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We study a suffix tree built from a sequence generated by a Markovian source. Such sources are more realistic

probabilistic models for text generation, data compression, molecular applications, and so forth. We prove that the

average size of such a suffix tree is asymptotically equivalent to the average size of a trie built over n independent

sequences from the same Markovian source. This equivalence is only known for memoryless sources. We then derive

a formula for the size of a trie under Markovian model to complete the analysis for suffix trees. We accomplish our

goal by applying some novel techniques of analytic combinatorics on words also known as analytic pattern matching.
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1 Introduction

Suffix trees are the most popular data structures on words. They find myriad of applications in computer

science and telecommunications, most notably in algorithms on strings, data compressions (Lempel-

Ziv’77 scheme), and codes. Despite this, little is still known about their typical behaviors for general

probabilistic models (see [5, 1, 3]).

A suffix tree is a trie (a digital tree; see [8]) built from the suffixes of a single string. In Figure 1 we

show the suffix tree constructed for the first four suffixes of the string X = 0101101110. More precisely,

we actually build a suffix tree on the first n infinite suffixes of a string X as shown in Figure 1. We

shall call it simply a suffix tree which we study in this paper. Such a tree consists of internal (branching)

nodes and external node storing the suffixes. Our goal is to analyze the number of internal nodes called

also the size of a suffix tree built from a sequence X generated by a Markov source. We accomplish it

by employing powerful techniques of analytic combinatorics on words known also as analytic pattern

matching [8].

In recent years there has been a resurgence of interest in algorithmic and combinatorial problems on

words due to a number of novel applications in computer science, telecommunications, and most notably

in molecular biology. A few possible applications are listed below. The reader is referred to our recent
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Fig. 1: Suffix tree built from the first five suffixes of X = 0101101110, i.e. 0101101110, 101101110, 01101110,

1101110.

book [8] for more details. In computer science and molecular biology many algorithms depend on a

solution to the following problem: given a word X and a set of arbitrary b+1 suffixes S1, ... , Sb+1 of X ,

what is the longest common prefix of these suffixes. In coding theory (e.g., prefix codes) one asks for the

shortest prefix of a suffix Si which is not a prefix of any other suffixes Sj , 1 ≤ j ≤ n of a given sequence

X (cf. [13]). In data compression schemes, the following problem is of prime interest: for a given ”data

base” sequence of length n, find the longest prefix of the (n+1)st suffix Sn+1 which is not a prefix of any

other suffixes Si (1 ≤ i ≤ n) of the data base sequence. And last but not least, in molecular sequences

comparison (e.g., finding homology between DNA sequences), one may search for the longest run of a

given motif, a unique sequence, the longest alignment, and the number of common subwords [8]. These,

and several other problems on words, can be efficiently solved and analyzed by a clever manipulation of

a data structure known as a suffix tree. In literature other names have been also coined for this structure,

and among these we mention here position trees, subword trees, directed acyclic graphs, etc.

The extension of suffix tree analysis to Markov sources is quite significant, especially when the suffix

tree is used for natural languages. Indeed, Markov sources of finite memory approximate very well

realistic texts. For example, the following quote is generated by a memoryless source with the letter

statistic of the Declaration of Independence:

esdehTe,a; psseCed vcenseusirh vra f uetaiapgnuev n cosb mgffgfL itbahhr nijue n S ueef,ru

s,k smodpztrnno.eeteespfg mtet tr i aur oiyr

which should be compared to the following quote generated by a Markov source of order 3 trained on the

same text:

We hat Government of Governments long that their right of abuses are these rights, it, and or

themselves and are disposed according Men, der.
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In this paper we analyze the average number of internal nodes (size) of a suffix tree built from n
(infinite) suffixes of a string generated by a Markov source with positive transition probabilities. We

first prove in Theorem 1 that the average size of a suffix tree under Markovian model is asymptotically

equivalent to the size of a trie that is built from n independently generated strings, each string emitted by

the corresponding Markovian source. To accomplish this, we study another quantity, namely the number

of occurrences of a given pattern w in a string of length n generated by a Markovian source. We use its

properties to establish our asymptotic equivalence between suffix trees and tries. Finally, we compare to

the average size of suffix trees to trie size under Markovian model (see Theorem 2), which – to the best of

our knowledge – is only partially known [2].

