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A Study of the Boltzmann Sequence-Structure

Channel
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Abstract—We rigorously study a channel that maps binary

sequences to self-avoiding walks in the two-dimensional grid,

inspired by a model of protein folding from statistical physics

and studied empirically by biophysicists. This channel, which we

also call the Boltzmann sequence-structure channel, is charac-

terized by a Boltzmann/Gibbs distribution with a free parameter

corresponding to temperature. In our previous work, we verified

experimentally that the channel capacity appears to have a phase

transition for small temperature and decays to zero for high

temperature. In this paper, we make some progress towards

explaining these phenomena. We first estimate the conditional

entropy between the input sequence and the output fold, giving

an upper bound which exhibits a phase transition with respect

to temperature. Next, we formulate a class of parameter settings

under which the dependence between walk energies is governed

by their number of shared contacts. In this setting, we derive a

lower bound on the conditional entropy. This lower bound allows

us to conclude that the mutual information tends to zero for

high temperature, giving some support to the experimental fact

regarding capacity which tends to zero in this regime. Finally,

we construct an example setting of the parameters of the model

for which the free energy is exactly calculable.

I. INTRODUCTION

Information theory traditionally deals with the problem of

transmitting sequences over a communication channel and

finding the maximum number of messages that the receiver can

recover with arbitrarily small probability of error. However,

databases of various sorts have come into existence in recent

years that require to transmit structural data (e.g., graphs and

sets). Contemporaneously, there has been significant effort fo-

cused on understanding the equilibrated states and dynamics of

biomolecules [1], in particular, to determine folded states and

fold changes. We bridge these seemingly disparate ideas using

novel information theoretic modeling. In [2], we attempted

an information-theoretic explanation of a few observations

previously made by biophysicists: while the number of amino

acid sequences observed in nature is large, the corresponding

number of dissimilar tertiary structures to which the sequences
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have been observed to fold is relatively small. Additionally, the

frequency distribution of protein families observed in nature

exhibits power law characteristics. We provided experimental

evidence that explains these observations by modeling the

protein folding process as a channel. We gave evidence in

support of the hypothesis that these complex phenomena might

have interesting information theoretic underpinnings.

This channel maps binary (hydrophobic, denoted by H , and

polar, denoted by P ) sequences into two-dimensional self-

avoiding walks (also called folds) in a square lattice (see

Figure 1). ∗ A sequence of length N induces a labeling of

each fold of the same length, and counting the number of

different types of contacting nodes induces an energy function

on the set of folds. This energy function induces a conditional

probability distribution on the set of folds, where lower energy

folds receive higher probability.

In particular, the channel is defined by the Boltzmann/ Gibbs

distribution with a free parameter corresponding to inverse

temperature. We therefore call it the Boltzmann sequence-

structure channel. For such a channel, the key parameter

is the conditional entropy between the input sequence and

the output fold. In this paper, we provide a mathematically

rigorous foundation to estimate this entropy and show that it

may exhibit a range of interesting behaviors with respect to

temperature, depending on the settings of the parameters of

the model.

Fig. 1: A sequence passing through the channel and being

paired with a fold given by a self-avoiding walk.

We now describe in more detail the construction of the

channel. For each sequence s, the folds f are assigned

energies E(f, s) depending on the number of different types of

contacts between residues, that is, between neighboring, but

not sequence-adjacent, nodes of the self-avoiding walk. These

∗We discuss below and in the literature review the history/justification

(given by biophysicists) of the classification of amino acids into hydrophobic

and polar, as well as the modeling of protein structures and more general

polymers as self-avoiding walks in a lattice.
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contact energies are given by a scoring matrix Q whose rows

and columns are indexed by H and P . Since hydrophobic

interactions are a dominant force for protein folding, it is

reasonable to classify amino acids into hydrophobic (H) and

polar (P ). Thus, in a realistic lattice model, contacts between

H and H are more favored (lower energy) than H and P

interactions [3]. The channel is then defined by the Boltzmann

distribution induced by the energies.

More precisely, for each even (for technical reasons ex-

plained below) perfect square integer N , we have an input

set SN consisting of 2N sequences of length N over the

alphabet {H,P}. The output set FN consists of all directed

self-avoiding walks of length N on a
√
N×

√
N integer lattice

which start at (0, 0) and end at (
√
N − 1,

√
N − 1). Note

that all but O(
√
N) points in the lattice have four neighbors

(but only two contact points) since every walk fills the lattice

completely. We endow each sequence/fold pair with an energy

as follows: fix a symmetric 2 × 2 matrix Q = {Qij}i,j∈{1,2}
over R (the scoring matrix). For f ∈ FN and s ∈ SN

E(f, s) = 2(Q11cHH +Q22cPP +Q12cHP ), (1)

where cxy denotes the number of contacts {a, b} such that

sa = x and sb = y or vice-versa (throughout, for any

sequence s and j ∈ [N ] = {1, . . . , N}, we denote by sj
the jth symbol of s). Here, the multiplication by 2 is for

mathematical convenience and is insignificant to the analysis.

Then we define the channel by the conditional probability

pN (f |s) that follows the Boltzmann distribution.

More formally, let β ≥ 0 be a real number (corresponding

to an inverse temperature). Then we define

pN (f |s) = p(f |s) = e−βE(f,s)

Z(s, β)
, Z(s, β) =

∑

f∈FN

e−βE(f,s),

where the function Z is known as the partition function, which

plays a central role in statistical mechanics models as a kind of

generating function of configuration energies. Two quantities

will play an especially important part in our analysis and

results: the free energy γN (β) is given by

γN (β) =
E logZ(S, β)

log |FN | γ(β) = lim sup
N→∞

γN (β).

We also denote by µ the exponential growth rate of the number

of self-avoiding walks:

µN =
log |FN |
N

, µ = lim
N→∞

log |FN |
N

.

Both are challenging to compute.

This channel is interesting from the information-theoretic

point of view, irrespective of applications, primarily because

it exhibits several unusual mathematical properties: first, it

maps sequences to structures (i..e, self-avoiding walks) in a

nontrivial way; second, it is a channel with full memory;

and, finally, several information theoretic quantities associated

with it (e.g., its capacity and conditional entropy for certain

natural input distributions) likely exhibit phase transitions

with respect to temperature for certain settings of the scoring

matrix. Probabilistically, its analysis presents an interesting

challenge because the nontrivial dependence structure between

fold energies makes bounding the variance of the number

of folds with a given maximum energy difficult. This in

turn, complicates the calculation of the free energy, which

plays a significant role in our calculations (and, for many

models, is notoriously difficult to compute [4]). Since the

exponential growth rate of the number of folds in the output

alphabet appears in several quantities of interest, we also

encounter combinatorial problems which are currently under

active investigation.

