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Abstract. Motivated by the problem of graph structure compression under realistic source models, we study the
symmetry behavior of preferential and uniform attachment graphs. These are two dynamic models of network growth
in which new nodes attach to a constant number m of existing ones according to some attachment scheme. We prove
symmetry results for m = 1 and 2, and we conjecture that for m ≥ 3, both models yield asymmetry with high
probability. We provide new empirical evidence in terms of graph defect. We also prove that vertex defects in the
uniform attachment model grow at most logarithmically with graph size, then use this to prove a weak asymmetry
result for all values of m in the uniform attachment model. Finally, we introduce a natural variation of the two
models that incorporates preference of new nodes for nodes of a similar age, and we show that the change introduces
symmetry for all values of m.
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1 Introduction
Study of the asymptotic behavior of the symmetries of random graphs, originally motivated by combina-
torial problems, has relatively recently found a new application in the problem of compression of graph
structures. The basic problem can be formulated as follows: given a probability distribution on labeled
graphs, determine an encoding of graph structures (that is, unlabeled graphs) so as to minimize expected
description length.

Choi and Szpankowski (2012) studied this problem in the setting of Erdős-Rényi graphs. They showed
that, under any distribution giving equal probability to isomorphic graphs, the entropy of the induced
distribution on graph structures (i.e., isomorphism classes of graphs) is less than the entropy of the original
distribution by an amount proportional to the expected logarithm of the number of automorphisms. Thus
the solution to the above problem is intimately connected with the symmetries of the random graph model
under consideration.
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Study of symmetries is further motivated by their connection to various measures of information con-
tained in a graph structure. For instance, the topological entropy of a random graph, studied by Rashevsky
(1955) and Trucco (1956), measures the uncertainty in the orbit class (i.e., the set of nodes having the same
long-term neighborhood structure) of a node chosen uniformly at random from the node set of the graph.
If the graph is asymmetric with high probability, then the topological entropy is maximized: if n is the size
of the graph, then the topological entropy is, to leading order, log n. In general, if the symmetries of the
graph can be characterized precisely, then so can the topological entropy. Furthermore, tools developed
here will allow us to study and compare topological information of nodes (i.e., by how many bits a graph
view of one node differs from another).

The present paper is a first step toward the goal of extending graph structure compression results to other
random graph models. In particular, many real-world graphs, such as biological and social networks,
exhibit a power law degree distribution (see Durrett (2006)). To explain this phenomenon, Albert and
Barabási (2002) proposed the preferential attachment mechanism, in which a graph is built one vertex at
a time, and each new vertex t attaches to a given old vertex v with probability proportional to the current
degree of v. Thus, we study a variant of a preferential attachment model. The primary problem appears
to be difficult, so we also study a closely related model in which attachment is uniform, in the hope that
the proof techniques used there may be generalized. In both uniform and preferential attachment models,
we prove that when each new vertex chooses only one previous vertex as a neighbor, there is symmetry
with high probability, and when each new vertex makes two choices, there is a positive probability of
symmetry. In addition, we determine the asymptotic behavior of a quantity known as the defect of a
vertex, introduced by Kim et al. (2002), which measures the extent to which the neighborhood of the
vertex contributes to asymmetry of the graph. We then use this to prove a weak asymmetry result for the
uniform attachment case.

We also introduce the sliding window model, a dynamic model in which new vertices choose neigh-
bors from within windows of expected size uniformly bounded above by a constant, the purpose being
to exhibit a “natural” mechanism that, coupled with a quite general attachment scheme that includes
preferential and uniform attachment as special cases, results in symmetry with asymptotically positive
probability.

Study of the asymptotic behavior of the automorphism group of a random graph started with Erdős
and Rényi (1963), wherein Erdős-Rényi graphs with constant connection probability were shown to be
asymmetric with high probability, a result motivated by the combinatorial question of determining the
asymptotics of the number of unlabeled graphs on n vertices for n → ∞. A similar question motivated
the investigation of symmetry properties of random regular graphs by Bollobás (1982) and Kim et al.
(2002). In the latter paper, the authors precisely characterized the range for which Erdős-Rényi graphs are
asymmetric by proving concentration results for random variables defined in terms of vertex defect. They
then proved an asymmetry result for random regular graphs using the previous result.

