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Abstract

Most pattern recognition problems are modeled as an optimization of problem-dependent
objective functions. The uncertainty in the input, but also the computational constraints
arising from “big data” volumes require to regularize such objectives. Conceptually, the
model and its regularization have to be rigorously validated from a statistical viewpoint.
In this paper we consider an information theoretical concept for validating objective func-
tions of several combinatorial optimization problems. The validation criterion measures
the overlap of Gibbs distributions for cost functions that rank solutions for different typ-
ical input data sets. The maximum entropy inference method utilizes free energy as an
ingredient. We provide both rigorous approaches and empirical insights to determining the
asymptotics of the free energy — an important system-defining quantity of a big stochas-
tic systems (problems). More precisely, we obtain asymptotic upper bounds for the free
energy for a class of optimization problems. Further, we conjecture an informal empirical
correction to it, which allows to reach a more precise asymptotical behavior of the free
energy. We verify findings through extensive importance sampling simulations.

Keywords: Helmholz Free energy, Optimization, Gibbs distribution, Random energy
model, Partition function asymptotics, Minimum Bisection, Quadratic Assignment Prob-
lem

1. Introduction

1.1. Maximum entropy inference for modeling

The search for patterns in data analysis is mostly guided by cost functions that depend
on noisy data. Well known examples are graph cut methods to identify clusters in prox-
imity data, Euclidean embeddings of relational data by multidimensional scaling or fitting
phylogenetic trees to protein dissimilarities. Robust methods to find good solutions have
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to average over fluctuations in the data and they should approximate the minimum of the
expected cost. This goal is paralleled by the question in computational learning of how well
learning algorithms can generalize when we adopt empirical risk minimization as inference
technique rather than optimizing the (unknown) expected risk.

Graph cuts and related optimization problems with a combinatorial flavor are charac-
terized by solution spaces that grow exponentially with the number of entities. Therefore,
we cannot expect to identify a unique best solution that minimizes the expected risk even in
the asymptotic limit. Jaynes (1982) advocated entropy maximizing methods adopted from
statistical physics that identify a “stable” set of sufficiently good solutions rather than an
“unstable” unique empirical minimizer. Algorithms that sample from the Gibbs distribu-
tion maximize the entropy while keeping the average costs of the solution set constant. The
Gibbs distribution can be considered as a smoothing measure with a temperature controled
width parameter that effectively reduces the resolution of the solution space. Kirkpatrick
et al. (1983) prescribed the randomized algorithm Simulated Annealing to systematically
search for such robust, but still informative sets by exploiting the analogy to annealing
solids in material science. We can interpret the Gibbs distribution as posterior probabilities
that ranks solutions given the data. A mathematically rigorous treatment of the statistical
physics approach to optimization has been pioneered by Talagrand (2003), while Mézard
and Montanari (2009) emphasize the connections to computation.

1.2. Boltzmann posteriors for optimal solution validation

One straightforward inspiration which has been imported from statistical physics into learn-
ing theory is the usage of Gibbs distributions, also referred to as Boltzmann posteriors.

Definition 1 Suppose we are given an optimization problem defined by a cost function
R(c,X) ∈ R, where c is a solution from the solution space C and X is a random data
instance. Then Boltzmann posterior pβ(c|X) is a distribution of the form

pβ(c|X) =
1

Z(β,X)
exp(−βR(c,X)) with Z(β,X) =

∑
c∈C

exp(−βR(c,X)) . (1)

Z(β,X) is known as partition function. Note that the Boltzmann posterior maps a pair
(X,β) to a distribution over C. The behavior of this distribution is quite natural: for
any β it assigns the highest weights to those solutions, which obtain the smallest costs
under the given data instance X. Cost differences are measured relative to the cost scale
1/β. Parameter β of the Boltzmann posterior plays the role of inverse temperature, since
it controls the level of concentration of pβ(c|X) around minimal solutions; thus it rules the
variability.

How should we choose β? Too small values of β result in a spread out posterior and
we ignore significant cost differences between solutions. Too large β values cause instability
of the Gibbs distribution due to fluctuations in the instance. The balance between these
two limits of under- and overfitting can be determined by information theoretic consider-
ations (Buhmann, 2013). We will briefly motivate the selection criterion by the following
two-instance setting.

Let us suppose that we are given two instances X ′ and X ′′. What is the way in which
we could measure how good is a particular choice of β? A natural measure of agreement

2



Validation Criterion for Combinatorial Optimization via Free Energy

between pβ(c|X ′) and pβ(c|X ′′) is defined by the overlap between the two posteriors in
the solution space, i.e., Buhmann (2010) introduced the empirical similarity kernel for two
instances:

Definition 2 The empirical similarity kernel for two instances X ′, X ′′ is given by the func-
tion:

k̂β(X ′, X ′′) =
∑
c∈C

pβ(c|X ′)pβ(c|X ′′) =

∑
c∈C exp(−β(R(c,X ′) +R(c,X ′′)))

Z(β,X ′)Z(β,X ′′)
∈ [0, 1] (2)

The identifiability of solutions given the noisy instances is determined by a cost function
specific capacity that plays the role of the mutual information in information theory:

Definition 3 The generalization capacity I of a cost function R(c,X) is defined as

I := sup
β

EX log
(

max{|C| k̂β(X ′, X ′′), 1}
)
. (3)

The expectation is taken w.r.t. the two instances X ′, X ′′. The generalization capacity I
comes close to the maximum value of log |C| when k̂β(X ′, X ′′) ≈ 1, which means that both
posteriors concentrate on the same solution c?. In this case the posterior is maximally
informative of the solution space and completely insensitive to the data fluctuations. I
vanishes in the opposite case if the posteriors are concentrated on different sets of solutions
without overlap.