We now review some of the relevant literature.

Regarding self-avoiding walks (SAWs), [5] is a good general

reference, including a discussion of the history of the use of

SAWs as models for polymers. SAWs continue to be used

as simple models for protein structures in molecular biology

(see, e.g., [6], [7]). One of the fundamental problems in the

theory of SAWs is the (asymptotic) enumeration of classes

FN of SAWs of length N → ∞ with various constraints. In

particular, the problem of proving the existence/determining

the value of the limit

lim
N→∞

|FN |1/N

(called the connective constant of FN ) is commonly studied

and is quite challenging. There are a few general techniques

for approaching such problems, sub/superadditivity arguments

being the main ones. For, say, subadditivity, the goal is to show

that, for all 1 ≤ m ≤ N − 1,

|FN | ≤ |Fm||FN−m|, (2)

which implies that the sequence (log |FN |)∞N=1 is subadditive.

By, e.g., Fekete’s lemma (or one of its generalizations) [8], this

is sufficient to conclude the existence of the limit

lim
N→∞

log |FN |
N

.

Usually, the condition (2) can be verified by some sort of

splitting (or concatenation, in the case of superadditivity) in

order to establish an injection from |FN | to Fm × FN−m.

For example, if we take FN to be the set of all SAWs, we

can split a walk w ∈ FN into a unique initial part of length

m and a final part of length N − m, which establishes (2).

In general, determining the value of the connective constant

requires significant ingenuity (see, e.g., [9], which establishes

the value for SAWs on the two-dimensional hexagonal lattice).

Even proving/disproving the existence of a connective con-

stant becomes significantly harder when we consider collec-

tions of SAWs satisfying some geometric constraints (unless

they are very carefully chosen). For instance, consider the set

of Hamiltonian SAWs filling a square of size N (with N

a perfect square). Neither splitting nor concatenation works
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here, since neither operation yields SAWs within the same

class in general. By adding the constraint that each SAW must

begin at a fixed corner of the square and end at the opposite

and restricting to an appropriate subsequence (i.e., even and

perfect square N ), [10] showed the existence of the connective

constant as a limit of that subsequence (though the result is

incorrectly stated; see [11] for a discussion and estimates of

the limit).

We now review what is known about some relevant models

from statistical physics. For general references, see [4], [12].

For a set ΓN of configurations, each configuration ξ ∈ ΓN is

endowed with its own (possibly random) energy E(ξ). The set

ΓN is then endowed with a probability distribution governed

by this energy (chosen so as to have maximum entropy under

the constraint that the system has a given energy density),

known as the Boltzmann/Gibbs measure:

p(ξ) =
e−βE(ξ)

Z(β)
,

where β ∈ [0,∞) is a free parameter which intuitively behaves

like an inverse temperature, and Z above is the partition

function, given by

Z(β) =
∑

ξ∈ΓN

e−βE(ξ).

The main problem is to establish the existence/estimate the

asymptotic value of the free energy:

lim
N→∞

E[logZ(β)]

log |ΓN | . (3)

This quantity is studied because other important parameters,

such as the entropy density and energy density can be written in

terms of it (see [12] for details). One of the simplest interesting

models is the random energy model (REM), in which the

configuration space has size 2N , and the configurations are

i.i.d. (exactly) Gaussian random variables: E(ξ)∼N (0, N/2).

The free energy for this model is exactly solvable (which is

unusual for these sorts of models):

lim
N→∞

E[logZ(β)]

N
=

{

β2/4 + log 2 β ≤ 2
√
log 2

β
√
log 2 β ≥ 2

√
log 2.

Note that the free energy exhibits a phase transition with

respect to temperature, since, for small β, it grows quadrat-

ically, while it grows linearly when β ≥ 2
√
log 2. This sort

of phenomenon is quite common (though not universal) in

statistical physics, and we will encounter it in our analysis in

this paper.

The situation becomes significantly more complicated when

correlations between configurations are introduced. For in-

stance, in the Sherrington-Kirkpatrick (SK) model, configu-

rations are strings of length N from the alphabet {−1, 1},

and the energy of a configuration ξ is given by

E(ξ) = − β√
N

∑

i<j

gijξiξj ,

with i.i.d. random variables gij ∼N (0, 1). The correlation

between two configurations ξ(1) and ξ(2) then increases with

the number of indices i for which ξ
(1)
i = ξ

(2)
i . This model was

introduced in [13], in which the authors also gave an incorrect

expression for the free energy. Parisi, in [14], conjectured the

correct formula (which now bears his name), but over 20 years

passed before it was rigorously verified by Talagrand in [15].

We now move on to discuss our contributions. First, though

the self-avoiding walk model and associated energy function

for proteins has been considered empirically before [6], [7],

we appear to be the first to define the channel that we

consider here and study its information theoretic quantities.

Of particular interest is the capacity of the channel:

C = max
p(S)

[H(F )−H(F |S)],

where the maximum is taken over all probability distributions

on the set of sequences; see [16]. In our previous work [2],

we studied this quantity numerically. Specifically, using a

specific scoring matrix taken from the biology literature, we

computed the conditional probabilities constituting the channel

for N = 36 (due to computational limitations, we could not

do the same for much larger N ). We then computed the

capacity for various temperatures using the Blahut-Arimoto

algorithm ([16]), resulting in Figure 2. We note two phe-

nomena illustrated by the plot: first, there appears to be a

phase transition with respect to temperature in the capacity.

Second, the capacity tends to 0 as temperature tends to infinity

(for fixed N , this is simple to prove, but significantly more

interesting when N → ∞).

Fig. 2: Empirical evidence of a phase transition in channel

capacity. Here, the capacity at various temperatures for the

channel associated with 6× 6 lattices is depicted. See [2] for

the full figure.

As a long-term goal, we would like to rigorously establish

the asymptotic behavior of the capacity of this channel for all
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temperatures and suitable scoring matrices. Our focus in this

work is more modest: we mainly study here the behavior of

the conditional entropy for a memoryless source in the high-

temperature regime (i.e., β
N→∞−−−−→ 0).

First, we give upper bounds on the free energy (hence the

conditional entropy) whose behavior depends on the difference

between the expected energies of a Boltzmann-distributed

fold and one chosen uniformly at random. We then show

how a series representation, involving the higher moments

of the partition function, may be derived for the free energy

via Taylor’s expansion. Next, we present a class of scoring

matrices for which the covariance between any two fold

energies depends on the number of shared contacts between

the two folds. For such matrices, we derive a formula for the

variance of the partition function in terms of the number of

contacts shared between two random folds, which implies a

lower bound on the free energy. As an application of the lower

bound, we give a sufficient condition on the temperature under

which the mutual information between the channel input and

output tends to 0. Finally, we point out that the model may

exhibit a diverse range of behaviors depending on parameter

settings by exhibiting a class of scoring matrices for which

the free energy is exactly analyzable and has capacity o(N)

for any β.

