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Abstract—We continue developing information theory of ad-

vanced data structures. In our previous work, we introduced

structural entropy of unlabeled graphs and designed lossless

compression for binary trees (with correlated names). In this

paper, we consider d-ary trees (d ≥ 2) and trees with unrestricted

degree for which we compute entropy (the first step to design

optimal compression). As it turns out extending from binary trees

to general trees is mathematically quite challenging and leads to

new recurrences that find ample of applications in information

theory (e.g., to analyze non-plane general trees).

I. INTRODUCTION

Rapid advances in sensing, communication, and storage

technologies have created a state of the art in which our

ability to collect data from richly instrumented environments

has far outpaced our ability to process, understand, and ana-

lyze this data in a (provably) rigorous manner. A significant

component of this complexity arises from the multimodal and

heterogeneous nature of data. This poses significant challenges

for theoretical characterization of limits of information and

methods that achieve these limits. While ad-hoc approaches

are often currently deployed, critical issues regarding their

performance, robustness, and scalability, remain. These precise

challenges have motivated our recent research program [6], [7],

[13] and others [2], [11], [18]). It provides the basis for our

effort on developing a comprehensive theory of information

for multimodal data, that is, multitype and context dependent

structures.

As a start to understand advanced multimodal data struc-

tures, we focused on graphs [6] and trees [13]. In 1990, Naor

proposed an efficiently computable representation for unla-

beled graphs (solving Turán’s open question) that is optimal up

to the first two leading terms of the entropy when all unlabeled

graphs are equally likely. Naor’s result is asymptotically a

special case of recent work of Choi and Szpankowski [6],

who extended Naor’s result to general Erdős-Rényi graphs.

In particular, in [6] the entropy and an optimal compression

algorithm (up to two leading terms of the entropy) for Erdős-

Rényi graph structures were presented. Furthermore, in [14] an

automata approach was used to design an optimal graph com-

pression scheme. There also have been some heuristic methods

for real-world graphs compression including grammar-based

compression for some data structures. Peshkin [15] proposed

an algorithm for a graphical extension of the one-dimensional

SEQUITUR compression method. For binary plane-oriented

trees rigorous information-theoretic results were obtained in

[11], complemented by a universal grammar-based lossless

coding scheme [18].

In our recent work [13] (see also [7]) we study binary trees

(with correlated labels) and design an optimal compression

based on arithmetic encoding. In this paper, we extend our

study on entropy of advanced data structures to d-ary trees

(i.e., trees with degree d ≥ 2) and general trees without any

restriction on degree. It turns out that moving from binary trees

to d-ary (general) trees is mathematically quite challenging.

First of all, in [13] we proved for binary trees an equivalence

between two models: binary search model and a model in

which leaves are selected randomly to expand the tree by

adding two additional nodes (new leaves). These equivalence

allowed us to analyze the entropy of such tree by solving a

relatively simple recurrence, namely

xn = an +
2

n

n−1
∑

i=1

xi. (1)

for some given an (e.g., for the entropy an = logn), where

n denotes the number of internal nodes. However, for d-ary

trees Tn on n internal nodes the entropy H(Tn) satisfies

H(Tn) = H(root) + d

n−1
∑

k=0

H(Tk)pn,k

where H(root) is the entropy of the split probability at the

root, and pn,k is the probability of one specified subtree being

of size k. This recurrence is quite simple for m-ary search tree

model discussed in Section II, in which we store a permutation

of {1, . . . , n} by splitting the file in the root using the first m−
1 elements of the underlying permutation. In this case, pn,k =
(

n−k−1
m−2

)

/
(

n

m−1

)

and the recurrence was already discussed in

[5], [9].

For more interesting d-ary trees we select randomly a leaf

and add exactly d leaves to it. Observe that for d = 2 we



have pn,k = 1/n (where we recall n here denotes the number

of internal nodes) leading to (1). But things are getting more

complicated when d > 2. For example, for d = 3 we can

prove that

pn,k =
1

2n

(

2k
k

)

22n
(

2n
n

)

22k
.