To validate models, that is, to select cost functions according to the generalization ca-
pacity we have to evaluate expectation values of log partition functions, i.e., EX′ logZβ(X ′),
EX′′ logZβ(X ′′) and EX′,X′′ log

∑
c∈C exp

(
−β(R(c,X ′)+R(c,X ′′))

)
. The first two terms are

identical for i.i.d. instances. This mathematical challenge is addressed in the remainder of
the paper. More precisely, we will be interested in a version of Helmholtz free energy, which
we define as follows (note a scaling which differs from the conventional definition):

Definition 4 We will call the quantity

F(β) =
EX [logZ(β,X)]

log |C|
. (4)

free energy of the set of solutions (configurations) C.

The rest of the paper is devoted to investigating the asymptotics of the free energy in the
temperature regime β → 0.

2. Notation, Formal Setting and Contribution

2.1. Notation and setting

We consider a class of stochastic optimization problems that can be formulated as follows:
let n be an integer (e.g., number of vertices in a graph, size of a matrix, number of keys in
a digital tree, etc.), and Sn a set of objects (e.g., set of edges, elements of a matrix, keys,
etc). The data X denote a set of random variables which enter into the definition of an
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instance (e.g., weights of edges in a weighted graph), which will be clear from the coming
passage.

Define Cn as a set of all feasible solutions (e.g. cuts of a graph), and Sn(c) ⊆ Sn, c ∈ Cn,
as a set of objects belonging to the feasible solution c (e.g., set of edges belonging to a
cut), and wi(X) = Wi, i ∈ Sn, is the weight assigned to the i-th object. For the considered
optimization problems, the cost function and optimization task are defined as follows:

R(c,X) =
∑

i∈Sn(c)

wi(X) and copt(X) = arg min
c∈Cn

R(c,X). (5)

We also define the cardinality of the feasible set as m (i.e., m := |Cn|) and the cardinality
of Sn(c) as N for all c ∈ Cn (i.e., N := |Sn(c)|). In this paper, we focus on optimization
problems in which logm = o(N) holds true (see Szpankowski, 1995).

Goal. As explained in the introduction, free energy inspired by statistical physics is
crucial in assessing robustness and validating solutions to optimization problems. Yet free
energy is quite challenging to compute and often intractable in many optimization problems.
In this paper, for a class of optimization problems, we aim at better understanding asymp-
totic behavior of the free energy rate at high temperature (β small). To accomplish it, we
need to estimate the expectation of the logarithm of the partition function: EX [logZ(β,X)]
for β → 0. For convenience, we are going to address a scaled version of this quantity, namely
free energy (4).

Remark. In the following, we will omit X as an argument of Z(β,X) and R(c,X)
for the sake of simplicity. (The expectation E[.], the variance Var[.] and other probabilistic
operations are still meant to be taken with respect to the randomness of X, if otherwise
not explicitly stated).

2.2. Contribution

In this paper we focus on two optimization problems in which logm = o(N). This requires
to re-scale β so that it is small and decays as β̂

√
logm/N for some constant β̂.

We present two types of results: theoretical and experimental. First, in Theorem 5 we
establish a fairly tight upper bound on the free energy. Interestingly, we prove that there is a
phase transition in the second-order term of the free energy: it grows first quadratically with
β̂ up to a threshold value, and then linearly. This is in fact confirmed in our experimental
results for the bisection problem and the quadratic assignment problem.

Our experiments show a good coincidence with the upper bound for the quadratic part
of the free energy, but differ by a small multiplicative constant factor for the linear part.
We experimentally conjecture the form of this correcting constant.

To further improve our results, we also propose another derivation of the free energy
based on a Taylor expansion. Finally, we conjecture a matching lower bound for the free
energy. This is a very challenging problem due to some strong dependencies, but we outline
an approach to establish it leaving, however, detailed derivations for a future paper.
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3. Two Combinatorial Optimization Problems at a Glance

This section describes two example optimization problems that will be used to describe
our findings. They fall into the class specified in Sec. 2.1 and encompass a large range of
practical applications.

3.1. The minimum bisection problem

Consider a complete undirected weighted graph G = (V,E,X) of n vertices, where n is an
even number. X represents the weights (Wi)i∈E of the edges of the graph. It is the actual
“data” contained in the instance of the minimum bisection problem.