The model presents several mathematical challenges: due to

geometric constraints (e.g., Hamiltonicity), the configurations

(folds) cannot easily be decomposed into subconfigurations.

Thus, techniques which are useful for other models (e.g., [17])

do not appear to be easily adapted to our case. Probabilis-

tically, the correlation structure between fold energies does

not appear to be captured by other existing models (e.g., the

REM, the generalized REM (GREM) [18], or the SK model).

Moreover, while many models are defined so that configura-

tion energies are normally distributed, the fold energies are

only asymptotically normally distributed. Finally, our analy-

sis leads to some classic open questions about enumerating

self-avoiding walks, including proving the existence of the

connective constant for geometrically constrained walk sets

and determining distributional information about the number

of shared contacts between two randomly chosen folds.

II. MAIN RESULTS

We now fix some useful notation, precisely describe the

model, and state our main results.

A. Description of the model

Throughout, we use F to denote a random fold generated

by choosing a random sequence according to some distribution

and passing it through the channel. We generally use f to

denote an arbitrary fixed fold. For any fold f ∈ FN , we denote

the two-dimensional position of the jth node in f by πf (j).

For any j, k ∈ [N ], we say that j and k are sequence-adjacent

if |j − k| = 1 (here, [N ] = {1, 2, . . . , N}). We say that they

are lattice-adjacent and that they form a contact if they are

not sequence-adjacent and ‖πf (j)− πf (k)‖1 = 1 (here, ‖ · ‖1
denotes the ℓ1 norm on Z

2). This allows us to define the energy

E(f, s) as in (1). We also define Eβ,S(F ) to be the energy of

the fold generated by the channel at inverse temperature β

with the sequence S on its input.

We can also express the E(f, s) as a sum of local energies:

for each i ∈ [N ], define Xi = Xi(f, s) to be

Xi = Q11cHH(i) +Q22cPP (i) +Q12cHP (i),

where cxy(i), discussed above, denotes the number of contacts

{i, j} whose sequence elements are x and y or vice-versa (we

note that the multiplication by 2 in (1) is because, by summing

over all Xi, we count each contact twice). Then we have

E(f, s) =
N
∑

i=1

Xi(f, s).

Clearly,

E[E(f, S)] =
∑

i

E[Xi(f, S)] = Nα+O(
√
N)

for some easily computable α depending on Q (with α 6= 0

under mild conditions on Q and the sequence distribution),

where boundary conditions contribute the O(
√
N). In fact,

we can give an explicit formula for α:

α/2 = p2QHH + 2pqQHP + q2QPP .

In contrast, E[Eβ,S(F )], the expected energy of a Boltzmann

fold, is more difficult to compute. We discuss some of its

properties below.

We restrict our attention to a particular class of distributions

on SN that is natural to consider: the symbols are i.i.d. random

variables, taking the value H with probability p ∈ (0, 1) and

P with probability q = 1 − p. That is, we take a binary

memoryless source with parameter p, which we denote by

BN(p). Many of our results can be extended to more general

mixing sources.

As mentioned earlier, we restrict our attention to the class

of Hamiltonian SAWs on a square, starting at the origin and

ending at the opposite corner, and we restrict to N for which

FN is nonzero.

B. Statement of main results

We start with an expression for the conditional entropy. We

have

H(F |S) = −
∑

s∈SN

p(s)
∑

f∈FN

p(f |s) log p(f |s)

= E[logZ(S, β)] + β
∑

s,f

p(f, s)E(f, s)

= E[logZ(S, β)] + βE[Eβ,S(F )] (4)
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where FN denotes a set of self-avoiding walks of length N

and we explicitly write

E[Eβ,S(F )] =
∑

s,f

p(f, s)E(f, s).

The first and third equalities are elementary, and the second is

by substitution of the definition of the channel into the right-

hand side. Dividing by N on both sides, we have

H(F |S)
N

=
log |FN |
N

· E[logZ(S, β)]
log |FN | + β

E[Eβ,S(F )]
N

.

It is easy to see that E[logZ(SN , β)] = O(N), so that the

free energy γ(β) <∞. Moreover, defining

α∗(β,N) = α∗(β) =
E[Eβ,S(F )]

N
,

it can be shown that α∗(β) <∞ for all β.

We note an important property of E[Eβ,S(F )]: for an

arbitrary fold f (equivalently, a uniformly distributed fold f ,

since both have the same expected energy when labeled by a

sequence from a memoryless source)

E[Eβ,S(F )] ≤ E[E(f, S)]. (5)

This follows from an easy inductive proof, using the fact

that the Boltzmann energy distribution is monotone decreasing

(i.e., the Boltzmann distribution gives higher probability to

lower energy folds).

We have the following upper bound on the free energy, and,

hence, the conditional entropy.

Theorem 1 (Upper bound on the conditional entropy for

memoryless sources). For any distribution over SN , β > 0,

and scoring matrix Q,

H(F |S)
N

= µ · γN (β) + βα∗(β) + o(1). (6)

Furthermore, when S∼BN(p), if the scoring matrix Q is such

that, uniformly over all f ∈ FN ,

Var [E(f, S)] ∼ Nσ2,

with σ > 0 constant with respect to N , then we have the

following upper bound: for all β > 0,

H(F |S)
N

≤ µN − β(α− α∗(β)) +
1

2
σ2β2 −O(βN−1/2),

(7)

with µ = limN→∞ µN , and for bounded β ≥ β∗ =
√
2µ
σ ,

H(F |S) ≤ βN(
√

2σ2µN − (α− α∗(β)) +O(N−1/2)),

(8)

with the threshold value β∗ =
√
2µ
σ .

The condition on the scoring matrix is quite general. It is

equivalent to requiring that QHH , QHP , and QPP are not

all equal (in this case, a typical contact energy has positive

variance).

Remark There is an information-theoretic upper bound on

H(F |S):

H(F |S) ≤ H(F ) ≤ log |FN | = NµN

Provided that β = o(1) and α−α∗(β) = Θ(1), the first upper

bound given above beats this one. Similarly, if α − α∗(β)
is sufficiently large for any fixed β, the second upper bound

is nontrivial. Moreover, the proof of the second upper bound

implies that a refinement of the first upper bound for all β

yields a corresponding refinement in the second.

