC.1982.1675885
http://dx.doi.org/10.1109/TC.1982.1675885

D. Bojko and J. Cichoń and B. Węglorz 23:11

16 Peter Kirschenhofer and Helmut Prodinger. The number of winners in a discrete geomet-
rically distributed sample. The Annals of Applied Probability, 6(2):687–694, 05 1996. URL:
http://dx.doi.org/10.1214/aoap/1034968150.

17 Helmut Prodinger. How to select a loser. Discrete Mathematics, 120(1-3):149–
159, 1993. URL: http://dx.doi.org/10.1016/0012-365X(93)90572-B, doi:10.1016/
0012-365X(93)90572-B.

18 Shantanu Sharma and Awadhesh Kumar Singh. An election algorithm to ensure the
high availability of leader in large mobile ad hoc networks. International Journal
of Parallel, Emergent and Distributed Systems, 0(0):1–25, 0. URL: http://dx.doi.
org/10.1080/17445760.2016.1191077, arXiv:http://dx.doi.org/10.1080/17445760.
2016.1191077, doi:10.1080/17445760.2016.1191077.

19 Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and analysis of a leader
election algorithm for mobile ad hoc networks. In In IEEE International Conference on
Network Protocols, pages 350–360. IEEE Computer Society, 2004.

OPODIS 2016

http://dx.doi.org/10.1214/aoap/1034968150
http://dx.doi.org/10.1016/0012-365X(93)90572-B
http://dx.doi.org/10.1016/0012-365X(93)90572-B
http://dx.doi.org/10.1016/0012-365X(93)90572-B
http://dx.doi.org/10.1080/17445760.2016.1191077
http://dx.doi.org/10.1080/17445760.2016.1191077
http://arxiv.org/abs/http://dx.doi.org/10.1080/17445760.2016.1191077
http://arxiv.org/abs/http://dx.doi.org/10.1080/17445760.2016.1191077
http://dx.doi.org/10.1080/17445760.2016.1191077

	Introduction
	Our Contribution
	Organization of the Paper

	General framework
	Selection of leader
	Multi-hop flooding model
	Single-hop "beeping model

	Generating unique identifiers
	Uniform Distribution
	Geometric distribution

	Applications
	Uniform distribution
	Best-node-based leader election algorithms
	Leader Green Election

	Conclusions