A bisection is a balanced partition c = (U1, U2) of the vertices in two disjoint sets:
U1, U2 ⊂ V , U1 t U2 = V , |U1| = |U2| = n

2 . Later we also deal with a sparse minimum
bisection problem in which the disjoint subsets are of the size |U1| = |U2| = Θ(log2 n).

Now Sn = E and Cn is the set of all bisections of graph G, while Sn(c) is the set of all
edges cut by the bisection c. The cost of a bisection c is the sum of the weights of all cut
edges

R(c) =
∑

i∈Sn(c)

Wi. (6)

The minimum bisection problem consists in finding the bisection of the graph with minimum
cost.

A simple study shows that |Cn| = m =
(
n
n/2

)
and |Sn(c)| = N = n2

4 .

logm = log

(
n

n/2

)
∼ log

(
2n
√

2

πn

)
= n log 2− 1

2
log n+O(1), (7)

which shows that the minimum bisection problem belongs to the class of stochastic opti-
mization problems discussed in this paper (logm = o(N)).

3.2. The quadratic assignment problem

A more complicated example of a problem could be brought as follows. We consider two
n×n matrices, namely the weight matrix V and the distance matrix H. The solution space
Cn is the set of the n-element permutations Sn. The objective function is then

R(π) =

n∑
i,j=1

Vij ·Hπ(i),π(j), π ∈ Sn. (8)

In our terms, the object space is the set of products of entries of V and H constrained by a
relation on the indices: Sn = {Vij ·Hπ(i),π(j) | 1 ≤ i, j ≤ n;π ∈ Sn}. Thus using the notations
of our framework, N = |Sn(π)| = n2 and m = |Cn| = n! and thus logm ∼ n log n = o(N) is
fulfilled.

4. Upper Bounds for Free Energy

In this section, we present two upper bounds on the second-order term of the free energy rate.
The first upper bound applies to the whole class of optimization problems that we consider
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in this paper. The second one, based on the Sherrington-Kirkpatrick model, is tighter but
only applies in the case of the minimum bisection problem. It serves the purpose of showing
that the general upper bound is too loose.

4.1. A general upper bound on the free energy rate

The following theorem was stated as a part of (Buhmann et al., 2014, Theorem 1), however,
we state it here, because the statement and the proof in (Buhmann et al., 2014) contained
certain inprecise points. A complete proof can be found in Appendix A.

Theorem 5 Consider a class of combinatorial optimization problems in which the cardi-
nality of feasible solutions m and the size N of a feasible solution are related as logm =
o(N). Assume that weights Wi are identically distributed with mean µ and variance σ2

and that the moment generating function of negative centered weights (−W i) is finite,
i.e. E[exp(−tW i)] < ∞ exists for some t > 0. Further assume that within a given so-
lution, the weights are mutually independent, i.e.

∀c ∈ Cn, the set {Wi | i ∈ Sn(c)} is a set of mutually independent variables. (9)

Define a scaling β = β̂
√

logm/N , where β̂ is a constant. Then the function

F̂(β) :=
E[logZ(β)] + β̂µ

√
N logm

logm
= F(β) +

β̂µ
√
N logm

logm
(10)

satisfies

lim
n→∞

F̂(β) ≤

{
1 + β̂2σ2

2 , β̂ <
√

2
σ ,

β̂σ
√

2, β̂ ≥
√

2
σ .

(11)

The above theorem shows an interesting phase transition in the second-order term of
the free energy rate. For small values of β̂, this term grows quadratically up to a threshold
value and then linearly. We will verify this surprising phenomenon experimentally on two
optimization problems, that is the minimum bisection problem and the quadratic assignment
problem.

4.2. A tighter upper bound in the case of the minimum bisection problem

The general upper bound proven above is unfortunately not tight. The following theorem
gives a tighter upper bound for the minimum bisection problem on the left side of the phase
transition.

Theorem 6 Consider the minimum bisection problem with n vertices. In this case, N =
|Sn(c)| = n2/4 is the number of edges cut in a bisection, and m = |Cn| =

(
n
n/2

)
is the

number of possible bisections. Assume that edge weights Wi are i.i.d. with mean µ and
variance σ2 and that the moment generating function of centered weights (−W i) is finite,
i.e. E[exp(−βW i)] <∞ exists for some t > 0.

Define a scaling β = β̂
√

logm/N . Then the function F̂(β) satisfies for β̂ ≤ 1√
log 2σ

lim
n→∞

F̂(β) ≤ 1 +
β̂2σ2

4
(12)
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Sketch of proof. The idea of the proof is that the minimum bisection problem is a
constrained version of the Sherrington-Kirkpatrick model, which is a spin model where
all the spins are independent (cf. Sherrington and Kirkpatrick, 1975). In the minimum
bisection problem, it is required that the partition of the graph be balanced, or equivalently
rephrased in spin model terms, it is required that there is the same number of up-spins as
down-spins.