Our next theorem gives, for each p ∈ (0, 1), a natural

class of scoring matrices that endows the set of fold energies

with a correlation structure similar to that arising in several

models associated with combinatorial optimization problems

(see [19]). In particular, the covariance between the energies

of two folds f and g varies linearly with a measure of

overlap between them: namely, the number of shared contacts

between f and g (denoted by kf,g). For such matrices, we

establish a lower bound which holds for sufficiently small β,

depending on the behavior of the MGF of the random variable

K (the number of shared contacts between two folds chosen

uniformly at random with replacement).

Theorem 2 (Free energy lower bound for high temperature).

Let S∼BN(p) for fixed p ∈ (0, 1). Let K denote the number

of shared contacts between two folds f, g ∈ FN chosen

uniformly at random with replacement. There exists a scoring

matrix for which, provided that

EK [e3β
2
Nσ2K ] = 1 + o(1), (9)

and β = βN = o(1), we have

H(F |S)
N

≥ µN − β(α − α∗(β)) +
1

2
β2σ2 − o(1), (10)

where the o(1) is expressible in terms of EK [e3β
2
Nσ2K ].

We remark that while essentially nothing is known about K

in the condition (9), we do know that K ≤ N+O(
√
N), since

that is the total number of contacts in a fold. Thus, a sufficient

condition for (9) to hold is that β = o(N−1/2). However, since

we suspect that K = O(1) with high probability, it seems

likely that this can be relaxed. Note that the lower bound (10)

matches the upper bound (7) up to the β term if α−α∗(β) =
Θ(1) and the o(1) term is o(β).

Also, note that one cannot expect such a lower bound for

general scoring matrices. This is because, for “most” matrices,

the covariance of the energies of two contacts (i.e., unordered

pairs of distinct sequence indices) which share exactly one

node is positive, which implies that the covariance between

two node energies is positive. This, in turn, implies that the

covariance between any two fold energies is linear in N ; that

is, the dependence between fold energies is quite strong, in

contrast with the situation in the REM. The scoring matrices

considered in Theorem 2 are chosen so that the covariance
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between energies of nonidentical contacts is 0, so that the

covariance between folds is only linear in the number of shared

contacts.

Remark For β
N→∞−−−−→ 0 and the class of scoring matrices

considered in Theorem 2, we may be able to refine our

estimate of the coefficient of β2 in the expansion of the

free energy by Taylor expanding the function logZ around

Z = E[Z] and then taking expectations [19]:

E[logZ] = logE[Z]− Var [Z]

2(E[Z])2
(11)

+

∞
∑

m=3

(−1)m+1

m
· E[(Z − E[Z])m]

(E[Z])m
. (12)

This boils the problem down to the estimation of the centered

moments of the partition function. For example, according

to Lemma 4, used in the proof of Theorem 2 above, and

Lemma 3, the first two terms of the expansion (11) are

log |FN | − βαN +
1

2
β2σ2N

− (1 +O(N−1/2))(EK [e3β
2σ2K ]− 1)/2 +O(N−1/2).

Provided that β = o(N−1/2), the contribution of the variance

term becomes asymptotically equivalent to

−3β2σ2
E[K]/2.

In particular, note that both the expected value and variance

terms of (11) contribute to the coefficient of β2. More gener-

ally, the mth moment may be written in terms of the MGFs

of the random variables Km,j , for j = 1, . . . ,m, defined to be

the number of contacts shared among exactly j folds among

m folds chosen uniformly at random with replacement. The

random variable K is a special case: K = K2,2.

Provided that Km,j are sufficiently well-behaved, the series

(11) above converges, and this gives a series representation for

the coefficient of β2, which may be bounded.

Depending on the asymptotics of the difference α−α∗(β),
Theorem 2 yields an interesting result about the mutual

information I(F ;S) = H(F ) − H(F |S) as the temperature

tends to ∞. When α and α∗(β) are asymptotically equivalent

and β is sufficiently small, the lower bound of Theorem 2

implies thatH(F |S) = log |FN |−o(1). Thus, I(F ;S) = o(1).

Corollary 1. With p and the scoring matrix Q as in The-

orem 2, if βN is such that α = α∗(βN ) + ψ(N), where

ψ(N) = o(1) and βNψ(N)N = o(1), and βN = o(N−2/3),

then

I(F ;S) = o(1). (13)

Note that one naturally expects that the mutual information

tends to 0 when the temperature tends to infinity quickly

enough (because then the Boltzmann distribution converges

to uniformity), but this only becomes trivial when βN =

O(1/N). The corollary, being a statement about the decay

of the mutual information, is a small step in the direction of

our stated goal of characterizing the capacity of the channel,

in particular determining when it tends to 0.

We next give an example scoring matrix which exhibits a

rather different behavior from the ones in Theorem 2.

Theorem 3 (An exactly analyzable scoring matrix with no

phase transition). Let Q be the scoring matrix which maps

HH 7→ −1/2, HP/PH 7→ −1/4, PP 7→ 0. Then, for

arbitrary sequence distributions, the free energy is given by

γ(β) = 1 + β lim sup
N→∞

E[DS(H)]

log |FN | ,

where DS(H) is the number of i for which Si = H . In the

case of S∼BN(p), this becomes

γ(β) = 1− βα/µ.

This theorem gives an example of a natural scoring matrix

for which there is no first-order phase transition in the free

energy. Moreover, it gives an upper bound on any lower bound

for all (or almost all) scoring matrices that we can hope to

prove.

III. PROOFS

A. Proof of Theorem 1

The general expression for the asymptotic conditional en-

tropy was already derived, so we give here the proof of the

upper bounds. To do this, we prove analogous bounds for the

free energy. In deriving the first bound, we will use Jensen’s

inequality to bring the expectation within the logarithm in the

definition of the free energy. This will result in an expression

involving the MGFs φN (·) of appropriately normalized fold

energies, which we will show to be asymptotically equivalent

to the MGFs φ(·) of Gaussian random variables with the same

mean and variance. This is nontrivial, since a central limit

theorem only a priori implies that φN (t)
N→∞−−−−→ φ(t) for fixed

t ∈ R, whereas we need asymptotics for φN (t
√
N).

We start by showing that fold energies are asymptotically

normally distributed.

Lemma 1 (Fold energy CLT). Let SN ∼BN (p) for fixed p ∈
(0, 1). Let, for any f ∈ FN ,

ÊN =
E(f, SN )− E[E(f, SN )]√

N
,

and denote by FN (·) the distribution function of ÊN . There

exists a polynomial V (p) whose coefficients are polynomials

in the entries of the scoring matrix Q, such that, provided V

is not identically zero, for all but finitely many choices of p,

σ2 > 0 as in Theorem 1, and

‖FN − Φ‖∞ = O(N−1/2),

where the O(·) is uniform over all folds. Here, Φ denotes the

distribution function of the normal distribution with mean 0

and variance σ2.
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Proof: The central limit theorem for fold energies follows

by applying a result on m-dependent random fields given in

[20]. Slightly specifying to our case and using our notation, it

can be stated as follows.