After some tedious algebra, we prove in Section III that the

new type of recurrence we need to solve to find the entropy

is of the following form (see Lemma 2)

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1
∑

k=0

Γ(k + α− 1)

k!
xk (2)

where α = d/(d−1), an is given sequence, and Γ is the Euler

gamma function. A situation is even more involved when we

consider general trees in Section III-C where no restrictions

on tree degree is imposed.

In this paper, after describing in Section II three possible

generalizations of the binary tree model from [13], we present

our main results in Section III. We first provide in Corollary 1

the entropy rate for m-ary search trees. Then we consider d-

ary trees and in Theorem 2 give our expression for the entropy

of such trees. We extend it to general trees in Theorem 3.

II. MODELS

In this section we describe the concepts of unlabeled plane

trees with and without restrictions on the nodes out-degree.

This will allow us to introduce three models of tree genera-

tions.

We call a rooted tree a plane tree when we distinguish

left-to-right order of the successors of each node, i.e. we

distinguish all different embedding of a tree into the plane

(see [8]). Unlabeled plane trees are rooted plane trees with no

restriction on the number of successors of the nodes. On the

other hand, unlabeled d-ary plane trees are rooted plane trees

where each node has exactly d successors (either internal of

external). Since they are unlabeled, they can be seen as objects

that encodes the structures of a possible plane tree. We define

the size of the unlabeled plane tree and also unlabeled d-ary

plane tree by the number of internal nodes.

A. Unlabeled m-Ary Search Trees Generation

Search trees are plane trees build from a set of n distinct

keys taken from some totally ordered sets, for instance a

random permutation of the numbers {1, 2, . . . , n}. The search

tree is m-ary tree where each node has at most m successors;

moreover each node stores up to m − 1 key in each node.

We define the size of search tree as the number of keys n.

Construction of m-ary search tree can be described as follows.

If n = 0 the tree is empty. If 1 ≤ n ≤ m− 1 the tree consists

of a root only, with all keys stored in the root. If n ≥ m

we select m − 1 keys that are called pivots. The pivots are

stored in the root. The m− 1 pivots split the set of remaining

n −m + 1 keys into m sublists I1, . . . , Im: if the pivots are

p1 < p2 < · · · < pm−1, then I1 := (pi : pi < p1), I2 :=

(pi : p1 < pi < p2), . . . , Im := (pi : pm−1 < pi). We then

recursively construct a search tree for each of the sets Ii of

keys. In order to obtain unlabeled search tree of size n we

remove keys from the search trees of size n (see Fig. 1).

(4,7,3,5,1,2,9,6,8)

4,7

1,3

2

5,6 8,9

Fig. 1: Example of a 3-ary search tree of size 9 build from

permutation (4, 7, 3, 5, 1, 2, 9, 6, 8) and its unlabeled counter-

part.

The standard probability model assumes that every permu-

tation of the keys {1, . . . , n} is equally likely. The choice

of pivots can then be deterministic. For example, one always

chooses the first m − 1 keys. However, after removing keys

from a m-ary search tree we obtain an unlabeled search tree,

but this time the probability distribution is non-uniform.

B. Unlabeled d-ary Plane Trees Generation

We consider the following generation model of an unlabeled

d-ary plane tree. Suppose that the process starts with an empty

tree, that is with just an external node (leaf). The first step

in the growth process is to replace this external node by an

internal one with d successors that are external nodes (see

Figure 2). Then with probability 1
d

one of these d external

nodes is selected and again replaced by an internal node with

d successors. In each next step one of the external nodes is

replaced (with equal probability) by an internal node with d



successors. At the end, we remove the labels from internal

nodes of a tree.∗

(a) (b)
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(c)
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(d)
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(f)

Fig. 2: Example of the generation process that produces 3-ary

plane tree of size 4 and its unlabeled counterpart.

It is known that such evolution process (without removing

the labels at the end) produces d-ary recursive plane trees

(see [8]). By definition, d-ary plane recursive trees are rooted

plane trees with labels on internal nodes and where each node

has exactly d successors (either internal or external). The root

is labeled by 1 and the labels of all internal successors of any

node v are larger than the label of v. We define the size of the

d-ary recursive plane tree by the number of internal nodes.