For general models, symmetry and asymmetry results can be nontrivial to prove, due to the non-
monotonicity of the properties considered. Furthermore, the particular models considered here present
more difficulties not seen in the Erdős-Rényi case: there is significant dependence between edge events,
and graph sparseness makes derivation of concentration results difficult.

The rest of the paper is organized as follows: in Section 2, we formally state the models and the main
problem; we then state the main results, along with a discussion of their significance. We also present some
empirical validation of the symmetry results, as well as evidence in support of the asymmetry conjecture.
Finally, in Section 3, we give sketches of some proofs.
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2 Main Results
In this section, we state the main problems, introduce the models that we consider, and formulate the
main results. First, we introduce some standard graph-theoretic terminology and notation. We start with
the notion of structure-preserving transformations between labeled graphs: given two graphs G1 and G2

with vertex sets V (G1) and V (G2), a mapping φ : V (G1)→ V (G2) is said to be an isomorphism if it is
bijective and preserves edge relations; that is, for any x, y ∈ V (G1), there is an edge between x and y if
and only if there is an edge in G2 between φ(x) and φ(y). When such a φ exists, G1 and G2 are said to
be isomorphic; that is, they have the same structure.

An isomorphism from the vertices of a graph G to itself is called an automorphism or symmetry. The
set of automorphisms of G, together with the operation of function composition, forms a group, which
is called the automorphism group of G, denoted by Aut(G). Note that the image of G under any of its
symmetries is G, the same labeled graph.

We then say that G is symmetric if it has at least one nontrivial symmetry and that G is asymmetric if
the only symmetry of G is the identity permutation. Intuitively, G is symmetric if and only if there are
at least two vertices whose graph perspectives are the same; that is, their neighborhoods at any distance
have the same structure.

The main problem can then be stated as follows: given a random graph process {Gn}n≥1, characterize
the behavior of its automorphism group for n→∞.

2.1 Definitions of Models
In what follows, vertices of an n-vertex graph are the elements of the set [n] := {1, 2, . . . , n}.

A preferential attachment model is a dynamic model of network growth in which new vertices, when
they choose vertices already in the graph as neighbors, have a preference for a given vertex that is pro-
portional to its current degree, see Albert and Barabási (2002). Thus, nodes with high degree tend to be
preferred for new connections. The following definition formalizes this. (A slightly different formaliza-
tion of the Barabási–Albert model is given by Bollobás and Riordan (2004).)

Definition 1 (Preferential attachment model) A preferential attachment graph P(n,m) on n vertices,
with parameterm, is constructed as follows: at time t = 1, a single vertex with name 1 and attractiveness
att1(1) = 0 is added. For each time 1 < t ≤ n, a vertex with name t is added, andm vertices ct1, . . . , ctm
in [t− 1] are chosen with replacement such that

Pr[ctj = v] =
attv(t− 1)∑t−1
w=1 attw(t− 1)

=
attv(t− 1)

2m(t− 2)
.

(Here we adopt the convention that 0/0 = 1.) An edge between t and v is added if and only if cti = v for
some i. For each v ∈ [t− 1], we set attv(t) = attv(t− 1) + |{j|ctj = v}|. Finally, we set attt(t) = m.

Another way to express this is to first construct a growing multigraph, where we at each step add one
new vertex and m edges from it, with the other endpoints chosen at random with replacement as above;
then attv(t) equals the degree of v at time t. We then reduce any set of multiple edges to a single edge to
obtain the simple graph P(n,m).

We will also consider a variation, which we call the uniform attachment model, with the only change be-
ing that vertex choices are now equiprobable; that is, we now fix attv(t− 1) = 1 for all t and v ∈ [t− 1].
(For m = 1 this yields the well-known random recursive tree (see Smythe and Mahmoud (1995)).)
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The rationale for studying this simpler model is that solving our symmetry problems poses many of the
same challenges for both models: both, for example, generate sparse graphs, which seems to rule out
an approach to proving asymmetry based on defect (discussed below); furthermore, in both models, in
considering a neighborhood of a vertex, one must distinguish between incoming and outgoing vertices,
which complicates other possible approaches to asymmetry proofs. On the other hand, the uniform attach-
ment model is advantageous, in that we need not deal with the dependence resulting from the preferential
attachment mechanism.

We also study another practical variant of the attachment model called the sliding window model that
we define next.