Theorem 4. Suppose that for some M > 0, E[X8
i ] ≤M <∞

for all i and that {Xi(f |S)}i∈[N ] is m-dependent, for some

m > 0. Provided lim infN→∞
Var [E(f,S)]

N > 0, we have

‖FN − Φ‖∞ = O(N−1/2).

We first establish m-dependence. This follows easily from

the fact that the local energy of a node i in a given fold can

only be dependent on the local energies of those nodes j that

are within a lattice-adjacency neighborhood of i of some fixed,

finite radius. This, in turn, follows from the independent choice

of the sequence elements. Thus, we have m-dependence with

m = 2.

It is further required that the variance of E(f, S) grows at

least linearly with N . We shall establish that Var [E(f, S)] =
Θ(N) (for a large class of Q), and, along the way, derive the

polynomial V (p) whose existence is claimed in the lemma

statement. We have

Var [E(f, S)] =
N
∑

i=1

Var [Xi] + 2
∑

1≤i<j≤N

Cov[Xi, Xj ].

Since N−o(N) nodes have exactly two contacts, the dominant

contribution to the first sum comes from those nodes, all of

which have the same variance v(p), a polynomial in p with

coefficients that are polynomials in the entries of Q.

Note, then, that if nodes i and j are not lattice-adjacent,

then Cov[Xi, Xj] = 0. Thus, any node i is involved in at

most 3 nonzero covariance terms. In fact, N − o(N) nodes

are involved in exactly 2 such terms. All such nodes i and

j have covariance equal to some fixed r(p), a polynomial

in p with coefficients that are polynomials in the variables

QHH , QHP , QPP .

By conditioning on the symbols assigned to nodes i and

j and their other two lattice neighbors, both v(p) and r(p)

can be computed exactly. Thus, we have Var [E(f, S)] =

N · (v(p) + 2r(p)) + o(N). We call V (p) = v(p) + 2r(p)

the variance polynomial of Q. Provided it is not identically 0,

it has finitely many roots, at which the variance of each fold

energy is o(N). Excluding these roots, the variance is Θ(N),

as claimed, and we set σ2 = V (p).

Finally, it is required that, for all i, E[X8
i ] < ∞. Since

Xi is bounded between two constants with probability 1, all

moments exist, and the proof is complete.

Next, we need a lemma bounding the probability of large

deviations for E(f, S).
Lemma 2 (Large deviations of E(f, S)). There exists a

constant C > 0 such that, for any t > 0 and f ∈ FN ,

Pr[|E(f, S)− E[E(f, S)]| ≥ tN ] ≤ 2 exp

(

− t
2N

C

)

.

Proof: The proof uses the fact that each node energy is

dependent on at most a constant number of others to bound

the martingale differences.

To be precise, we define the filtration (Fi)
N
i=0 by

Fi = σ(X1(f |S), . . . , Xi(f |S)),
and then we define (Yi)

N
i=0 to be the Doob martingale of

E(f, S) with respect to (Fi), that is, Yi = E[E(f, S)|Fi].

To apply Hoeffding’s inequality, we need to show that the

martingale differences are bounded:

|Yi − Yi−1| = |E[X1(f |S) + · · ·+XN (f |S)|Fi]

− E[X1(f |S) + · · ·+XN (f |S)|Fi−1]|.
Now, we partition the terms comprising the expectation defin-

ing Yi into those which are dependent on Xi(f |S) and those

which are not: we define A = {j|Xj(f |S)⊥Xi(f |S)}, and

then we note that, for any j ∈ A,

E[Xj(f |S)|Fi] = E[Xj(f |S)|Fi−1].

Thus, those terms whose indices are in A cancel in the

expression for |Yi − Yi−1|, leaving

|Yi − Yi−1| = |
∑

j /∈A

(E[Xj(f |S)|Fi]− E[Xj(f |S)|Fi−1])|.

All local energies are bounded above by some fixed constant,

and, by the m-dependence property of the local energies, |A|
is also bounded above by a fixed constant. Thus, there is some

fixed L such that, for all f ∈ FN and i ∈ [N ], |Yi−Yi−1| ≤ L.

Applying Hoeffding’s inequality with this bound then yields

the claimed result.

Lemmas 1 and 2 are then sufficient to derive an estimate of

the MGF of a normalized fold energy.

Lemma 3 (Asymptotics of the MGF of ÊN ). Let φN : R → R

denote the MGF of a generic normalized fold energy:

φN (t) = E[e
t E(f,S)−E[E(f,S)]√

N ].

We have, for arbitrary fixed t ∈ R,

φN (t
√
N) = eN logφ(t)(1 +O(N−1/2))

= e
1
2σ

2t2N (1 +O(N−1/2)).

Here, φ(t) denotes the MGF of the normal distribution with

mean 0 and variance σ2.

Proof: The strategy is to show that the tails of the integral

defining φN (t
√
N) are negligible, leaving a central region that

can be handled via Lemma 1.

We first handle the degenerate case of t = 0. In this case,

φN (t
√
N) = φN (0) = E[e0] = 1 and the claim holds.

We now move on to the case where t > 0. Let FN (x) be

the distribution function of ÊN (recall that this is the centered

and normalized energy). Then φN (t
√
N) is given by

φN (t
√
N) =

∫ ∞

−∞
et

√
Nx dFN (x).
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Taking the tail at θ
√
N of this integral, for some θ which

we will choose later, yields
∫∞
θ
√
N
et

√
Nx dFN (x). Defining

g(x) = et
√
Nx for brevity, we evaluate the above integral by

parts:

et
√
NbFN (b)− etθNFN (θ

√
N)−

∫ b

θ
√
N

FN (x) dg(x)

= et
√
Nb(1− FN (b)) + etθN(1− FN (θ

√
N))

+

∫ b

θ
√
N

(1 − FN (x))t
√
Net

√
Nx dx,

where the equality is by adding and subtracting 1 inside the

integral. Upper bounding using Lemma 2 gives

2et
√
Nb− b2

C +2etθN−θ2N
C +

∫ b

θ
√
N

(1−FN (x))t
√
Net

√
Nx dx.

Taking b→ ∞, the first term tends to 0, and the upper limit on

the integral becomes ∞. As for the second term, we observe

that

etθN−θ2N/Ce−N(θ2/C−tθ).