Let F denote a set of all unlabeled d-ary plane oriented

trees and, for each integer n ≥ 0, let Fn be a subset of F
consisting of all trees that contains exactly n internal nodes.

Let Fn be a random variable supported on Fn. Similarly, let

G be a set of all d-ary plane oriented recursive trees and, for

each integer n ≥ 0, let Gn be a subset of G consisting of all

trees that contains exactly n internal nodes. Throughout the

paper, we will denote a given unlabeled d-ary plane tree of

size n as fn and we will denote a given d-ary plane recursive

tree of size n as gn.

∗Observe that labels describe the history of the evolution process.

Let us formally define a source that generates unlabeled

d-ary plane trees of size n as:

1) draw a d-ary plane recursive tree gn uniformly from the

set Gn,

2) return a tree fn ∈ Fn by removing labels from gn.

The natural probability distribution on d-ary plane oriented

recursive trees of size n is to assume that each of |Gn| trees

is equally likely. Observe that the above described evolution

process (choosing an external node to replace with uniform

distribution among all external nodes) generates every d-ary

plane recursive tree of size n in a unique way and with uniform

distribution. However, after removing labels from a d-ary plane

recursive tree gn we obtain an unlabeled d-ary plane tree

fn that are generated non-uniformly. For example, there are
(

3
2,0,1

)(

1
0,1,0

)

= 3 ways to obtain resulting tree form Figure 2,

but there is only one way (exactly
(

3
3,0,0

)(

2
2,0,0

)(

1
1,0,0

)

= 1) to

obtain a tree where every internal node is a left most child of

a parent node.

C. Unlabeled General Plane Trees Generation

We consider the following generation model of unlabeled

plane trees. Suppose that the process starts with the root

node carrying a label 1. Then we add a node with label 2

to the root. The next step is to attach a node with label 3.

However, there are three possibilities: either to add it to the

root (as a left or right successor) or to the node with label

2. Similarly one proceeds further. Now if a node already has

out-degree k (where the descendants are ordered), then there

are k + 1 possible ways to add new node (this time we do

not distinguish between external and internal nodes). Hence,

if a plane tree already has j−1 nodes then there are precisely

2j−3 possibilities to attach the j’th node (see Figure 3). More

precisely, the probability of choosing a node of out-degree k

equals (k + 1)/(2j − 3). At the end, we remove the labels

from internal nodes of a tree.

It is known that such evolution process (without removing

the labels at the end) produces plane recursive trees (see [8]).

By definition, plane recursive trees are rooted labeled plane

trees, where the root is labeled by 1 and the labels of all

successors of any node v are larger than label of v. We describe

the size of the plane recursive tree by the number of nodes.

Let T denote a set of all unlabeled plane oriented trees and,

for each integer n ≥ 0, let Tn be a subset of T consisting

of all trees that contains exactly n nodes and let T (d)
n be a

subset of Tn consisting of all trees that contains exactly n

nodes and root degree equal to d. Let Tn be a random variable

supported on Tn. Similarly, let R be a set of all plane oriented

recursive trees and, for each integer n ≥ 0, let Rn be a subset

of R consisting of all trees that contains exactly n nodes.

Throughout the paper, we will denote a given unlabeled plane
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Fig. 3: Example of the generation process that produces unla-

beled general plane tree of size 5 and its unlabeled counterpart.

tree of size n as tn and we will denote a given plane recursive

tree of size n as rn.

The natural probability distribution on plane oriented re-

cursive trees of size n is to assume that each of |Rn| trees

is equally likely. Observe that the above described evolution

process generates every plane recursive tree of size n in a

unique way and with uniform distribution. However, after

removing labels from a plane recursive tree rn we obtain

an unlabeled plane tree tn, but this time the probability

distribution on a set Tn is non-uniform. Observe that for

instance there are
(

4
1,2,1

)

= 12 ways to obtain resulting tree

form Figure 3, but there is only one way to obtain a tree where

every node has exactly one successor.

III. MAIN RESULTS

In this section we present our main results. In particular,

we briefly address the entropy of m-ary search tree. Then we

present our derivation of the recurrence for the entropy of d-

ary trees that leads us to a formula for the entropy rate. Finally,

we derive the entropy rate for general trees.