Therefore, the only difference between the two problems is the solution space. More
precisely, we have CMBP

n ⊂ CSK
n . Hence

ZMBP(β) =
∑

c∈CMBP
n

e−βR(c,X) ≤
∑
c∈CSKn

e−βR(c,X) = ZSK(β), (13)

which allows us to extend any upper bound on ZSK to ZMBP. In particular, Talagrand
provides such an upper bound in (Talagrand, 2003).

A complete proof can be found in Appendix B.

4.3. A Taylor expansion approach to free energy asymptotics

We also propose a new approach to establishing E logZ(β) using a Taylor expansion of the
logarithm function. Namely, by expanding logZ(β) in the Taylor series around E[Z(β)] we
have

logZ(β) = logE[Z(β)] +
Z(β)− E[Z(β)]

E[Z(β)]
− 1

2

(Z(β)− E[Z(β)])2

(E[Z(β)])2

+

∞∑
k=3

(−1)k+1

k!

(Z(β)− E[Z(β)])k

(E[Z(β)])k
. (14)

Now we take the expectation and obtain

E[logZ(β)] = logE[Z(β)]− 1

2

Var[Z(β)]

(E[Z(β)])2
+
∞∑
k=3

(−1)k+1

k!

E
[
(Z(β)− E[Z(β)])k

]
(E[Z(β)])k

. (15)

From (Buhmann et al., 2014, Eq. (54)) we know (see also the proof in Appendix C) that

Var[Z(β)] = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
= (E[Z(β)])2(σ2β2ED[D] +O(β3)), (16)

where G(β) = E[exp(−βWi)] is a moment generating function of (−Wi), D is a number
of objects from Sn shared by two solutions c, c′ ∈ Cn, chosen uniformly at random, i.e.
D = |Sn(c) ∩ Sn(c′)|, and ED denotes the expectation w.r.t. this probability space.

Combining (15) and (16) yields the following expansion of E[logZ(β)]:

F̂(β) =
logE[Z(β)] + β̂µ

√
N logm

logm
− 1

2
β̂2σ2ED[D]

N

+
1

logm

∞∑
k=3

(−1)k+1

k!

E
[
(Z(β)− E[Z(β)])k

]
(E[Z(β)])k

(17)
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5. Simulations and a Conjecture on Free Energy

This section shows some simulations of the second-order term of the free energy rate in
the case of the minimum bisection and the quadratic assignment problems. The plots
indicate that the quadratic part of the free energy coincides with the upper bound derived
in Theorem 5 while the linear part differs by a small multiplicative constant. This allows
us to make a conjecture about the behavior of the free energy rate. Eventually, we provide
an intuitive explanation.

5.1. Sampling procedure for estimating the partition function

To produce simulations of the partition function for any given optimization problem, we use
a Metropolis-Hastings procedure to sample solutions at a given temperature 1/β, coupled
with an importance sampling cooling schedule scheme to efficiently sample solutions at low
temperature levels. Below, we provide a brief review of importance sampling.

Importance sampling. Let us assume that samples from a distribution Q over a
random variable X are given. Then, the expectation EPφ(X) of a function φ(X) under a
distribution P can be estimated by sampling X under Q with

ÊN =
1

N

N∑
i=1

φ(Xi)
P(Xi)

Q(Xi)
, since EQÊN =

1

N

N∑
i=1

EQφ(Xi)
P(Xi)

Q(Xi)
= EPφ(X). (18)

This method is called importance sampling since each sample is “reweighted” using the
target distribution.

We adapt it for the computation of Gibbs distribution partition functions. Suppose you
have a Gibbs distribution at temperature 1/β over a space C defined by a cost function
R : C → R. The probability of c ∈ C is P(c|β) = e−βR(c)/Z(β) where Z(β) =

∑
c∈C e−βR(c)

is the partition function. Let us assume the partition function Z(β) is given and we can
sample from the Gibbs distribution at temperature 1/β. Then

Z∗N (β, β′) =
1

N

N∑
i=1

Z(β)e−(β′−β)R(ci) (19)

is an unbiased estimator of Z(β′) when sampled under P(·|β). Its precision is controlled by
the relative variance:

Varrel
P(·|β)Z

∗
N (β, β′) =

VarP(·|β)Z
∗
N (β, β′)

E2
P(·|β)Z

∗
N (β, β′)

=
1

N

(
Z(2β′ − β)Z(β)

Z(β′)2
− 1

)
(20)

Observe that when β differs significantly from β′, the variance may be large, leading to
poor simulations results. Furthermore, when β is close to β′, the variance is small, thus
simulations are more accurate.

Our goal is to estimate the partition function for a wide range of β. The difficulties
arise mostly for large values of β, since the partition function is then very concentrated. To
overcome this, we apply our importance sampling philosophy and simulate first the partition
function for small values of β (this makes the partition function more uniform and easier
to estimate). Once we have computed the partition function for small β, we use equation
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(a) Full view (b) A zoom on the right part of the plot

Figure 1: Second-order terms of the free energy rate in the case of the minimum bisection
problem. The edge weights are i.i.d. and generated from a Gaussian distribution
N (µ = 20, σ = 5). Every curve is the average of 10 different problem instances.
The curve labeled “upper bound” corresponds to the prediction of Theorem 5.