Thus, if we choose θ to satisfy

θ2/C − tθ > 0 ⇐⇒ θ > Ct,

the second term is o(1) as N → ∞.

It remains to bound the contribution of the integral. We

again apply Lemma 2, which gives
∫ ∞

θ
√
N

(1−FN (x))t
√
Net

√
Nx dx ≤ 2t

√
N

∫ ∞

θ
√
N

e−x2/C+t
√
Nx dx.

Now, we write the exponent inside the integral as

−x2/C + t
√
Nx = −x2(1/C − t

√
N/x).

Since x ≥ θ
√
N , the expression inside the parentheses is at

least some positive constant L, since θ > Ct. It is not hard

to see that the integral is then Θ(e−θ2N ), so that the entire

expression is o(1) as N → ∞.

The other tail of the MGF integral is easily handled:

E[et
√
N Ê(f,S)

I[Ê(f, S) ≤ −θ
√
N ]]

≤ e−tθN Pr[Ê(f, S) ≤ −θ
√
N ]

≤ e−tθN = o(1).

In the case where t < 0, we switch the tails in the above

bounds.

This leaves the central region (for any t):

∫ θ
√
N

−θ
√
N

et
√
Nx dFN (x) = (1 +O(N−1/2))

∫ θ
√
N

−θ
√
N

et
√
Nx dΦ(x)

= (1 +O(N−1/2))

∫ ∞

−∞
et

√
Nx dΦ(x)

= (1 +O(N−1/2))e
1
2 t

2σ2N .

Here, the first equality is by Lemma 1 (a more detailed expla-

nation will follow), and the asymptotic equivalence follows

from the fact that the tails of the Gaussian distribution are

negligible. To be more precise, we first observe that we can

ignore the lower half of the integral. In the case where t > 0,

we have
∫ 0

−θ
√
N

et
√
Nx dF (x) ≤

∫ 0

−∞
et

√
Nx dF (x)

≤ et
√
N0

∫ 0

−∞
dF (x) ≤ 1 = Θ(1),

which is negligible. Now, applying integration by parts to the

remaining integral, we have

∫ θ
√
N

0

et
√
Nx dFN (x)

= etNθFN (θ
√
N)− e0FN (0)−

∫ θ
√
N

0

FN (x) det
√
Nx.

According to Lemma 1,

FN (x) = Φ(x) +O(N−1/2),

where Φ(x) is the cumulative distribution function of the

normal distribution with mean 0 and variance σ2, and the

O(·) is uniform with respect to x. Since, in the range under

consideration, x ≥ 0, Φ(x) ∈ [1/2, 1), so that this implies

FN (x) = Φ(x)(1 + O(N−1/2)). Substituting this into the

expression for the integral, we get

(1+O(N−1/2))[etNθΦ(θ
√
N)−e0Φ(0)−

∫ θ
√
N

0

Φ(x) det
√
Nx],

and applying the integration by parts formula again yields

(1 +O(N−1/2))

∫ θ
√
N

0

et
√
Nx dΦ(x)

= (1 +O(N−1/2))

∫ ∞

−∞
et

√
Nx dΦ(x) +O(1)

= (1 +O(N−1/2))

∫ ∞

−∞
et

√
Nx dΦ(x).

where the integral is precisely the moment generating function

of N (0, σ2), evaluated at t
√
N . The added term O(1) comes

from completing the lower tail. The case where t ≤ 0 is

handled similarly. Finally, taking a logarithm, dividing by N ,

and taking N → ∞ gives the desired expression.

Using the expression developed in Lemma 3, we can finally

begin the derivation of the claimed free energy bounds. For

the first upper bound,

E[logZ(S, β)] ≤ logE[Z(S, β)]

= log
∑

f∈FN

e−βE[E(f,S)]
E

[

e
−β

√
N E(f,S)−E[E(f,S)]√

N

]

= log
∑

f∈FN

e−βE[E(f,S)]
E

[

e−β
√
N ÊN

]

= log
∑

f∈FN

e−βαN(1+O(N−1/2)) · e 1
2σ

2β2N (1 +O(N−1/2))

= log |FN | − βαN(1 +O(N−1/2)) +
1

2
σ2β2N +O(N−1/2),
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where we used Jensen’s inequality to bring the expectation

into the logarithm, and we used the fact that all of the relative

errors are uniform over the set of folds. We thus have

γ(β) ≤ 1− βα/µ+
1

2
σ2β2/µ,

and the claimed inequality (7) follows.

For the second upper bound, the strategy is to find an upper

bound on the derivative with respect to β of the function

φ(β) = E[logZ(S, β)].

We have

− β min
f∈FN

E(f, S) ≤ log





∑

f∈FN

e−βE(f,S)





=⇒ E[− min
f∈FN

E(f, S)]

≤ β−1 log |FN | − αN(1 +O(N−1/2))

+
1

2
σ2βN +O(β−1N−1/2),

where the first inequality is elementary, and the second is due

to the first upper bound. We find that setting β = β∗ =
√
2µN

σ

minimizes the upper bound, yielding

E[− min
f∈FN

E(f, S)] ≤
√

2σ2µNN − αN +O(
√
N).

Furthermore, for arbitrary β,

φ′(β) = E

[

−
∑

f∈FN
E(f, S)e−βE(f,S)

∑

f∈FN
e−βE(f,S)

]

≤ E

[(

− min
f∈FN

E(f, S)
)

Z(S, β)

Z(S, β)

]

= E[− min
f∈FN

E(f, S)].

Now, for β > β∗, φ(β) ≤ φ(β∗) + φ′(β∗)(β − β∗), since

φ(β) is known to be convex (a consequence of Hölder’s

inequality). Applying the upper bounds for φ′(β∗) and for

φ(β∗) yields the second upper bound in the theorem:

φ(β) = E[logZ(S, β)] ≤ βN(
√

2σ2µN − α+O(N−1/2)).

B. Proof of Theorem 2

The key idea here is to choose the scoring matrix Q so as

to minimize the covariance between the energies of any two

contacts that share only one node. For such a matrix, we then

derive an explicit asymptotic formula for the variance of the

partition function in terms of the square of its expected value

and the MGF of the number of shared contacts between two

randomly chosen folds. This MGF arises from the fact that the

covariance between the energies of two folds varies linearly

with the number of shared contacts.

The formula for the variance then implies, by Chebyshev’s

inequality, an upper bound on the probability that the partition

function is much smaller than its expected value. Computing

E[logZ] by conditioning on this event then yields the desired

result.