In fact, there is extensive literature on tries [8] and very scarce one on suffix trees. An analysis of the

depth in a Markovian trie has been presented earlier in [11]. A rigorous analysis of the depth of suffix tree

was first presented in [5] for memoryless sources, and then extended in [3] to Markov sources. We should

point out that depth grows like O(log n) which makes the analysis manageable. In fact, height and fillup

level for suffix tree – which are also of logarithmic growth – were analyzed in [14] (see also [1, 13]). But

the average size grows like O(n) and is harder to study. For memoryless sources it was analyzed in [10]

for tries and in [5] for suffix trees. We also know that some parameters of suffix trees (e.g., profile) cannot

be inferred from tries, see [4]. Markov sources add additional level of complications in the analysis of

suffix trees as well documented in [1]. In fact, the average size of tries under general dynamic sources

was analyzed in [2], however, specifications to Markov sources requires extra care, especially for the so

called rational Markov sources.

2 Main Results

We consider a Markovian source generating a sequence of symbols drawn from a finite alphabet A. We

assume that the source is stationary and ergodic. We will consider a Markovian process of order 1 with

a positive transition matrix P = [P (a|b)]a,b∈A. Extensions to higher order Markov is possible since a

Markovian source of order r is simply a Markovian source of order 1 over the alphabet Ar. Furthermore,

we can extend our analysis to irreducible Markov sources, however, it requires some further work.

We first derive a formula for the average size of a suffix tree in terms of the number of pattern occur-

rences. Let w be a word overA. We denote by On(w) the number of occurrences of word w in a sequence

of length n generated by a Markov source with the transition matrix P. We observe [5] that the average

size sn of a suffix tree built over a sequence of length n is

sn =
∑

w∈A∗

P (On(w) ≥ 2). (1)

In fact, (1) holds for any probabilistic source. We compare it to the average size tn of trie built over n
independent Markov sequences. It is easy to see that tn can be written as

tn =
∑

w∈A∗

1− (1− P (w))n − nP (w)(1 − P (w))n−1 (2)

where P (w) is the probability of observing w in a Markov sequence.

Our main result of the paper is formulated next,
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Theorem 1 Consider a suffix tree built over n suffixes of a sequence of length n generated by a Markov

source with a positive state transition matrix P. There exists ε > 0 such that

sn − tn = O(n1−ε) (3)

for large n.

In order to apply Theorem 1 one needs to estimate the average size of a trie under Markovian model.

This seems to be unknown except for some general dynamic sources [2]. In fact, analysis of tries under

Markovian sources is quite challenging (see [6]). But we can offer the following result for the average

size of a trie under Markovian assumptions. A sketch of the proof is presented in Section 4.

Theorem 2 Consider a trie built over n independent sequences generated by a Markov source with pos-

itive transition probabilities. For (a, b, c) ∈ A3 define

αabc = log

[

P (a|b)P (c|a)
P (c|b)

]

. (4)

Then:

(irrational case) If not all {αabc} are commensurable, then

tn =
n

h
+ o(n)

where h =
∑

a,b πaP (b|a) logP (b|a) is the entropy rate of the underlying Markov source with πa, a ∈ A,

denoting the stationary probability.

(rational case) If all {αabc} are commensurable, then

tn =
n

h
(1 +Q(n)) +O(n1−ε)

where Q(n) is a periodic function and some ε > 0.

Remark We recall that a set of real numbers are commensurable (also known as ”rationally related”)

when their ratios are rational numbers. We observe that if for all (a, b) ∈ A2, the αabc are commensurable

for one c ∈ A, then αabc are commensurable for all values of c.
In the rest of this section, we present a road map of the proof of (3). For this we will make use

of ordinary generating functions. Let w ∈ Ak be a word of length k. We also define N0(z, w) =
∑

n>0 P (On(w) = 0)zn and N1(z, w) =
∑

n>0 P (On(w) = 1)zn for z ∈ C. We know from [8] that

N0(z, w) =
Sw(z)

Dw(z)

N1(z, w) =
zkP (w)

D2
w(z)

where Sw(z) is the autocorrelation polynomial of word w and Dw(z) is defined as follows

Dw(z) = Sw(z)(1− z) + zkP (w) (1 + Fw1,wk
(z)(1− z)) , (5)



Average Size of a Suffix Tree for Markov Sources 5

where w1 is the first character of w and wk is its last character. Here Fa,b(z) for (a, b) ∈ A2 is a function

that depends on the Markov parameters of the source described below.