(19) to evaluate it for the targeted value β′. But that is not the end of the story since we
need to proceed in small steps using a cooling schedule β0 = 0 < β1 < · · · < βk in order
to reach the regions of the solution space contributing the most to the partition function.
This is called a cooling schedule (Huber, 2012). In practice, we use a Metropolis-Hastings
procedure to sample from the Gibbs distribution at a given temperature.

5.2. Simulations of Free Energy Rate

Figure 1 shows the simulation of F̂(β) in the case of the minimum bisection problem for
different graph sizes n. The dashed line corresponds to the upper bound defined in Theo-
rem 5. It appears that the general behavior is quite good for the quadratic part of the free
energy while for the linear part there is some discrepancy (a multiplicative factor correction
is needed).

Figure 2 shows the simulation of F̂(β) in the case of the quadratic assignment problem
for different graph sizes n. The dashed line corresponds to the upper bound defined in
Theorem 5. The two plots correspond to different variances. Interestingly, in this problem
the correction coefficient depends on the variance, which was not the case for the minimum
bisection problem. Indeed, the correction coefficient is around 1/12 for σ = 1.0 and near 1/8
for σ = 2.4.

5.3. A conjecture

Based on our empirical results presented in Figures 1 and 2, we are able to conjecture a
more precise behavior of the free energy. We shall introduce a correction coefficient α whose
value we will determine in the sequel.

Conjecture 7 Consider a class of combinatorial optimization problems in which the car-
dinality of feasible solutions m and the size N of a feasible solution are related as logm =
o(N). Assume that weights Wi are identically distributed with mean µ and variance σ2

and that the moment generating function of negative centered weights (−W i) is finite,
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(a) Standard deviation of σ = 1 (b) Standard deviation of σ = 2.4

Figure 2: Second-order terms of the free energy rate in the case of the quadratic assignment
problem. The distance and weight matrix entries are i.i.d. and generated from
equal Gaussian distributions so that the product of two entries has mean µ = 4
and varying standard deviation. Every curve is the average of 10 different problem
instances. The curve labeled “upper bound” corresponds to the prediction of
Theorem 5.

i.e. E[exp(−tW i)] < ∞ exists for some t > 0. Further assume that within a given so-
lution, the weights are mutually independent, i.e.

∀c ∈ Cn, the set {Wi | i ∈ Sn(c)} is a set of mutually independent variables. (21)

Define a scaling
β = β̂

√
logm/N, (22)

where β̂ is a constant. Then the free energy satisfies

lim
n→∞

F̂(β) =

{
1 + α2 β̂2σ2

2 , β̂ <
√

2
ασ

αβ̂σ
√

2, β̂ ≥
√

2
ασ

(23)

The correction coefficient α is related to the variance of the partition function which in-
volves strong correlations between feasible solutions (that was largely ignored in (Buhmann
et al., 2014)). Based on our experimental results, we conclude that α is well approximated
by the following formula

α =

√
EXVarcR(c,X)

EcVarXR(c,X)
=

√
EXVarcR(c,X)

Nσ2
(24)

where the expectation Ec[·] is taken w.r.t. to all feasible solutions selected uniformly.
Let us observe that

EXVarcR(c,X) =
∑
i,j∈Sn

EX [WiWj ]
(
Pc(i, j ∈ Sn(c))− Pc(i ∈ Sn(c)) · Pc(j ∈ Sn(c))

)
. (25)

When i 6= j implies Wi and Wj are independent (which is true for the minimum bisection
problem, wrong for the quadratic assignment problem), then

EXVarcR(c,X) = σ2
∑
i∈Sn

Pc(i ∈ Sn(c))
(
1− Pc(i ∈ Sn(c))

)
. (26)
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(a) σ = 0.3 (b) σ = 2.4

Figure 3: Influence of the correction in the case of the quadratic assignment problem for
different standard deviation. The mean is µ = 4 and µV = µH and σ2

V = σ2
H .

In particular, for the minimum bisection problem we have

EXVarcR(c,X) =
n2σ2

4

(
1− n

2(n− 1)

)
, (27)

and then from (24) we find α = 1/
√

2 in the limit. This is quite close to the observed
correction 1/1.64. It corresponds exactly to the coefficient in the Sherrington-Kirkpatrick
model (see equation (12)). For the quadratic assignment problem, denote by V the weight
matrix and by H the distance matrix. Assume that elements of V are distributed under
a distribution of N (µV , σ

2
V ), and those of H under a distribution of N (µH , σ

2
H). We have

then σ2 = σ2
V σ

2
H + µ2

Hσ
2
V + µ2

V σ
2
H . Then

EXVarcR(c,X) = (n2 − 2)σ2
V σ

2
H (28)

and we conclude that α = σV σH
σ . This is illustrated in Figure 3.

