
Recovery of Vertex Orderings in Dynamic Graphs
Abram Magner

UIUC
Urbana, IL, USA

Email: anmagner@illinois.edu

Ananth Grama
Purdue University

West Lafayette, IN, USA
Email: ayg@cs.purdue.edu

Jithin Sreedharan
Center for the Science of Information

West Lafayette, IN, USA
Email: jithin.k.s@gmail.com

Wojciech Szpankowski
Purdue University

West Lafayette, IN, USA
Email: spa@cs.purdue.edu

Abstract—Many networks in the real world are dynamic in
nature: nodes enter, exit, and make and break connections with
one another as time passes. Several random graph models of these
networks are such that nodes have well-defined arrival times. It is
natural to ask if, for a given random graph model, we can recover
the arrival order of nodes, given information about the structure
of the graph. In this work, we give a rigorous formulation of the
problem in a statistical learning framework and tie its feasibility,
for a broad class of models, to several sets of permutations
associated with the symmetries of the random graph model
and graphs generated by it. Moreover, we show how the same
quantities are fundamental to the study of the information
content of graph structures. We then apply our general results to
the special cases of the Erdős-Rényi and preferential attachment
models to derive strong inapproximability results.

I. INTRODUCTION

Many networks in the real world (social, biological, techno-
logical) are dynamic in nature: that is, nodes enter and leave
the network and make and break connections as time passes.

Several random graph models of complex networks incor-
porate this dynamicity by specifying an evolution process by
which the graph grows in time steps. For instance, in each
time step of the preferential attachment process [1], a new
node is added to the network and connections are chosen for
it, so that nodes have a well-defined arrival time.

In this work, we investigate how much the structure (i.e.,
the unlabeled version) of a graph generated by such a model
tells us about the arrival order of its nodes: in particular, given
the graph structure, is it possible to label the nodes with their
arrival order, within a certain error tolerance? We formulate
this as a statistical learning problem for general random
graph models and then provide minimax risk lower bounds
in terms of the cardinalities of a few different permutation
sets and groups associated with the model and the graphs
that it generates. We then apply these general results to a few
example random graph models (namely, Erdős- Rényi, which
serves as a useful “test bed” for our theory, and preferential
attachment, which is somewhat closer to applications). The
application to the preferential attachment model leads to
nontrivial combinatorial and probabilistic problems, which we
partially solve. Finally, we discuss connections to the problem
of compression of graph structures.

Though the purpose of this conference paper is primarily to
investigate the theoretical aspects of this problem, we speculate
that it may find applications in, e.g., the analysis of protein
interaction networks, where the order of arrival of nodes in
the network may yield information about the robustness of
certain biochemical processes. In an epidemiological network
(where nodes represent infected agents, and edges indicate
contact between two agents), knowing the order of node arrival
could be used to prioritize treatment of earlier-arriving nodes.
Finally, risk lower bounds for the problem may translate
to privacy/anonymity guarantees for individuals in a social
network.

We now discuss prior work. While at least one other work
has considered the general problem of node arrival order
recovery [2], none appear to have done so rigorously and at
the same level of generality as we do in the present work.
Several related questions have been asked and theoretically
studied for preferential attachment graphs and related models;
e.g., several authors have considered variations on the problem
of determining the first node of a preferential attachment
graph [3], [4]. These works are generally restricted to analysis
of a particular random graph model, and their setting is
qualitatively rather different: namely, they assume that the
arrival order of nodes is known, and the goal is to reach
the first node via a local exploration process (i.e., the entire
graph is not known). In contrast, our results apply (or can be
extended) to a broad class of models, and our goal is to recover
node arrival order assuming access to the global structure of
a graph.

II. MAIN RESULTS

In Section II-A, we formulate the problem rigorously. First,
however, we explain the intuition that leads to this formulation.

One may imagine in an example application that we are
presented with a graph on n vertices whose nodes are distin-
guishable, but not labeled by their arrival order. In order to
refer to a given node, we thus assign to each one a unique
label in [n] = {1, ..., n}, resulting in a labeled graph G′. Then
G′ is simply the result of applying a permutation π (unknown
to us) to the original graph G which is labeled with node



arrival times. Thus, correctly labeling the nodes with their
arrival times is precisely equivalent to recovering the inverse
of the unknown permutation π. In particular, the arrival time
of the node labeled j in G′ is π−1(j).

Now, we desire a procedure that does this as well as pos-
sible, even when the labeling of G′ is chosen in as confusing
a way as possible (i.e., adversarially).