Let P be the transition matrix of the Markov source and π be its stationary vector with πa its coefficient

at symbol a ∈ A. The vector 1 is the vector with all coefficients equal to 1 and I is the identity matrix.

Assuming that a ∈ A (resp. b) is the first (resp. last) symbol off w, we have [12, 8]

Fw(z) =
1

πa

[

(P− π ⊗ 1) (I− z(P+ π ⊗ 1))−1
]

b,a
(6)

where [A]a,b indicates the (a, b) coefficient of the matrix A, and ⊗ represents the tensor product. An

alternative way to express Fw(z) is

Fw(z) =
1

πa

〈ea(P− π ⊗ 1) (I− z(P+ π ⊗ 1))
−1

eb〉 (7)

where ec for c ∈ A is the vector with a 1 at the position corresponding to symbol c and all other coeffi-

cients are 0. Here 〈x,y〉 represents the scalar product of x and y.

Let us define two important quantities:

dn(w) = P (On(w) = 0)− (1− P (w))n,

qn(w) = P (On(w) = 1)− nP (w)(1 − P (w))n−1,

and their corresponding generating functions

∆w(z) =
∑

n>0

dn(w)z
n

Qw(z) =
∑

n>0

qn(w)z
n.

Observe that sn − tn =
∑

w∈A∗ dn(w) + qn(w). Thus we need to estimate dn(w) and qn(w) for all

w ∈ A∗.

We denote Bk the set of words of length k that do not overlap with itself for more than k/2 symbols

(see [8, 5, 3] for more precise definition). It is proven in [3] that
∑

w∈Ak−Bk

P (w) = O(δk1 )

where δ1 is the largest coefficient in the Markovian transition matrixP. In order to allow some coefficients

to be equal to 1 in the transition matrix, we can redefine

p = exp

(

lim sup
k,w∈Ak

logP (w)

k

)

q = exp

(

lim sup
k,w∈Ak,P (w) 6=0

logP (w)

k

)

.

These quantities exist and are smaller than 1 since A is a finite alphabet. We set δ =
√
p.

Now we are in the position to present two crucial lemmas, proved in the next section, from which

Theorem 1 follows.
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Lemma 1 There exist ε < 1 such that
∑

w∈A∗ qn(w) = O(nε).

Lemma 2 There exists ρ > 1 and a sequence Rn(w), for w ∈ A∗ such for all 1 > ε > 0 we have

• (i) for w ∈ Bk: dn(w) = O((nP (w))εδk) +Rn(w);

• (ii) for w ∈ Ak − Bk: dn(w) = O((nP (w))ε) +Rn(w),

where Rn(w) is such that
∑

w∈A∗ Rn(w) = O(1).

Proof of Theorem 1: We already know via Lemma 1 that there exists ε < 1 such that
∑

w∈A∗ qn(w) =
O(nε). Let now d1n =

∑

k

∑

w∈Bk
(dn(w) −Rn(w)) and since for all ε > 0 observe that

d1n =
∑

k

∑

w∈Bk

O(nεP ε(w)δk) =
∑

k

O(nεδk),

hence it converges for all ε > 0. Also let d2n =
∑

k

∑

w∈Ak−Bk
(dn(w) −Rn(w)). Observe that

d2n =
∑

k

∑

w∈Ak−Bk

O(nεP ε−1(w)P (w))

=
∑

k

∑

w∈Ak−Bk

O(nεq(ε−1)kP (w))

=
∑

k

O(nε(δq1−ε)k),

which converges for all ε such that δq1−ε < 1 (take ε < 1 close enough to 1) and is O(nε). Finally

d1n + d2n +
∑

w∈A∗ Rn(w) is also O(nε) for ε > 0 since
∑

w∈A∗ Rn(w) is finitely bounded. This

completes the proof of Theorem 1. ✷

3 Proof of Lemmas

In this section we prove Lemma 1 and Lemma 2. In the proof of Lemma 1 we shall use some facts from

[3], however, our proof follows the pattern matching approach developed in [8].