5.4. Simulations of the Taylor expansions

Recall that in Sec. 4.3 we discuss an approach to computing F̂(β) via the Taylor expansion,
namely equation (17). In Figure 4 we present simulation results and compare them to
our theoretical results obtained through the Taylor expansion. The curves labelled “E log”
represent direct simulations of F̂(β). Those labelled “E log Taylor” are constructed as

the simulation of logE[Z(β)]+β̂µ
√
N logm

logm with the correction of 1
2 β̂

2σ2 ED[D]
N as proposed in

equation (17).
For the minimum bisection problem (Fig. 4(a) and 4(b)), a graph of 400 vertices is used.

In Fig. 4(c), we also show a plot for the sparse bisection problem (refer to section 3.1). 3200
vertices are used in this case. For all plots, the edge weights are generated from a normal
distribution N (0, 1).

6. Discussion and Future Work

To obtain precise asymptotics of the free energy, we need to find the matching lower bounds,
which turns out to be a difficult task. We will consider the problem setting analogous to

11
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(a) MPB, n = 400, full view (b) MPB, n = 400, zoom

(c) Sparse MPB, n = 3200

Figure 4: Taylor expansion of F̂(β) for low values of β around logE[Z(β)]+β̂µ
√
N logm

logm for
different problems.

that of Sec. 4.1, however with an additional assumption imposed. We present in Appendix
D a sketch for the proof of the following result.

Lemma 8 Consider the setting and requirements of Theorem 5. Additionally we will
require that the solution costs are “weakly dependent” in the following sense: for some
un = Θ(

√
N/ logm), define for R(c) = −

∑
i∈S(c)W i (as elsewhere) the probability an :=

P(R(c) ≥ un) of exceeding this threshold and assume that∑
c 6=c′∈Cn

Cov
(
1{R(c)≥un},1{R(c′)≥un}

)
= o(m2a2

n). (29)

Then the function F̂(β) satisfies

lim
n→∞

F̂(β) ≥

{
1 + β̂2σ2

2 , β̂ <
√

2
σ ,

β̂σ
√

2, β̂ ≥
√

2
σ .

(30)

However, the way of proving this lemma indicates that we might need to search for another,
stronger technique in order to make the additions assumption less restrictive.

Another direction of research consists in further investigating the Taylor expansion ap-
proach and the scope of its applicability to various regimes of β.

12
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Appendix A. Proof of Theorem 5 (Upper Bound on the Free Energy
Rate in General Case)

Proof of Theorem 5. We need to compute E[logZ(β)]. Remember that it can be upper
bounded by Jensen’s inequality as

E[logZ(β)] ≤ logE[Z(β)]. (31)

To simplify our analysis, we actually shall investigate the centralized weightsW := W−µ
and denote by Ĝ(β), where β > 0, the moment generating function of (−W ), that is

Ĝ(β) = EX [exp(β(−W ))] <∞. (32)

13
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In order to evaluate E[Z(β)], we proceed as follows

E[Z(β)] = E
[∑
c∈C

exp(−βR(c))
]

= exp(−βNµ)E
[∑
c∈C

exp
(
−β(R(c)−Nµ)

)]
= exp(−βNµ)mĜN (β). (33)

since the random variables Wi are i.i.d. within a given solution c. Thus

logE[Z(β)] = −βNµ+ logm+N log Ĝ(β) (34)

From the above relation (34) one can see that in order to get a nontrivial limit of logE[Z(β)]
logm

we need to choose the limit β → 0. Under this assumption, we can expand Ĝ(β) in the
Taylor series to obtain

Ĝ(β) = 1 +
1

2
β2σ2 +O(β3). (35)

We find as long as β → 0

logE[Z(β)] = −βNµ+ logm+N log Ĝ(β)

= −βNµ+ logm+N log
(

1 +
1

2
β2σ2 +O(β3)

)
= −βNµ+ logm+

1

2
Nβ2σ2(1 +O(β)). (36)

This suggests that the right choice for β is

β = β̂

√
logm

N
(37)

for some constant β̂. Thus we arrive at

logE[Z(β)] + βNµ

logm
= 1 +

1

2
β̂2σ2(1 +O(β)). (38)

In terms of E[logZ(β)] we find

E[logZ(β)] + β̂µ
√
N logm

logm
≤ 1 +

1

2
β̂2σ2

(
1 +O

(√
logm

N

))
. (39)

Now make this general bound tighter for ceratin region of β̂. Let us denote

φ(β) = E[logZ(β)] + βNµ =: E[log Ẑ(β)] (40)

where Ẑ(β) =
∑

c∈C exp(βR(c)) with R(c) = −
∑

i∈S(c)W i. It is easy to observe that

βmax
c∈C

R(c) ≤ log Ẑ(β). (41)

Using the upper bound obtained in (39) we find

E[maxc∈C R(c)]

logm
≤

√
N

logm

(
β̂−1 +

1

2
β̂σ2

)
. (42)

14
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Choosing β̂∗ =
√

2/σ that minimizes the right-hand side of (42) we arrive at

E[max
c∈C

R(c)] ≤
√

2σ2N logm (43)

Now proceeding as in (Talagrand, 2003, Proposition 1.1.3) we obtain

φ′(β) ≤ E[max
c∈C

R(c)]. (44)

Hence for β > β∗ := β̂∗
√

logm/N ,

φ(β) ≤ φ(β∗) + E[max
c∈C

R(c)](β − β∗), (45)

Replacing all the terms eventually yields

E[log Ẑ(β)] ≤ β̂σ
√

2 logm (46)

and the second upper bound in Theorem 5. �

Appendix B. Proof of Theorem 6 (Upper Bound on the Free Energy
Rate for the Minimum Bisection Problem)

Proof of Theorem 6. First, we introduce some alternate notations for the minimum
bisection problem in order to ease the transition to the Sherringkton-Kirkpatrick formalism.