We should point out that in all our models, the probability

of a tree generation is non-uniform and conditionally inde-

pendent. Indeed, let Tn be a random variable representing a

tree tn on n internal nodes. Assume now that at the root we

split tn into d subtrees of size k1, . . . , kd, respectively, where

k1 + · · · + kd = n − 1. Then the probability P (Tn = tn) of

generating tree tn in all our models satisfies

P (Tn = tn) = P (k1, . . . , kd)

d
∏

i=1

P (Tki
= tki

) (3)

where P (k1, . . . , kd) is the probability of a split at the root of

n internal nodes into subtrees tk1 , . . . , tkd
, respectively. This

split probability is different for m-ary search trees, d-ary trees,

and general trees, as we shall see in this section.

Throughout we shall use the following notation. Let k(n) =

(k1, . . . , kn) denote a n-dimensional vector and ‖k(n)‖ =

k1+. . .+km be its L1 norm. Let (k,k(n−1)) = (k, k2 . . . , kn)

denote a n-dimensional vector with the first coordinate equal

to k. We will write k instead of k
(n) when the vector

dimension is obvious.

A. The Entropy of the Unlabeled m-ary Search Trees

Let Un denote a random variable representing unlabeled

m-ary search tree with n keys. We write un for a m-ary

(unlabeled) search tree with n keys.

We describe now the splitting at the root for the search

tree and denote this process by the random vector Y
(m)
n =

(Yn,1, . . . , Yn,m), where Yn,j = |Ij | is the number of keys in

the j-th subset. If n ≥ m − 1 we have Yn,1 + · · ·Yn,m =

n−m+ 1 and

P

(

Y
(m)
n = k

(m)
)

=
1

(

n
m−1

) . (4)

Notice that P
(

Y
(m)
n = k

(m)
)

does not depends on the vector

k
(m) coordinates k1, . . . , km, which simplifies calculations.

Suppose that the tree un has subtrees uk1 , . . . , ukm
of sizes

k1, . . . , km, then by (3)

P (Un = un) = P

(

Y
(m)
n = k

(m)
)

m
∏

j=1

P
(

Ukj
= ukj

)

. (5)

Let us establish the initial conditions of the entropy of m-ary

search trees. If n = 0 we have empty tree and the H (U0) = 0.

Moreover, if 1 ≤ n ≤ m−1 all keys are stored in one node and

H (Un) = 0. For for n > m − 1 there is a bijection between

a tree Un and a tuple (Y
(m)
n , UYn,1, . . . , UYn,m

) which is an

immediate consequence of (5). Therefore, for n > m− 1, we

have

H (Un) = H
(

Y
(m)
n , UYn,1 , . . . , UYn,m

)

= H
(

Y
(m)
n

)

+H
(

UYn,1 , . . . , UYn,m
|Y(m)

n

)

= H
(

Y
(m)
n

)

+

+
∑

‖k‖=n−m+1

H
(

UYn,1 , . . . , UYn,m
|Y(m)

n = k
(m)
)

· P
(

Y
(m)
n = k

(m)
)

.



Observe that H
(

UYn,1 , . . . , UYn,m
|Y(m)

n = k
(m)
)

=

H (Uk1 , . . . , Ukm
). By independence of subtrees

Uk1 , . . . , Ukm
we have

H (Un) = H
(

Y
(m)
n

)

+

+m

n−m+1
∑

k=1

H (Uk)
∑

‖k(m−1)‖=n−m+1−k

P

(

Y
(m)
n = (k,k(m−1))

)

= H
(

Y
(m)
n

)

+m

n−m+1
∑

k=0

H (Uk)P (Yn,1 = k) .

For n ≥ m − 1 and 1 ≤ j ≤ m, the components Yn,j are

identically distributed, and for 0 ≤ k ≤ n− 1,

P (Yn,1 = k) =
∑

‖k(m−1)‖=n−m+1−k

P

(

Y
(m)
n =

(

k,k(m−1)
))

=

(

n−k−1
m−2

)

(

n
m−1

) . (6)

The last equation comes from the fact that there are
(

n−l−1
m−2

)

ways of split n− l− 1 keys into m− 1 sublists (i.e. choosing

m− 2 pivots from n− l − 1 keys) (it also can be found e.g.

in [8]).