3.1 Proof of Lemma 1

The result is in fact already proven in [3], however, we follow a slightly different approach, We detail

here some parts since they will be reused in the proof of lemma 2. Define

Qw(z) = P (w)

(

zk

D2
w(z)

− z

(1 − (1− P (w))z)2

)

. (8)

Observe that
∑

w∈A∗

qn(w) = nQn(1)

as shown in [3]. Thus Qn(1) = O(n−ε) for some ε > 0.

We have the following simple lemma already discussed above. The largest eigenvalue of P is 1, let

λ1, λ2, . . . be a sequence of other eigenvalues in the decreasing order of their modulus.
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Lemma 3 Uniformly for all w ∈ A∗ we find Fw(z) = O( 1
1−|λ1z|

).

Proof: By the spectral representation of P we know that P = π ⊗ 1+
∑

i>0 λiui ⊗ ζi where ui (resp.

ζi) are the corresponding right (resp. left) eigenvectors. We have

(P− π ⊗ 1) (I− z(P+ π ⊗ 1))
−1

=
∑

i>0

λi

1− λiz
ui ⊗ ζi (9)

and therefore the function Fw(z) is defined for all z such that |z| < 1
|λ1|

and is uniformly O( 1
1−|λ1z|

). ✷

The next lemma is important.

Lemma 4 For z such that |λ1z| < 1 we have for all integers k

∑

w∈Ak+1

P (w)Fw(z) = O(λk
1 ). (10)

Proof: The function Fw(z) depends only on the first and last symbol of w. Considering a pair of symbols

(a, b) ∈ A2 the sum of the probabilities of the words of length k + 1 starting with a and ending with b,
∑

awb∈Ak+1 P (w), equals πa〈ebPkea〉. Easy algebra leads to

∑

w∈Ak+1

P (w)Fw(z) =
∑

(a,b)∈A2

〈ea(P− π ⊗ 1) (I− z(P+ π ⊗ 1))
−1

eb〉〈ebPkea〉. (11)

Since

〈ebPkea〉 = 〈ebπ〉〈1ea〉+ O(λk
1) (12)

we find
∑

(a,b)∈A2

〈ea(P− π ⊗ 1) (I− z(P+ π ⊗ 1))
−1

eb〉〈ebπ〉〈1ea〉 =

= 〈1(P− π ⊗ 1) (I− z(P+ π ⊗ 1))−1
π〉 = 0

because 1(P− π ⊗ 1) = 0. Therefore,

∑

w∈Ak+1

P (w)Fw(z) = O(λk
1 ),

and the series in k converges. ✷
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3.2 Proof of Lemma 2

We follow the approach in [3] which extends to Markovian source the analysis presented for memoryless

sources in [5], see [8].

The generating function ∆w(z) =
∑

n≥0 dn(w)z
n becomes

∆w(z) =
P (w)z

1− z

(

1 + (1− z)Fw(z)

Dw(z)
− 1

1− z + P (w)z

)

. (13)

We have

dn(w) =
1

2iπ

∮

dw(z)
dz

zn+1
,

integrated on any loop encircling the origin in the definition domain of dw(z). Extending the result in [5],

the authors of [3] show that there exists ρ > 1 such that the function Dw(z) has a single root in the disk

of radius ρ. Let Aw be such a root. We have via the residue formula

dn(w) = Res(∆w(z), Aw)A
−n
w − (1− P (w))n + dn(w, ρ), (14)

where Res(f(z), A) denotes the residue of function f(z) on complex number A and

dn(w, ρ) =
1

2iπ

∮

|z|=ρ

∆w(z)
dz

zn+1
. (15)

We have

Res(∆w(z), Aw) =
P (w) (1 + (1−Aw)Fw(Aw))

(1 −Aw)Cw

(16)

where Cw = D′
w(Aw). But since Dw(Aw) = 0 we can write

Res(∆w(z), Aw) = −A−k
w Sw(Aw)

Cw

(17)

We now consider asymptotic expansion of Aw and Cw as it is described in [8], in Lemma 8.1.8 and

Theorem 8.2.2. Anyhow the expansions were presented for memoryless case, but for Markov source we

simply replace Sw(1) by Sw(1) + P (w)Fw(1). We find

Aw = 1 + P (w)
Sw(1)

+P (w)2
(

k−Fw(1)
S2
w
(1) − S′

w
(1)

S3
w
(1)

)

+O(P (w)3)

Cw = −Sw(1) + P (w)
(

k − Fw(1)− 2
S′

w
(1)

Sw(1)

)

+O(P (w)2)

(18)

Notice that these expansions in the Markov model first appeared in [3].