Denote by G an undirected weighted complete graph with n vertices. The problem
consists in finding a bisection of the graph (a partition in two subsets of equal size) of
minimum cost.

More formally, define by gij the weight assigned to the edge between vertices i and j
(gij = gji). Denote by ci ∈ {−1, 1} an indicator of the subset containing vertex i.

The problem consists in finding c ∈ {−1, 1}n so that
∑

i ci = 0 (balance condition) and
the sum of the weights of cut edges

R(c,X) =
∑

ci=−cj
i<j

gij (47)

is minimal. X denotes here a problem instance of size n, i.e. the particular values (gij)ij
of the edge weights.

Define the partition function as

Z(β,X) =
∑
c∈Cn

e−βR(c,X) (48)

where Cn = {c ∈ {−1, 1}n|
∑

i ci = 0} is the solution space. Let us now prove Theorem 6.
Observe that

logZ(β,X) + β̂µ
√
N logm = logZ(β,X) + βµN

= log
∑
c∈Cn

e−β(R(c,X)−Nµ)

= logZ(β,X) (49)
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where the edge weights of X are defined by gij = gij − µ.
Hence without loss of generality, we will only consider centered problem instances in the

rest of the proof. For clarity, the explicit mention of the dependence to X is dropped in the
partition function, i.e. Z(β,X) := Z(β).

Then, let us relax our problem by allowing the partitions to be unbalanced:

Z∗(β) =
∑
c∈C∗n

e−βR(c) (50)

where C∗n = {−1, 1}n is the relaxed set of solutions. Since Cn ⊂ C∗n, it follows that

Z(β) ≤ Z∗(β) (51)

Now rewrite the cost function as

R(c) =
∑

ci=−cj
i<j

gij =
1

2

(∑
i<j

gij −
∑
i<j

cicjgij

)
=

1

2

(∑
i<j

gij +
√
nRSK(c)

)
(52)

where

RSK(c) = − 1√
n

∑
i<j

cicjgij (53)

is the cost function of the Sherrington-Kirkpatrick model.
This entails

Z∗(β) = e−
β
2

∑
i<j gij

∑
c∈C∗n

e−
√
nβ
2
RSK(c) = e−

β
2

∑
i<j gijZSK

(√nβ
2

)
(54)

where
ZSK(β) =

∑
c∈C∗n

e−βR
SK(c) (55)

is the partition function associated with the Sherrington-Kirkpatrick model.
Since the gij are centered, it follows that

E logZ∗(β) = E logZSK
(√nβ

2

)
(56)

For the following, we will need an external statement from (Talagrand, 2003), which we
cite here.

Theorem 9 (Talagrand, 2003, Theorem 2.2.1) If β < 1
σ , we have

lim
n→∞

1

n
E logZSK(β) =

β2σ2

4
+ log 2 (57)
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Now let us determine the limit of
√
nβ:

√
nβ =

√
n · β̂

√
logm

N
=
√
n · β̂

√
log
(
n
n/2

)
n2/4

∼
√
n · β̂

√
n log 2

n2/4
= 2
√

log 2β̂ (58)

Thus, we can use Theorem 9 to obtain, for β̂ < 1√
log 2σ

lim
n→∞

1

n
E logZSK

(√nβ
2

)
=
( β̂2σ2

4
+ 1
)

log 2. (59)

The equivalence logm
n ∼ log 2 (in n→∞) and (56) both allow to write

lim
n→∞

E logZ∗(β)

logm
=
β̂2σ2

4
+ 1 (60)

for β̂ < 1√
log 2σ

. Now (51) implies that

lim
n→∞

E logZ(β)

logm
≤ β̂2σ2

4
+ 1 (61)

for β̂ < 1√
log 2σ

. �

Appendix C. Regarding the Variance of Partition Function

In this section we give a clarification of (16) which shows the asymptotics of Var[Z(β,X)]:

Var[Z(β)] = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
= (E[Z(β)])2(σ2β2ED[D] +O(β3)).

Recall (from Sec. 4.3) that G(β) = E[exp(−βW )], where W is a random variable with
expectation µ and variance σ2, and D is a number of objects from Sn shared by two solutions
c, c′ ∈ Cn, chosen uniformly at random, i.e. D = |Sn(c)∩Sn(c′)|, and ED is the expectation
w.r.t. this probability space.