From the above remarks, the problem then at least has the
following parameters: a random graph model that generates G
and an adversary that observes G and generates a permutation
π to confuse us. In order to evaluate a proposed solution
to this problem, we will also need a distortion function
that determines the distance between a permutation that our
solution guesses and π−1, the correct answer.

A. Formulation of the inference problem

To translate the above intuitition to a precise problem formu-
lation, we need a few definitions: for a probability distribution
Gn on graphs on n vertices, a function A : Gn → Sn is
called an adversary function (here, Gn is the set of graphs
on n vertices, and Sn is the symmetric group on n letters;
graphs in this paper are always labeled, unless explicitly stated
otherwise). An adversary distribution is simply a probability
distribution An on the set of adversaries (one may think of an
adversary distribution as an adversary that can make random
choices). A distortion function on the set of permutations is
any function d : Sn × Sn → [0,∞). Then we have the
following definition:

Definition 1 (Node age recovery problem). A node age
recovery problem is a tuple (Gn,An, d); i.e., it is given by
a random graph model, a random adversary function, and a
distortion measure between two permutations.

For brevity, we will denote by An(G), for a graph G, a ran-
dom permutation generated by sampling a random adversary
function A ∼ An and applying it to G to produce A(G).

Having defined the parameters of the node age recovery
problem, we turn to the form that a solution to it takes: a
node age estimator is a function φ : Gn → Sn. To evaluate
the quality of such an estimator, we need a notion of risk.
We can define the risk R of an estimator φ as follows: let
π = An(G). Then we define

RAn
(φ) = R(φ) = E[d(φ(π(G)), π−1)].

For example, if we define d(σ1, σ2) = de(σ1, σ2) = I[σ1 6=
σ2], then R(φ) is simply the probability that φ fails to recover
π−1 exactly.

We will also be concerned with approximate recovery.
For this, we define another distortion function: da(σ1, σ2) =

τ(σ1, σ2). Here, τ(·, ·) is the Kendall τ distance [5], which is
the number of inversions in σ2σ−11 . In other words, it is∑

1≤i<j≤n

I[σ2σ
−1
1 (i) > σ2σ

−1
1 (j)].

In this work, we study the minimax version of the problem:
namely, we seek to characterize the minimum, over all choices
of estimators, of the maximum risk, over all choices of
adversary distributions, for a given random graph model. This
is denoted by R∗(Gn, d). That is,

R∗(Gn, d) = min
φ

max
An

RAn
(φ).

1) A beguiling but flawed formulation: One might be
tempted to formulate the recovery problem in a simpler
manner, in which the estimator is only required to recover
the original graph G. We can illustrate the trouble with such
a formulation with an example. Suppose that n people, at
distinct time steps, join an initially empty social network and
befriend all people already in it. This results in a complete
graph on n vertices. Now, a permutation is applied, and we
are asked to recover the original graph G. Since there is only
one graph isomorphic to the complete one on n vertices,
we can only give one answer, and it is the correct one.
However, despite being correct with probability 1, we have
gained no information at all about the order in which the nodes
arrived. This is an indication that the problem is fundamentally
about recovery of a permutation, rather than of a graph. In
fact, one can construct a formulation, which turns out to be
exactly equivalent to ours (in the sense that a solution to
each formulation can be used to construct a solution to the
other, with the same accuracy guarantee, for any choice of
distortion measure), in which the explicit goal is to recover a
bijection from a set of “names” (i.e., unique identifiers) to the
set of possible arrival times (i.e., {1, ..., n}), with the mapping
from the names to nodes in the graph given as a sort of side
information.

B. General bounds on the probability of error

In this section, we give general lower bounds on the
probability of error – namely, when we consider the distortion
function de. The bounds are in terms of the sizes of two sets
of permutations associated with a random graph model Gn: the
first is the automorphism group Aut(G) of a random graph G
distributed according to Gn. This is the set of isomorphisms
that map G to itself. Since it is defined as a function of G, it
is a random variable.

The second set, again a function of G, we call the set
of feasible permutations of G: it is the subset Γ(G) ⊆ Sn
which consists of permutations σ such that σ(G) has positive
probability under the distribution Gn.

Related to the feasible permutation set is the set Adm(G)

of admissible graphs with respect to G: these are simply



the graphs obtained by applying elements of Γ(G) to G:
Adm(G) = {σ(G) : σ ∈ Γ(G)}.