Definition 2 (Sliding window model) The sliding window model with random window size works as fol-
lows: at time 1, vertex 1 is added. At time t > 1, vertex t is added, and a window size Wt, taking values
in {2, . . . , t− 1}, is chosen according to the distribution function Ft, independent of anything else. Then,
m vertices are chosen with replacement from the set [t−Wt, t− 1] (which we call the window of vertex
t), with the distribution of each choice ctj determined by the ratio of the attractiveness of any node in the
window to the total attractiveness of the window. That is,

Pr[ctj = v|Wt = w] =
attv(t− 1)∑t−1

k=t−w attk(t− 1)
.

Here, attv(x) denotes the attractiveness of vertex v at time x. In the preferential attachment sliding
window model, attv(x) is given by

attv(x) = m+

x−1∑
k=1

m∑
j=1

[ckj = v].

In the uniform attachment version, attv(x) = 1.

2.2 Statement of Results
The first result characterizes the expected vertex defect for the uniform attachment model. Vertex, permu-
tation, and graph defect were introduced by Kim et al. (2002) in order to prove asymmetry for Erdős-Rényi
graphs. The definitions are as follows.

Definition 3 (Defect) Fix a graph G on n vertices. Given a permutation π ∈ Sn and u ∈ [n], we define
the defect of u with respect to π to be Dπ(u) = |N(π(u))4π(N(u))|, where N(x) denotes the set of
neighbors of vertex x, and4 denotes the symmetric difference of two sets. We define the defect of π to be
Dπ(G) = maxu∈[n]Dπ(u). Finally, we define the defect of G to be D(G) = minπ 6=IDD(π).

Some simple consequences of these definitions are as follows: for a graph G on n vertices and a
permutation π ∈ [n], π is an automorphism of G if and only if Dπ(G) = 0, which is equivalent to non-
existence of a vertex u ∈ [n] such that Dπ(u) 6= 0; G has nontrivial symmetries if and only if D(G) = 0.
Thus, vertex defect measures the extent to which a given vertex’s neighborhood structure breaks the
symmetry of π, permutation defect measures the number of edges adjacent to any particular vertex that
need to be modified in order to make π a symmetry of G, and graph defect measures the number of edges
adjacent to any vertex that need to be modified in order to introduce a nontrivial symmetry into G.

For a nontrivial permutation π ∈ Sn and any u ∈ [n], define ω(π, u) = min{u, π(u)}. We also define
ω(π) to be the minimum vertex not fixed by π (where we say that π fixes a vertex w if π(w) = w).
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Fig. 1: The shapes on which we focus for the proof of Theorem 3.

Theorem 1 (Expected defect for a vertex) Fix m ∈ N in the uniform attachment model. For any n
sufficiently large, π 6= ID, π ∈ Sn, and u ∈ [n] not fixed by π,

log

(
n

max{ω(π, u) + 2, (2m+ 2)}

)
≤ E[Dπ(u)] ≤ 1 + 4m

(
2 + log

(
n

ω(π, u)

))
.

This theorem is significant for two reasons: it plays a central role in the proof of Theorem 2, and it gives
an indication that an approach to an asymmetry proof via defects, as used in the setting of Erdős-Rényi
graphs (see Kim et al. (2002)), may not be fruitful. A key difference between the Erdős-Rényi model and
the uniform and preferential attachment ones is that the expected defect in the former is Θ(np(1− p)) for
p, 1− p� logn

n , which is essential for the proof technique used for that model to work.
The previous theorem can be used to derive a weak asymmetry result for the uniform attachment model

as follows: for a given sequence of permutations πn 6= ID, to show that πn /∈ Aut(Gn) with high
probability, it is sufficient to exhibit a sequence of vertices un such that limn→∞ Pr[Dπn

(un) = 0] = 1.
In particular, we can choose un = ω(πn), the minimum non-fixed vertex of πn. We prove the following
result.

Theorem 2 (Probability of vertex defect being 0) Fix m ≥ 1 and consider a sequence of graphs in
the uniform attachment model Gn∼U(n,m). Let {πn}∞n=1, πn ∈ Sn − {ID}, and, for each n, let
un = ω(πn). Then

Pr[Dπn(un) = 0]
n→∞−−−−→ 0,

so that the asymptotic probability that πn ∈ Aut(Gn) is 0.