From now follow the proof of Theorem 8.2.2 in [8]. We define the function

dw(x) =
A−k

w Sw(Aw)

Cw

A−x
w − (1 − P (w))x. (19)
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More precisely we define the function

d̄w(x) = dw(x) − dw(0)e
−x

which has a Mellin transform d∗w(s)Γ(s) =
∫∞

0 d̄w(x)x
s−1dx defined for all ℜ(s) ∈ (−1, 0) with

d∗w(s) =
A−k

w Sw(Aw

Cw

((logAw)
−s − 1) + 1− (− log(1− P (w))))−s . (20)

When w ∈ Bk with the expansion of Aw and since Sw(1) = 1 + O(δk) and S′
w(1) = O(kδk), we find

that similarly as shown in [8]

d∗w(s) = O(|s|kδk)P (w)1−s. (21)

Therefore, by the reverse Mellin transform, for all 1 > ε > 0:

d̄w(n) =
1

2iπ

∫ −ε+i∞

−ε−i∞

d∗w(s)Γ(s)s
−nds

= O(n1−εP (w)1−εδk) (22)

When w ∈ Ak −Bk we don’t have the Sw(1) = 1+O(δk). But it is shown in [3] that there exists α > 0
such that for all w ∈ A∗: Sw(z) > α for all z such that |z| ≤ ρ. Therefore we get

d̄w(n) = O(n1−εP (w)1−ε).

We set

Rn(w) = dw(0)e
−n + dn(w, ρ). (23)

We first investigate the quantity dw(0). We need to prove that
∑

w∈A∗ dw(0) converges. For this, noticing

that

Sw(Aw) = Sw(1) +
P (w)

Sw(1)
S′
w(1) +O(P (w)2)

we obtain

−A−k
w Sw(Aw)

Cw

= 1− P (w)

Sw(1)

(

Fw(1) +
S′
w(1)

Sw(1)

)

+O(P (w)2). (24)

Thus

dw(0) = − P (w)

Sw(1)

(

Fw(1) +
S′
w(1)

Sw(1)

)

+O(P (w))2). (25)

Without the term Fw(1) we would have the same expression as in [8] whose sum over w ∈ A∗ converges.

Therefore we need to prove that the sum
∑

w∈A∗

P (w)
Sw(1)Fw(1) converges. It is clear that the sum

∑

k

∑

w∈Ak−Bk

P (w)

Sw(1)
Fw(1)

converges since
∑

w∈Ak−Bk

P (w) = O(δk)
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and Fw(1) is uniformly bounded. Now we consider the other part

∑

k

∑

w∈Bk

P (w)

Sw(1)
Fw(1).

We know that Sw(1) = 1 +O(δk), therefore

∑

w∈Bk

P (w)

Sw(1)
Fw(1) =

∑

w∈Bk

P (w)Fw(1) +O(δk). (26)

But
∑

w∈Bk

P (w)Fw(1) =
∑

w∈Ak

P (w)Fw(1) + O(δk),

and we know by Lemma 4 that
∑

w∈Ak P (w)Fw(1) = O(λk
1). Thus the sum

∑

k

∑

w∈Ak

P (w)
Sw(1)Fw(1)

converges.

The second and last effort concentrate on the term dn(w, ρ). We proceed as in the proof of Theorem

8.2.2 in [8]. We first have dn(w, ρ) = O(P (w)ρ−n) which is O(nεP (w)ε) without any condition on w.