We have the following relationship, for any graph G:

|Adm(G)| = |Γ(G)|
|Aut(G)|

. (1)

To see this, note first that all elements of Adm(G) are
isomorphic to G. Furthermore, the set of isomorphisms from
G to H is disjoint from the set from G to K, for any
H 6= K ∈ Adm(G). We thus have

|Γ(G)| =
∑

H∈Adm(G)

|Iso(G,H)|,

where Iso(G,H) denotes the set of isomorphisms from G to
H . Finally, it is a general fact that |Iso(G,H)| = |Aut(G)|
whenever G and H are isomorphic, and equation (1) follows
from this.

Having defined the key sets and quantities related to our
bounds, we move on to our main results.

In proving a minimax lower bound on the risk, we must
design a “hard” adversary. A natural choice is one that simply
chooses a permutation uniformly at random from Sn (we will
call this the oblivious adversary). Against such an adversary,
the designer of a node age estimator has two important pieces
of information: the graph π(G), where π is the adversary’s
permutation, and the fact that G is distributed according to
Gn, and is thus a positive-probability graph, and Adm(G) can
be recovered algorithmically given π(G). Any lower bound on
the risk must thus be constrained by two quantities: |Aut(G)|
and |Adm(G)|. We present such a bound in the next theorem.

Theorem 1 (General lower bound on the probability of error).
Consider a random graph model Gn for which any two
positive-probability graphs that are isomorphic are equiprob-
able (this condition may be relaxed; see below), and consider
the error probability distortion function de(σ1, σ2) = I[σ1 6=
σ2]. Then the minimax risk is

R∗(Gn, de) ≥
E[log |Aut(G)|] + E[log |Adm(G)|]− 1

log n!

=
E[log |Γ(G)|]− 1

log n!
.

The condition that any two positive-probability graphs that
are isomorphic be equiprobable is satisfied by several random
graph models, including, e.g., Erdős-Rényi and preferential
attachment. Moreover, this condition can be significantly re-
laxed, at the expense of a more opaque expression for the
lower bound.

C. Applications to specific random graph models

In this section, we apply our general results to a few dif-
ferent random graph models. In the well known Erdős-Rényi
model, denoted by G(n, p), each pair of nodes receives an

edge, independently of any other edge event, with probability
p. Intuitively, since the model itself is entirely symmetric, we
expect that the probability of error for any estimator should
be quite high, which turns out to be the case.

A less trivial case is the preferential attachment model [1].
There are several definitions, which are slight variations of one
another. We will use the following construction of a model
Gm(n), for a parameter m an integer ≥ 1: for m = 1, we
start at time t = 1 with a single vertex with a self-edge. Then,
at each time t > 1, vertex t joins the graph and chooses a
single neighbor from among the vertices 1, ..., t − 1, where
vertex j is chosen with probability proportional to its current
degree. That is, denoting by Gt−1 the graph at time t− 1,

P[t chooses j|Gt−1] =
degt−1(j)

2t
.

This is repeated until there are n vertices in the graph.
We define Gm(n) in terms of G1(mn) by collapsing each

consecutive collection of m vertices into a single one, resulting
in a multigraph with loops (we do not discuss the details here,
but we need not be overly worried by the presence of multiple
edges and loops in our analysis).

In contrast to the situation in the Erdős-Rényi model, in
the preferential attachment model there is an intuitive notion
of arrival order of vertices. Perhaps surprisingly, exact and
approximate recovery (in the sense of Kendall τ distance) are
still almost as difficult as in the Erdős-Rényi case, as the next
result formalizes.

Theorem 2 (Inapproximability for Erdős-Rényi and prefer-
ential attachment graphs). Let Gn denote either G(n, p) with
p = p(n) ∈ (0, 1) or Gm(n), with m ≥ 3. Then we have

R∗(Gn, de) = 1− o(1).

Furthermore, we have, for approximate recovery in the
Kendall τ sense,

R∗(Gn, da) = Θ(n2).

We remark that the largest possible value of the Kendall
τ distance between two permutations in Sn is Θ(n2). Our
approximate recovery result implies that, with probability
Θ(1), the Kendall τ distance between the correct answer and
the output of any estimator is as large as possible, up to
constant factors.

Furthermore, the error term for both Erdős-Rényi and pref-
erential attachment in the exact recovery case can be bounded
explicitly: in the former case, our proof gives O

(
1

n logn

)
(though a longer, less intuitive proof gives 1/n!). In the latter,
the error term may be bounded above by O

(
log logn
logn

)
.