We remark that we call this a weak asymmetry result because it is a statement about which permutations
are not in the automorphism group of Gn: any given sequence of permutations (or small sets of permu-
tations) is asymptotically not likely to be in the automorphism group of a growing uniform attachment
graph. Thus, this result has the flavor of an asymmetry result.

Observe that Theorem 2 does not prove asymmetry of a uniform attachment model. For this we would
need to prove that the graph defect D(G) > 0 whp. However, we are able to make some statements about
symmetry/asymmetry of this model. We discuss it next.

In the case m = 1, both the uniform and preferential attachment process yield trees. In such trees,
we find Θ(n) leaves with high probability, so that the probability of vertex n choosing a parent of a
leaf, thereby forming a pair of sibling leaves which may be swapped (which some authors have called a
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cherry as shown in Figure 1(a)), is positive. Results on random recursive trees allow this argument to be
strengthened to symmetry with high probability in the uniform attachment case.

The case m = 2 is midway between the high-probability symmetry of the m = 1 case and the con-
jectured asymmetry of the m ≥ 3 case. Examining the asymptotic probability of two vertices making
the same choices and being unchosen by subsequent vertices yields the following results as shown in
Figure 1(b).

Theorem 3 (Symmetry results for m = 1, 2) Fix m = 1, 2, and let Gn∼U(n,m) or Gn∼P(n,m).
Then there exists a constant C > 0 such that, for n sufficiently large,

Pr[|Aut(Gn)| > 1] > C.

For both models, in the result for m = 1, we can strengthen the statement to symmetry with high proba-
bility (that is, the statement is true for all C < 1).

We conjecture that for m = 2, in both models, Pr[|Aut(Gn)| > 1] converges to a constant strictly less
than 1.

The result for m = 2 is particularly interesting in light of the fact that empirical investigations of the
symmetries of U(n, 2) graphs with insufficiently many samples may lead to the incorrect conclusion that
there is asymmetry with high probability in this case.

For fixed m ≥ 3, we propose the following conjecture.

Conjecture 1 (Asymmetry conjecture) Fix m ≥ 3 and let Gn∼U(n,m) or Gn∼P(n,m). Then

Pr[|Aut(Gn)| > 1]
n→∞−−−−→ 0.

That is, graphs drawn according to the specified distributions are asymmetric with high probability.
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Fig. 2: Plots showing minimum/maximum vertex defects for certain classes of permutations.

Empirical evidence in support of this conjecture abounds. For instance, MacArthur and Anderson
(2006) give plots of number of automorphisms as n increases for sampled graphs, which show initial
increase and then swift decay to 1. We contribute defect-based evidence here.
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Figure 2 shows growth of a graph defect estimate as n, the number of vertices of the sampled graphs,
grows large, for a few values of m. As only a small subset of permutations could be sampled due to
time and space constraints, the pictured defect estimates only give upper bounds on the true defects. For
m = 1, the estimate quickly drops to 0, due to the presence of automorphisms that are swaps of two
vertices, as the proof of Theorem 3 indicates. For m = 2, the estimate grows away from 0, but this does
not give a complete picture of the situation in this case: it fails to capture the phenomenon of symmetry
with asymptotically nonzero (but quite small) probability predicted by Theorem 3. For m ≥ 3, the graph
defect exhibits logarithmic growth, which is in keeping with the statement of Theorem 1. Furthermore,
since the defect grows away from 0, the evidence is in keeping with the asymmetry conjecture (though
the small permutation sample size prevents us from claiming it as strong evidence of the conjecture).

We also give some weak supporting evidence in the form of a theorem about probability of automor-
phism group membership for sequences of permutations, that of Theorem 2.

Finally, we discuss the sliding window model, that could naturally capture the behavior of dynamic
networks in which new nodes are very unlikely to attach to old ones, but whose attachment policy is
otherwise quite general. (For example, one may think of a social network whose nodes are people admitted
to a university and whose edges represent friendships formed after admission, and then, except with
small probability, nodes will choose neighbors in a window of bounded size.) The next result deals with
symmetry in the sliding window model. If windows are restricted to be of expected length less than a
constant bound, then considering the event that nodes n − 1 and n form a cherry shows that symmetry
results with nonzero probability.