On the other hand, from (4) we have

H
(

Y
(m)
n

)

=

−
∑

‖k‖=n−m+1

P

(

Y
(m)
n = k

(m)
)

log P
(

Y
(m)
n = k

(m)
)

=
1

(

n
m−1

) log

(

n

m− 1

)

∑

‖k‖=n−m+1

1 = log

(

n

m− 1

)

.

The last equality comes from the fact that the sum
∑

‖k‖=n−m+1 1 equals to the number of choices of m − 1

pivots from n keys, which is
(

n
m−1

)

.

Finally, we arrive at the following recurrence for the entropy

H (Un) = log

(

n

m− 1

)

+
m

(

n

m−1

)

n−m+1
∑

k=0

(

n− k − 1

m− 2

)

H (Uk) .

The asymptotic of a recurrence like above was studied before;

see Proposition 7 in [5] and Theorem 2.4 in [9] that we quote

below.

Theorem 1 ([9], Theorem 2.4, Asymptotic Transfer Theorem).

Let

an = bn +
m

(

n

m−1

)

n−(m−1)
∑

j=0

(

n− 1− j

m− 2

)

aj , n ≥ m− 1,

with specified initial conditions (say) aj := bj , 0 ≤ j ≤ m−2.

If

bn = o (n) and
∑

n≥0

bn
(n+ 1)(n+ 2)

converges,

then

an =
K1

Hm − 1
n+o (n) , where K1 :=

∑

j≥0

bj
(j + 1)(j + 2)

.

Hence, the entropy of the m-ary search tree becomes

H(Un) = cmn+ o (n) ,

where

cm = 2φm

∑

k≥0

log
(

k

m−1

)

(k + 1)(k + 2)

and φm = 1
2Hm−2 is called occupancy constant.

Observe that if m = 2 the number of nodes of m-ary search

tree equals n, but for m > 2 the number of nodes of m-ary

search tree is a random variable Sn,m. Knuth [12] was the

first to show that E (Sn,m) ∼ φmn.

In order to compare constant cm of m-ary search tree with

d-ary trees discussed next we should point out that m-ary

search trees of size n have on average ∼ φmn internal nodes.

Thus, it makes sense to normalize the constant cm as ĉm =

cm/φm. Then numerically ĉ2 ≈ 1.73638, ĉ3 ≈ 2.5014, ĉ4 ≈
2.93994, ĉ5 ≈ 3.22688.

Using Theorem 1 and the fact that H
(

Y
(m)
n

)

=

log
(

n

m−1

)

= o (n), we conclude this section with the fol-

lowing result.

Corollary 1. The entropy rate hm(u) = limn→∞ H (Un) /n

of the unlabeled m-ary trees, generated according to the m-

ary search trees model, is given by

hm(u) = 2φm

∑

k≥0

log
(

k
m−1

)

(k + 1)(k + 2)
. (7)

Remark 1. It can be checked numerically that the entropy rate

of the unlabeled m-ary search trees, generated according to

the model of m-ary search trees for m = 2, 3, 4, 5 is h2(u) ≈
1.73638, h3(u) ≈ 1.50084, h4(u) ≈ 1.3569, h5(u) ≈ 1.25723

respectively.

B. The Entropy of the Unlabeled d-ary Plane Trees

Let gn = |Gn| be the number of d-ary plane recursive trees

with n internal nodes. From [8] we know that for d = 2 we

have gn = n!. Moreover, for d > 2 we have

gn = (−1)n(d− 1)n
Γ(2− d

d−1)

Γ(2− d
d−1 − n)

. (8)

Let Gfn
denote a subset of Gn of trees that have the same

structure as a tree fn ∈ Fn, that is, an unlabeled version of a

tree gn ∈ Gn is isomorphic to fn. Moreover, let gfn = |Gfn
|

be the number of d-ary plane recursive trees that have the same

structure as a tree fn. Observe that the probability that above

defined source generates a given unlabeled tree fn ∈ Fn is

P (Fn = fn) =
gfn
gn

. (9)



Suppose that the tree fn has subtrees fk1 , . . . , fkd
of sizes

k1, . . . , kd. Then

P (Fn = fn) =
1

gn

(

n− 1

k1, . . . , kd

) d
∏

j=1

gfkj

=

(

n− 1

k1, . . . , kd

)

gk1 · · · gkd

gn

d
∏

j=1

P
(

Fkj
= fkj

)

.