D. Connection to information content of graph structures

We next discuss a connection to the following problem: fix
a labeled random graph model Gn. This induces a distribution
on unlabeled graphs (i.e., structures), and we wish to encode
samples from this distribution with minimum expected code
length. This problem was studied, e.g., for the Erdős-Rényi
model in [6]; see also [7], among others. In general, the
minimum expected code length is given by H(S(G)) (where
G ∼ Gn and S = S(G) denotes the unlabeled version
of G), the entropy of the distribution on structures. Thus,
it is of interest to derive asymptotics for H(S(G)) and to
compare it to H(G). For any random graph model, we
have H(S(G)) = H(G) − H(G|S). Now, several random
graph models of interest, including Erdős-Rényi and certain
formulations of preferential attachment, have the property
that all positive-probability labeled representatives of a given
unlabeled graph S are equiprobable. In this case,

H(G|S) = E[log |S|] = E[log |Adm(G)|]
= E[log |Γ(G)|]− E[log |Aut(G)|],

by the identity (1). Thus, |Γ(G)|, |Adm(G)|, and |Aut(G)|
are all central quantities in the study of graph structure
compression.

III. PROOFS

A. Proof of Theorem 1

It is sufficient to lower bound the probability of error for
a particular adversary. In particular, we consider the one that
chooses π uniformly at random from Sn. To produce the lower
bound, we start by applying Fano’s inequality: since the goal
of an estimator φ is to estimate π−1, given π(G), we have
that the probability of error pe = P[φ(π(G)) 6= π−1] is

pe ≥
H(π−1|φ(π(G)))− 1

log |Sn|
=
H(π−1|φ(π(G)))− 1

log n!

Now, by the data processing inequality, H(π−1|φ(π(G))) ≥
H(π−1|π(G)). Next, since π−1(π(G)) = G, and G has
positive probability under Gn, we must have π−1 ∈ Γ(π(G))

(though π(G) need not itself have positive probability). Then,
since π(G) and G are isomorphic, their respective feasible sets
Γ(π(G)) and Γ(G) are of the same size. Thus, knowing π(G),
π−1 is a random variable with distribution having support
on a set of size |Γ(G)|. For a general random graph model,
H(π−1|π(G)) may be quite small, depending on the size of
|Aut(G)|. By the chain rule, we have

H(π−1|π(G)) = H(G|π(G)) +H(π−1|G, π(G))

= H(G|π(G)) + E[log |Aut(G)|],

since there are exactly |Aut(G)| isomorphisms between G and
π(G). Thus, the size of the automorphism group of G plays

a role for arbitrary random graph models, and the admissible
set of graphs Adm(G) enters the picture through H(G|π(G)):
namely, if we restrict our attention to models in which all
isomorphic graphs with positive probability have the same
probability, then we have H(G|π(G)) = E[log |Adm(G)|],
and thus

H(π−1|π(G)) = E[log |Adm(G)|] + E[log |Aut(G)|].

Finally, the identity (1) gives us the same formula in terms
of Γ(G), which completes the proof.

B. Proof of Theorem 2

For lack of space, we only prove the lower bounds for exact
recovery, leaving the proofs of the approximate results to the
journal version.

We start with the trivial case of Erdős-Rényi graphs: since
any permutation is feasible for any graph in this model, we
have that

R∗(G(n, p), de) ≥
E[log n!]− 1

log n!
= 1− 1

n log n+O(n)
.

That is, with high probability, at least one error will be made
by any estimator.

Now we move on to the case of preferential attachment
graphs, where we first show a lower bound on the probability
of error. In this case, neither quantity appearing in Theorem 1
is easy to compute. However, from [8] and subsequently from
[9], we have the following characterization of |Aut(G)| for
fixed m: for m = 1 (when G is a tree), we have

P[|Aut(G)| ≥ Cn] = 1− o(1). (2)

When m = 2, there is at least one symmetry with probability
Θ(1). Finally, when m ≥ 3, with probability 1 − n−δ , for
some fixed positive δ, |Aut(G)| = 1 (i.e., G is asymmetric).

Since larger values of m are of more practical interest, we
focus on m ≥ 3. We then have

E[log |Aut(G)|] = E[log |Aut(G)|I[|Aut(G)| > 1]]

≤ n−δ log n! = O(n1−δ log n) = o(n).

Thus, the automorphisms of G contribute only negligibly to
the lower bound on the error probability and to the entropy of
the structure of G. However, by lower bounding E[log |Γ(G)|]
(hence E[log |Adm(G)|]), we will show the claimed error
probability lower bound.

a) A simple lower bound: Here we show a simple lower
bound on E[log |Γ(G)|], which will imply that the probability
of error in the preferential attachment case is Θ(1). We will
then discuss ways of tightening this bound.