For the lower bound, it turns out to be beneficial to express

fold energies in terms of the local energies of its contacts,

instead of its nodes as we did in the upper bound. For a

contact c (i.e., an unordered pair of distinct sequence elements)

labeled by a sequence s, denote its energy by Yc(s). To aid

intuition, we remark that a typical node energy (say, of node

i) is expressible in terms of two contact energies: if node i

makes contact with nodes j and j′, then

Xi = Y{i,j} + Y{i,j′}.

Then the energy of a fold f is given by

E(f, S) = 2
∑

contacts c in f

Yc(S),

where the 2 is again from the fact that local energies are

counted twice, as in (1).

For two contacts c1, c2 with |c1 ∩ c2| = 1, we compute the

covariance of the energies with respect to S∼BN(p), with p

as in the theorem:

Cov[Yc1(S), Yc2(S)]

= p(Q2
HHp

2 + 2QHHQHP p(1− p) +Q2
HP (1 − p)2)

+ (1− p)(Q2
PP (1− p)2 + 2QHPQPP p(1− p) +Q2

HP p
2)

− (p2QHH + 2p(1− p)QHP + (1− p)2QPP )
2,

Defining x = QHH , y = QHP , and z = QPP , this polynomial

becomes

Cov[Yc1(S), Yc2(S)] = f(x, y, z)

= p(x2p2 + 2xyp(1− p) + y2(1 − p)2)

+ (1− p)(z2(1− p)2 + 2yzp(1− p) + y2p2)

− (p2x+ 2p(1− p)y + (1− p)2z)2.

and we seek a nontrivial zero. We set y = 0 and z = 1, which

reduces it to

f(x, 0, 1) = (p3−p4)x2−2p2(1−p)2x+((1−p)3−(1−p)4) = 0.

It is then easily checked that whenever p 6= 0, 1, there exists

x ∈ R for which f(x, 0, 1) = 0. Moreover, to check that this

x is such that α and σ (as in Theorem 1) are both nonzero,

we note that the former is 0 only when x = −1. We view

f(−1, 0, 1) as a polynomial in p, and it is easy to see that this

is only 0 when p = 0 or 1. Moreover, σ cannot be 0, since

a node energy may take on two different values with positive

probability.

In what follows, we assume that p and Q have been chosen

so that

Cov[Yc1(S), Yc2(S)] = 0

and α, σ 6= 0. For any two folds f, g ∈ FN , we define kf,g
to be the number of contacts which are in both f and g. We

now relate Var [Z(S, β)] to E[Z(S, β)]2 with the following

lemma.
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Lemma 4. We have

Var [Z(S, β)] = ES [Z(S, β)]
2(EK [e3β

2σ2K ]−1)(1+O(N−1/2)).

Proof: We calculate the second moment of Z(S, β).

Define Ẽ(f, S) = E(f, S)− E[E(f, S)]. Then

E[Z(S, β)2]

=
∑

f,g∈FN

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))] · e2βE[E(f,S)]

=

N
∑

k=0

∑

f,g: kf,g=k

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))]e2βE[E(f,S)],

(14)

simply by partitioning the set of pairs of folds into those with

exactly k shared contacts, for k = 0, . . . , N . Next, we show

that the MGFs in the expression above can be approximated

by MGFs of analogous normal random variables. We claim

that, for each f, g above,

ES [exp(−β(Ẽ(f, S) + Ẽ(g, S)))]
= (1 +O(N−1/2))E[exp(−β(ẼN (f) + ẼN (g)))], (15)

where ẼN (f) and ẼN (g) are jointly normally distributed

random variables with mean 0, variance σ2N , and covariance

σ2kf,g . To do this, we first calculate the covariance of Ẽ(f, S)
and Ẽ(g, S) (equivalently, E(f, S) and E(g, S)). Let C(f)

denote the set of contacts in the fold f . Then

Cov[E(f, S), E(g, S)]
= 4

∑

c∈C(f)∩C(g)

Var [Yc(S)]

+ 4
∑

c∈C(f) 6=c′∈C(g)

Cov[Yc(S), Yc′(S)]

The second sum is 0, by our choice of scoring matrix, and

each term of the first sum is σ2/4, by direct calculation. Thus,

we have shown that Cov[E(f, S), E(g, S)] = kf,gσ
2. Now,

we follow the steps of the proof of Lemma 3. In particular,

it is enough to establish a central limit theorem and a large

deviations bound for the sum of the two fold energies. Both are

immediate, as the two fold energies may be written as sums

of node energies, and these node energies are m-dependent

for some large enough constant m. Moreover, the variance of

the sum is easily seen to be positive, since the covariance of

the two energies is non-negative. Thus, we may conclude (15)

from the proof of Lemma 3.

Continuing the derivation of E[Z(S, β)2], we note that

ẼN (f) + ẼN (g)
D
= (U(k) +W1(k)) + (U(k) +W2(k))

= 2U(k) +W1(k) +W2(k),

where U(k),W1(k), and W2(k) are all independent, with

U(k)∼N (0, σ2k) and W1(k),W2(k)∼N (0, σ2(N−k)). By

this representation and the independence of U(k), W1(k), and

W2(k), we then have that (14) is equal to

(1 + O(N−1/2))e2βE[E(f,S)]

N
∑

k=0

∑

f,g: kf,g=k

E[e−2βU(k)]E[e−βW1(k)]2.

To bring ẼN (f) back into the formula, we add and subtract an

independent copy Ũ(k)
D
= U(k) in the exponent of the second

factor of the sum:

E[e−βW1(k)] = E[e−β(W1(k)+Ũ(k))]E[eβU(k)] (16)

= E[e−βẼN (f)]E[eβU(k)], (17)

where the first equality is by independence and equality of

distribution between U(k) and Ũ(k), and the second is by the

fact that W1(k)+ Ũ(k)
D
= ẼN (f). We then pull the first factor

of (17) out of the sums (since it is the same for all f ), and

this leaves

(1 +O(N−1/2))E[e−β(ẼN (f)+E[E(f,S)])]2

·
∑

k

∑

f,g: kf,g=k

E[e−2βU(k)]E[eβU(k)]2.

Now, the terms of the inner sum are independent of f and g,

so that the outer sum becomes

|FN |2
∑

k

#{f, g ∈ FN : kf,g = k}
|FN |2 E[e−2βU(k)]E[eβU(k)]2

= |FN |2EK [E[e−2βU(K)]E[eβU(K)]2].

Since U(k) is normally distributed, we can compute its MGF,

and this reduces the formula above to

|FN |2EK [e3β
2σ2K ].