Proof of Eq. (16). The Taylor expansion of G(β) around 0 is

G(β) = 1− βµ+
β2E[W 2]

2
+O(β3). (62)

Thus, (
G(2β)

(G(β))2

)D
=

(
1− 2βµ+ 2β2E[W 2] +O(β3)

[1− βµ+ β2E[W 2]/2 +O(β3)]2

)D
=

(
1− 2βµ+ 2β2E[W 2] +O(β3)

1− 2βµ+ (µ2 + E[W 2])β2 +O(β3)

)D
=
(
1 + (E[W 2]− µ2)β2 +O(β3)

)D
= 1 +Dσ2β2 +O(β3), (63)
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the last transition taking effect under reasonable assumptions on D and β2.
Taking the expectation yields

ED
(
G(2β)

(G(β))2

)D
= 1 + σ2β2ED[D] +O(β3). (64)

From the above, we obtain the β-asymptotics of Var[Z(β)]:

Var[Z(β)] = (E[Z(β)])2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
= (E[Z(β)])2(σ2β2ED[D] +O(β3)), (65)

which is the required. �

Appendix D. Sketch of proof of Lemma 8 (Lower Bound on the Free
Energy Rate under Assumptions)

Before proceeding to the proof we should state that Lemma 8 is a correction of the erroneous
proof of the lower bound in (Buhmann et al., 2014, Theorem 1). Thus the proof of Lemma 8
will be almost the same, with slight modifications.

Sketch of proof of Lemma 8. For the following, note that since the weights are i.i.d.

inside each solution, then the centered negative cost function R(c)
d−→ N (0, Nσ2), where N

represents normal distribution. Let Y be the cardinality of the solution subset for which
the R(c) is large enough:

Y := card{c : R(c) ≥ un} for some un = Θ
(√ N

logm

)
. (66)

Denote an := P(R(c) ≥ un).
From the properties of centered Gaussian (see, for example, Talagrand, 2003, (A.37,

A.38)), which is the limiting distribution of R(c), we get the following bound on an (small
terms correspond to large deviation bounds):

(1 + o(1))
σ
√
N

L1un
exp
(
− u2

n

2σ2N

)
≤ an ≤ (1 + o(1)) exp

(
− u2

n

2σ2N

)
, (67)

where L1 is a certain constant. Together with the choice of un that will be made later, this
allows us to write that in the limit (n→∞) man →∞ holds true.

Now let A denote an event {Y ≤ man/2}. By Markov inequality (second transition in
the following chain)

P(A) ≤ P
(
(Y − E[Y ])2 ≥ m2a2

n/4
)
≤ 4Var[Y ]/(m2a2

n)→ 0, (68)

where we used the assumption (29) of the lemma, along with a representation of Var[Y ] as
a sum of indicator random variables 1{R(c)≥un}.

Next, we derive lower bounds for E[log Ẑ(β)] on the events A and Ω \A. For the latter,
we have:

Ẑ(β) =
∑
c∈C

exp(βR(c)) ≥
∑
c∈C

exp(βun) ≥ m

2
an exp(βun), (69)
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thus
E[1Ω\A · log Ẑ(β)] ≥ (1− P(A))(logm− log 2 + log an + βun). (70)

For event A, we derive the lower bound in the following way. Choosing an arbitrary solution
c0, we notice that Z(β) ≥ exp(βR(c0)) and thus

E[1A · log Ẑ(β)] ≥ −βE[−1AR(c)] ≥ −βE[|R(c)|] ≥ −Lσβ
√
N, (71)

where L is some constant coming from expectation of half-normal distribution, which is the
thermodynamic limit distribution for |R(c)|. Here we use the fact that |R(c)| converges in
distribution to a half-normal (due to CLT), and then we determine that, due to the dom-
inated convergence theorem and uniform integrability of |R(c)| (Feller, 1971, Ch. XVI.7),
the expectation value of |R(c)| also converges to the one of half-normal.

Combining (70) and (71), we obtain

E[log Ẑ(β)] ≥ (1− P(A))(logm− log 2 + log an + βun)− Lσβ
√
N. (72)

thus (72) turns into (we also use here bounds on an from (67) normalized by logm)

E[log Ẑ(β)]

logm
≥ (1−P(A))

(
1− log 2

logm
+

log(σ
√
N/(L1un))

logm
− u2

n

2 logmσ2N
+
βun

logm

)
− Lσβ

√
N

logm
(73)

Now for the regime β ≤ β̂∗
√

logm/N we choose un = β̂σ2
√
N logm, which yields a lower

bound

E[log Ẑ(β)]

logm
≥ (1− P(A))

(
1 +

β̂2σ2

2
+O

( log logm

logm

))
+O

( 1√
logm

)
, (74)

and for the regime β ≥ β̂∗
√

logm/N we choose un =
√

2σ2N logm, which yields a lower
bound

E[log Ẑ(β)]

logm
≥ (1− P(A))

(
β̂
√

2σ +O
( log logm

logm

))
+O
( 1

logm

)
. (75)

As P(A) → 0 due to (68) and the additional terms O(·) are small in the limit, so we
obtain the requested asymptotical lower bounds. �
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