Trivially, Γ(G) contains all permutations which permute
only vertices of degree m in G (we denote the set of vertices



of degree m at time n by Nn(m)). With high probability, there
are Θ(n) such vertices. This implies that

E[log |Γ(G)|] ≥ E[I[Nn(m)] ≥ Cn] log |Γ(G)|]
≥ (1− o(1)) log((Cn)!) = Θ(n log n).

We thus have that pe ≥ Θ(n log n)/ log n! = Θ(1).

b) Tightening the lower bound: We may significantly
tighten this bound by a more careful characterization of the
structure of the set of feasible permutations and using results
from the separate work [9] (in preparation). This is worthwhile
in light of the connection to the leading and second-order
asymptotics of the structural entropy of preferential attachment
graphs, as detailed in Section II-D.

The plan is to consider the directed, acyclic graph version
of G, denoted by DAG(G); i.e., its vertex and edge set are
the same as in G, but each edge in DAG(G), say, between
u and v > u, is oriented toward u, the older vertex. It turns
out that |Γ(G)| can be lower bounded in terms of a certain
parameter of DAG(G), as stated in the following lemma.

Lemma 1 (Characterization of |Γ(G)| in the preferential
attachment model). Consider a graph G having positive prob-
ability in the preferential attachment model on n vertices. A
permutation σ is in Γ(G) if there is no pair of vertices v < w

with a path from w to v in DAG(G) and σ(v) > σ(w).

Proof. Suppose that σ /∈ Γ(G). This means that the probability
of H := σ(G) under the preferential attachment distribution is
0. This can happen only if, for some t ∈ [n], degH,t(t) 6= m,
where degH,t(j) denotes the degree of vertex j at time t in the
graph H . Consider the smallest such t in H . There are exactly
m edges coming from σ−1(t) in DAG(G), all of them leading
to vertices < σ−1(t) (for simplicity of presentation, we will
be slightly non-rigorous here and assume that each edge leads
to a distinct vertex; however, the correct proof is not too much
more complicated). Thus, if degH,t(t) < m, this means that
some neighbor w < σ−1(t) in G is mapped by σ to a neighbor
σ(w) > t in H .

On the other hand, if degH,t(t) > m, this means that there
must be some neighbor w > σ−1(t) in G that is mapped by
σ to a neighbor σ(w) < t in H .

In either case, we have a contradiction, which completes the
proof.

In particular, this implies that any product of permutations
that only permute vertices within levels (the first level is the
set of nodes with in-degree 0, and the jth level is the set of
nodes with in-edges coming from the j−1st level) of DAG(G)

is in Γ(G). Thus, we have as a lower bound

|Γ(G)| ≥
∏
j≥1

|Lj(G)|!, (3)

where Lj(G) denotes the collection of vertices in the jth level
of DAG(G).

Using this, we can show the following:

Proposition 1 ( [9] ). We have, for G ∼ Gm(n) with any fixed
m ≥ 1,

E[log |Γ(G)|] = (1 + o(1))n log n. (4)

The full proof is rather detailed (and is given in [9]), so
we only sketch it here. The idea is to first show that, with
high probability, there are only o(n) vertices occurring in
levels > log log n (i.e., DAG(G) is wide, but not deep). Then,
among the quite small number of levels containing n(1+o(1))

vertices, enough of the |Li| are large enough (i.e., Θ(n)) for
us to apply Stirling’s formula to estimate |Li|!, resulting in an
estimate of e|Li| log |Li| = e|Li| logn+O(n). Multiplying all of
these |Li|!, we get

|Γ(G)| ≥
log logn∏
j=1

|Li|! = en logn+O(n),

so that (4) is established. Then the claimed risk lower bound
follows from Proposition 1 and Theorem 1.

IV. FUTURE DIRECTIONS

We have shown inapproximability in terms of Kendall τ
distance for the node age problem for two natural random
graph models, but perhaps this distortion measure is overly
pessimistic in certain applications; it is worthwhile to con-
sider relaxations of the problem through alternative distortion
measures that are useful in certain applied scenarios. As an
example, in the preferential attachment model, if we restrict
our attention to the very oldest nodes (which are identifiable
via their high degrees), the problem becomes much more
feasible. One could devise a distortion measure that places
emphasis on the proper ordering of the oldest nodes.
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