The issue is now to work on w ∈ Bk. In this case we have Sw(z) = 1 +O(δk) and therefore

dn(w, ρ) =
1

2iπ

∮

P (w)

1− z

(

1

Dw(z)
− 1

1− z + zP (w)

)

dz

zn+1

+
1

2iπ

∮

P (w)
Fw(z)

Dw(z)

dz

zn+1
. (27)

We notice that the function
P (w)

1− z

(

1

Dw(z)
− 1

1− z + zP (w)

)

is O(P (w)δk)+O(P (w)2), therefore the first integral is O(P (w)δkρ−n). The second functionP (w) Fw(z)
Dw(z)

is equal to P (w)Fw(z) +O(P (w)δk). We already know that
∑

w∈Bk
P (w)Fw(z) = O(λk

1), thus the se-

ries converges and the lemma is proven.

4 Sketch of the Proof of Theorem 2

Let a ∈ A. We denote by ta,n the average size of a trie over n independent Markovian sequences, all

starting with the same symbol a. Then for n ≥ 2

tn = 1 +
∑

a∈A

n
∑

k=0

(

n

k

)

πk
a(1− πa)

n−kta,k, (28)

and similarly for b ∈ A

tn,b = 1 +
∑

a∈A

n
∑

k=0

(

n

k

)

P (a|b)k(1− P (a|b))n−kta,k, (29)
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where we recall P (a|b) is the element of matrixP. Let T (z) =
∑

n tn
zn

n! e
−z and Ta(z) =

∑

n ta,n
zn

n! e
−z

be the familiar Poisson transforms. Using (28) and (29) we find

T (z) = 1− (1 + z)e−z +
∑

a∈A

Ta(πaz), (30)

Tb(z) = 1− (1 + z)e−z +
∑

a∈A

Ta(P (a|b)z). (31)

Using dePoissonization arguments (see [7]) we shall obtain tn = T (n) + O( 1
n
T (n)). Thus we need to

study T (z) for large z in a cone around the real axis. For this we apply the Mellin transform that we

describe next.

Let now T(z) be the vector consisting of Ta(z) for every a ∈ A. It is not hard to see that its Mellin

transform

T∗(s) =

∫ ∞

0

T(z)zs−1dz

is defined for −1 > ℜ(s) > −2 (since T(z) = O(z2) when z → 0), and

T∗(s) = −(1 + s)Γ(s)1+P(s)T∗(s) (32)

where P(s) is the matrix consisting of P (a|b)−s if P (a|b) > 0 and 0 otherwise. This identity leads to

T∗(s) = −(1 + s)Γ(s)(I−P(s))−11

where I is the identity matrix. Similarly the Mellin transform T ∗(s) of T (z) satisfies

T ∗(s) = −(1 + s)Γ(s) + 〈π(s),T∗(s)〉. (33)

where π(s) is the vector composed of π−s
a .

The inverse Mellin transform of T ∗(s) is defined as

T (n) =
1

2iπ

∫ c+i∞

c−i∞

T ∗(s)n−sds, −1 > c > −2. (34)

In order to find asymptotic behavior of T (z) as z → ∞ we need to study the poles of T ∗(s) for −2 <
ℜ(s). As discussed in [6, 8] this is equivalently to analyze the poles of T∗(s). Since (1 + s)Γ(s) has no

pole on −2 < ℜ(s) < 0 we must consider poles of (I−P(s))−1. In other words (see [6, 8]) we need to

find s for which the main eigenvalue λ(s) of P(s) is equal to 1. It is easy to see that λ(−1) = 1 since

P(−1) = P. The residue at s = −1 of n−s(I−P(s))−11 is equal to n
h
1 where h is the entropy rate of

the Markovian source.

As explained in [6] in the rational case there are multiple values of s such that λ(s) = 1 and ℜ(s) = −1.

Since these poles are regularly spaced on the axis ℜ(s) = 0, they contribute to the oscillating terms

(function Q in Theorem 2) in the asymptotic expansion of tn. Furthermore, the location of zeros of

λ(s) = 1 in the rational case tells us that there exists ε such that (I−P(s)) has no pole for −1 < ℜ(s) <
−1 + ε leading to the error term O(n1−ε).

In the irrational case there is only one pole on the line ℜ(s) = −1, thus the oscillating term disappears.

However, zeros of λ(s) = 1 can lie arbitrarily close to the line ℜ(s) − 1, therefore the error term is just

o(n).
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