Theorem 4 (Symmetry results for sliding window model) In the sliding window model with random
window size, for any m, if there exists a constant w such that E[Wi] ≤ w for all i, then the probability of
symmetry is asymptotically positive. If there exists w such that, for all i, Wi ≤ w with probability 1, then
a graph drawn according to this distribution is symmetric with high probability.

3 Some Proofs
In this section, we fix some useful notation, then give proofs only of Theorems 1 and 3 leaving the other
proofs to the full version of the paper. Given two vertices u and v, we write E[u, v] for the event that there
is an (undirected) edge between u and v. For vertex u ∈ [n] and permutation π, we can write the defect
Dπ(u) as:

Dπ(u) =

n∑
v=1

Bu,π(v),

where we define Bu,π(v) to be 1 if v ∈ N(π(u))4π(N(u)) and 0 otherwise. We can express each such
indicator in terms of edge events:

Bu,π(v) = (E[v, π(u)] ∩ ¬E[π−1(v), u]) ∪ (¬E[v, π(u)] ∩ E[π−1(v), u]).

Note that the two conjunctions are disjoint.

3.1 Proof of Theorem 1
We now assume uniform attachment model. First, we state some useful lemmas about probabilities of
edge events. We omit the simple proofs.
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Lemma 1 For all i, q, j, r such that i < j and q < r, if j < r, then Pr[E[i, j]] > Pr[E[q, r]].

Lemma 2 For all i < j,
1

j
≤ Pr[E[i, j]] ≤ 2m

j
.

Lemma 3 For all i, q, j, r such that i < j, q < r, r ≥ 2m+ 1, and either i 6= q or j 6= r,

Pr[E[i, j] ∩ ¬E[q, r]] ≥ Pr[E[i, j] ∩ E[q, r]].

Lemma 4 For all x ≥ 1,
∑x
i=1 Pr[E[i, x]] ≤ 2m.

Lemma 5 (Harmonic Sum Log Sandwich) For all n and j ∈ Z such that 1 ≤ j ≤ n,

log
n

j
≤

n∑
i=j

1

i
≤ 1

j
+ log

n

j
.

Now we move on to the proof of the main result. Throughout, we assume that u < π(u); the case
u > π(u) follows from this by noting that Dπ−1(π(u)) = Dπ(u). First, we derive the lower bound. We
start by lower bounding the probability of event Bu,π(i) by the probability of an edge. For any vertex i
such that π−1(i) ≥ 2m+ 1 and i 6= u, π(u) (so all but a constant number of them), we have

Pr[Bu,π(i)] = Pr[E[i, π(u)] ∩ ¬E[π−1(i), u]] + Pr[¬E[i, π(u)] ∩ E[π−1(i), u]]

(a)

≥ Pr[E[i, π(u)] ∩ E[π−1(i), u]] + Pr[E[π−1(i), u] ∩ ¬E[i, π(u)]]

= Pr[E[π−1(i), u]].

Here, (a) is a result of Lemma 3 since max{π−1(i), u} ≥ 2m+ 1. Hence,
n∑
i=1

Pr[Bu,π(i)] ≥
n∑

π−1(i)=max{ω(π,u)+1,(2m+1)}

Pr[Bu,π(i)]

(a)

≥
n∑

π−1(u)6=π−1(i)=max{ω(π,u)+1,(2m+1)}

Pr[E[π−1(i), u]]

(b)

≥
n∑

π−1(u) 6=π−1(i)=max{ω(π,u)+1,(2m+1)}

1

π−1(i)

(c)

≥ log

(
n

max{ω(π, u) + 2, (2m+ 2)}

)
,

where (a) is a consequence of the previous inequality, (b) is an invocation of Lemma 2, and (c) is a result
of Lemma 5 and the observation that, if π−1(u) ≥ max{ω(π, u) + 1, 2m + 1}, then its contribution to
the sum is 1

π−1(u) ≤
1

max{ω(π,u)+1,2m+1)} . This completes the proof of the lower bound.
Now we prove the upper bound. We start by upper bounding the probability of Bu,π(i):

Pr[Bu,π(i)] = Pr[E[i, π(u)] ∩ ¬E[π−1(i), u]] + Pr[¬E[i, π(u)] ∩ E[π−1(i), u]]

(a)

≤ Pr[E[i, π(u)]] + Pr[E[π−1(i), u]],
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where (a) is a consequence of two applications of monotonicity of probabilities. Hence
n∑
i=1