Now, looking at the factors of the entire expression outside of

the expectation with respect to K ,

|FN |2E[e−β(ẼN (f)+E[E(f,S)])]2

= (1 +O(N−1/2))|FN |2E[e−β(Ẽ(f,S)+E[E(f,S)])]2

= (1 +O(N−1/2))|FN |2E[e−βE(f,S)]2

= (1 +O(N−1/2))E[Z(S, β)]2.

Here, the first equality is by the proof of Lemma 3, the second

is by definition of Ẽ(f, S), and the third is by linearity of

expectation and the definition of the partition function. This

completes the proof.

Given Lemma 4, we now prove the claimed lower bound

of Theorem 2. We define the event

A = Aǫ = [Z ≥ ǫE[Z]]

for arbitrary ǫ > 0. Then Chebyshev’s inequality gives

1−Pr[A] ≤ Pr[|Z −E[Z]| ≥ (1− ǫ)E[Z]] ≤ Var [Z]

(1− ǫ)2E[Z]2
.
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By Lemma 4, this becomes

1− Pr[A] ≤ EK [e3β
2σ2K ]− 1

(1− ǫ)2
.

In other words,

Pr[A] ≥ 1− EK [e3β
2σ2K ]− 1]

(1− ǫ)2
,

and we denote this lower bound by pA. We can choose

ǫ
N→∞−−−−→ 1− sufficiently slowly so that pA = 1 − o(1) (e.g.,

ǫ = 1−(EK [e3β
2σ2K ]−1)(1−δ)/2, for a small positive constant

δ). Then

E[logZ] = E[logZ|A] Pr[A] + E[logZI[¬A]] (18)

≥ (logE[Z] + log ǫ) Pr[A] + E[logZI[¬A]]. (19)

First term: We can explicitly compute logE[Z] as

log(|FN |E[e−βE(f,S)])

= log |FN |+ log e−βαN+ 1
2β

2σ2N +O(N−1/2)

= log |FN | − βαN +
1

2
β2σ2N +O(N−1/2),

where we applied Lemma 3 to estimate the MGF. Thus, the

first term is lower bounded by

(log |FN | − βαN +
1

2
β2σ2N + o(1))pA.

Here, the o(1) comes from log ǫ, recalling that we chose ǫ so

that ǫ = 1− o(1).

Second term: Since I[¬A] ≥ 0, we choose an arbitrary

f ∈ FN (we may be able to refine this to produce a better

bound), and then

logZ ≥ log e−βE(f,S) = −βE(f, S).

Then

E[logZI[¬A]]
≥ E[−βE(f, S)I[¬A]]
= −βE[Ẽ(f, S)I[¬A]]− βE[E(f, S)] Pr[¬A]
≥ −βE[|Ẽ(f, S)|I[¬A]] − βE[E(f, S)] Pr[¬A]
≥ −βE[|Ẽ(f, S)|]− βE[E(f, S)] Pr[¬A]. (20)

Because Ẽ(f, S)∼N (0,Θ(N)), the first term of (20) is

Θ(
√
N). The second term of (20) is Θ(N) Pr[¬A], which

is upper bounded by

Θ(N)(1 − pA),

which, by the hypothesis (9) on the MGF of K , is o(N).

Putting everything together: We thus have a lower bound

on the free energy given by

E[logZ]

N
≥ pA(µN − βα+

1

2
β2σ2 + o(N−1)) + o(1).

C. Proof of Corollary 1

The claim follows from the representation (4) and the lower

bound on E[logZ] given in Theorem 2. This gives a lower

bound of

H(F |S)

≥ (1 − o(1))(log |FN | − βN(α− α∗(β)) +
1

2
β2σ2N + o(1))

− βΘ(N)(1 − pA).

Since βN(α − α∗(β)) = βNψ(N) = o(1) and β2N =

o(N−4/3+1) = o(N−1/3), the first term of the lower bound is

log |FN | − o(1).

Meanwhile, to estimate the second term, since β = o(N−2/3)

and K ≤ N +O(
√
N),

EK [ecβ
2K ] = EK [1 + cβ2K +O(β4N2)] ≤ 1 + β2Θ(N).

Then

1− pA ≤ β2Θ(N),

so that the second term is upper bounded in absolute value by

β3Θ(N2).

Since β = o(N−2/3), this is o(1), and (13) is verified.

D. Proof of Theorem 3

First, we show that for any sequence s and fold f of length

N ,

E(f, s) = −Ds(H) +O(
√
N), (21)

where Ds(H) denotes the number of Hs in the string s. To do

this, we consider the contact graph of an arbitrary fold f (we

denote it by G(f)), which we define as follows: the vertices

are all of the nodes of the walk, except for the endpoints (this

is for simplicity). There is an edge between two vertices if

and only if they form a contact. We observe a few structural

characteristics of this graph: it has N − O(
√
N) nodes with

degree exactly 2, since, for any node x in f which is neither

an endpoint nor on the boundary (which has size O(
√
N)),

x has exactly two sequence neighbors, leaving exactly two

contact neighbors. Moreover, G(f) contains no cycles, since a

cycle would imply that f is not connected. Thus, the connected

components of G(f) are string graphs, and s induces a labeling

on them. Because at most O(
√
N) nodes have degree 1, there

are at most O(
√
N) components.

We consider the contribution to E(f, s) of the labeling X

of an arbitrary component of f . We claim that

E(X, s) = −DX(H) +O(1),

after which summing over all components will give (21). To

compute the energy of X , we divide it into chunks of Hs:

a boundary chunk is of the form Hk (if X = Hk), HkP ,
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or PHk, and there are only at most two of them. In all

such cases, the sum of contributions of contacts between Hs

(recall that all contacts are counted twice) is −(k − 1), and

the contact between H and P contributes O(1), so that the

total contribution of a boundary chunk is −k +O(1).

For a non-boundary chunk, which is of the form PHkP , the

contribution of contacts between Hs is again −k + 1, while

the PH/HP contacts contribute a total of −1, resulting in

a score of −k. Summing over all chunks gives the claimed

energy, and this establishes (21).

Now, with (21) in hand, we can compute E[logZ(S, β)] for

a random S:

E[logZ(S, β)] = E



log





∑

f∈FN

exp(−βE(f, S))









= E[log
(

|FN | exp(βDS(H) +O(
√
N))

)

]

= E[log |FN |+ βDS(H) +O(
√
N)]

= log |FN |+ βE[DS(H)] +O(
√
N).

Dividing by log |FN | and taking N → ∞ gives the claimed

free energy. Note that, in the special case where S∼BN(p),

this becomes

γ(β) = 1− βα/µ,

which completes the proof.

We remark that a similar calculation can be done for any

scalar multiple of the chosen scoring matrix or for the matrix

with the roles of P and H swapped.
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