Pr[Bu,π(i)]
(a)

≤
n∑
i=1

Pr[E[i, π(u)]] +

n∑
π−1(i)=1

Pr[E[π−1(i), u]]

(b)

≤ 1 + 2

n∑
π−1(i)=1

Pr[E[π−1(i), u]]

≤ 1 + 2

ω(π,u)∑
π−1(i)=1

Pr[E[π−1(i), u]] + 2

n∑
π−1(i)=ω(π,u)

Pr[E[π−1(i), u]]

(c)

≤ 1 + 4m+ 2

n∑
π−1(i)=ω(π,u)

Pr[E[π−1(i), u]],

where (a) follows from the previous inequality, (b) from Lemma 1, and (c) from Lemma 4. The justifica-
tion for (b) is slightly more complicated: it follows from the fact that,

Pr[E[i, π(u)]] ≤ Pr[E[i, u]], i 6= u,

which can be seen as follows: for u 6= i < π(u), it follows from Lemma 1. If i = π(u), then the left-hand
side is 0, so the inequality holds. Finally, if i > π(u) > u, then the two probabilities are equal, due to the
uniformity of the attachment process. For the case i = u, the inequality fails, and we instead upper bound
that term by 1.

Thus, we can upper bound some more:
n∑

π−1(i)=ω(π,u)

Pr[E[π−1(i), u]]
(a)

≤ 2m

n∑
π−1(i)=ω(π,u)

1

π−1(i)

(b)

≤ 2m

(
1 + log

n

ω(π, u)

)
,

where (a) follows from Lemma 2 and (b) from Lemma 5. This completes the proof.

3.2 Proof of Theorem 3
CASE m = 1.
Though we are able to prove symmetry with high probability in both models, we leave it for the journal
version of this paper. Here, for simplicity, we shall only prove asymptotically positive probability of sym-
metry. In order to do so, we examine the probability of the nth node resulting in at least one cherry after
making its choice of parent. To bound this probability below, we start by conditioning on the event that,
after node n− 1 has been added and its choice is made, there are at least Cn leaves, for an appropriately
chosen constant C. This happens with high probability in both the uniform and preferential attachment
model. Now, we split into three cases: there are no cherries, there is exactly one cherry, and there are at
least two cherries.

In the case of no cherries, there are exactly as many parents of leaves as there are leaves, so that there are
at least Cn leaf parents. In order to form a cherry, node n must choose a parent of a leaf, which happens
with asymptotically positive probability: each leaf parent has degree exactly 2, so that the probability that
n chooses such a node is at least

2Cn

2(n− 1)
∼ C
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in the case of preferential attachment and
Cn

n− 1
∼ C

in the case of uniform attachment. In the case where there is exactly one cherry, the only way in which
Gn can contain no cherries is by n choosing one of the leaves of the cherry. These leaves have total
attractiveness 2 (in either model), so that the conditional probability that n destroys the cherry is at most

2
(n−1) , which implies that Gn contains a cherry with conditional probability at least 1− 2

n−1 . In the final
case, in which there are at least two cherries, the addition of node n cannot destroy more than one cherry,
so that, with conditional probability 1, a cherry exists after nmakes its choice. Putting everything together
proves the positive probability claim.

In the uniform attachment case (i.e., for a random recursive tree), it follows from Example 3.2 of
Aldous (1991), see also Theorem 1 of Feng and Mahmoud (2010), that the number of cherries with
high probability is linear in n; in particular, with high probability there is at least one cherry and thus a
symmetry.

CASE m = 2
We will show that, with positive probability, in both models, there is at least one diamond (i.e., a pair
of nodes that choose the same parents and that are not chosen by any subsequent nodes) as shown in
Figure 1(b). The details are technically more intricate than in the m = 1 case, and the argument there
does not work in this case, because node n must choose, from a set of size Θ(n2) (pairs of vertices),
one of O(n) elements (previously chosen pairs). We thus rely on a birthday paradox-style argument to
show that there is a positive probability of two vertices making the same choices, then condition on the
lexicographically smallest such pair to complete the proof.

Let A(u, v) be the event that vertices u and v choose the same pair of parents, and let B(u, v) be the
event that u and v are both unchosen. Now, define N(k) to be the number of pairs u, v of vertices such
that k < u < v and A(u, v) and B(u, v) simultaneously hold. Define NA(k) and NB(k) analogously for
pairs for which events A and B hold, respectively. Finally, denote by S>x the set {k ∈ [n]|k > x}. We
then aim to prove that Pr[N(0) > 0] > C > 0 for some constant C and n large enough. For any x, we
have

Pr[N(x) > 0] = Pr[N(x) > 0 ∩NA(x) > 0] = Pr[N(x) > 0|NA(x) > 0] · Pr[NA(x) > 0],

where the first equality is from the fact that [N(x) > 0] ⊆ [N(x)A > 0]. The goal now is bound the
remaining probabilities below by positive constants. We do this in the next two lemmas, which hold for
both uniform and preferential attachment graphs. We will prove them in the uniform case, then explain
the modifications needed to extend them to the preferential case.

Lemma 6 (Probability of two vertices picking the same pair) There exists a positive constant C such
that

Pr[NA(n/2) > 0] > C

for all n sufficiently large.

Proof: To show this, we will instead compute Pr[NA(n/2) = 0] and bound it above by a constant less
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than 1. The condition NA(n/2) = 0 means that all vertices > n/2 choose distinct pairs. This is given by

Pr[NA(n/2) = 0] =

n/2∏
k=1

(
1− k − 1

(n2 + k − 1)2

)

≤
n/2∏
k=1

(
1− k − 1

n2

)
≤

n/2∏
k=n/4+1

(
1− k − 1

n2

)

≤
n/2∏

k=n/4+1

(
1− n

4n2

)
=

(
1− (1/4)

n

)n
4

n→∞−−−−→ e−
1
16 < 1.

In the preferential attachment case, the proof is similar, except that we apply the fact that the attractive-
ness of any vertex v < t at time t is at least m

2m(t−2) = 1
2(t−2) . 2

Lemma 7 (Conditional probability of two vertices with the same neighborhood) There exists a posi-
tive constant C such that

Pr[N(n/2) > 0|NA(n/2) > 0] > C

for all n sufficiently large.

Proof: We condition on the lexicographically smallest pair X from S>n/2 such that A(X) holds. Let
D(u, v) be the event that the pair (u, v) is the smallest pair from S>n/2 for which A holds. Then

Pr[N(n/2) > 0|NA(n/2) > 0] =
∑

u<v∈S>n/2

Pr[N(n/2) > 0|D(u, v)] Pr[D(u, v)|NA(n/2) > 0]

≥
∑

u<v∈S>n/2

Pr[B(u, v)|D(u, v)] Pr[D(u, v)|NA(n/2) > 0]

≥ C
∑

u<v∈S>n/2

Pr[D(u, v)|NA(n/2) > 0] = C.

Here, the equalities are simply due to the law of total probability, and the first inequality is because the
event B(u, v) is a subset of the event N(n/2) > 0. The second inequality is by direct computation. Note
first that D(u, v) means that all lexicographically smaller pairs choose distinct pairs, and u and v choose
the same pair (so that v cannot choose u). So

Pr[B(u, v)|D(u, v)] =

v∏
j=u+1

Pr[j avoids u|D(u, v)]

n∏
j=v+1

Pr[j avoids v, u|D(u, v)]

≥
v−1∏
j=u+1

(
(j − 1)2 − 2j − u

(j − 1)2

)
· 1 ·

n∏
j=v+1

(
(j − 1)2 − 4j − 2u

(j − 1)2

)

≥
v−1∏
j=u+1

(
1− c

n

) n∏
j=v+1

(
1− c

n

)
≥
(

1− c

n

)n
,
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where c > 0 is some constant. Here, the first inequality results from bounding the numerators below by
giving upper bounds for the number of pairs that vertex j must avoid in order to avoid u and v and for the
number of pairs that j must avoid in order to pick a pair that is distinct from the choices of all vertices
x such that (x, j) is lexicographically smaller than (u, v). The 1 between the products is from the fact
that v avoids u with probability 1, due to the conditioning by D(u, v). The second inequality holds for
all n sufficiently large, since j > n

2 . The last inequality is because all factors are bounded above by 1.
Finally, by taking n sufficiently large, the last value can be made arbitrarily close to e−c. The proof in the
preferential case is again similar, relying on the previously stated lower bound on vertex attractiveness. 2
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