(10)

Observe that
(

n−1
k1,...,kd

) gk1 ···gkd
gn

is the probability that the

subtrees of the root are of sizes k1, . . . , kd. Let us define a

random vector V
(d)
n : Gn → {0, . . . , n − 1}d, where its j’th

component Vn,j denotes the size of j-th subtree. For n ≥ 1

we have Vn,1 + . . .+ Vn,d = n− 1 and

P

(

V
(d)
n = k

(d)
)

=

(

n− 1

k1, . . . , kd

)

gk1 · · · gkd

gn
. (11)

Define the entropy of unlabeled d-ary plane tree of size n

as

H (Fn) = −
∑

fn∈Fn

P (Fn = fn) log (P (Fn = fn)) .

Let us establish the initial conditions of the entropy of our

source. If n = 0 we have empty tree, and H (F0) = 0. If

n = 1, we have one fixed tree and H (F1) = 0. By (10)

for n > 1 there is a bijection between a tree Fn and a tuple

(V
(d)
n , FV1 , . . . , FVd

). Therefore, for n > 1, we have

H (Fn) = H
(

V
(d)
n , FVn,1 , . . . , FVn,d

)

= H
(

V
(d)
n

)

+H
(

FVn,1 , . . . , FVn,d
|V(d)

n

)

= H
(

V
(d)
n

)

+
∑

‖k‖=n−1

H (Fk1 , . . . , Fkd
)P
(

V
(d)
n = k

(d)
)

.

Since subtrees Fk1 , . . . , Fkd
are (conditionally) independent,

we have

H (Fn) = H
(

V
(d)
n

)

+

d

n−1
∑

k=0

H (Fk)
∑

‖k(d−1)‖=n−1−k

P

(

V
(d)
n =

(

k,k(d−1)
))

.

For k = 0, . . . , n − 1, let pn,k be the probability that one

specified subtree in a d-ary recursive tree is of size k, that is,

pn,k =
∑

‖k(d−1)‖=n−1−k

P

(

V
(d)
n =

(

k,k(d−1)
))

. (12)

Then

H (Fn) = H
(

V
(d)
n

)

+ d

n−1
∑

k=0

H (Fk) pn,k. (13)

Lemma 1. For k = 0, . . . , n − 1 and d > 1, let α = d
d−1 ,

then

pn,k =
(α − 1)

n

n!Γ(k + α− 1)

k!Γ(n+ α− 1)
.

Proof. Using (11), we can rewrite (12) as

pn,k =
(n− 1)!gk

k!(n− 1− k)!gn
×

∑

k2+...+kd=n−1−k

(

n− 1− k

k2, . . . , kd

)

gk2 · · · gkd
.

Let us define the exponential generating function G(z) =
∑

n≥0 gn
zn

n! with g0 = 1. From [8] we know that

G(z) = (1− (d− 1)z)−
1

d−1 .

Observe that

∑

k2+...+kd=n−1−k

(

n− 1− k

k2, . . . , kd

)

gk2 · · · gkd

is the n−1−k’th coefficient of the function G(z)d−1 (denoted

as
[

zn−1−k

(n−1−k)!

]

G(z)d−1). Hence

pn,k =
(n− 1)!gk

k!(n− 1− k)!gn

[

zn−1−k

(n− 1− k)!

]

G(z)d−1

=
(n− 1)!gk

k!gn

[

zn−1−k
] 1

1− (d− 1)z

=
(n− 1)!gk

k!gn
(d− 1)n−1−k.

For d = 2, we have gn = n! and the result is immediate. For

d > 2, from (8) we find

pn,k =
(α − 1)

n

(−1)nn!Γ(2− α− n)

(−1)kk!Γ(2− α− k)
.

From [19] we know that Γ(z − n) = (−1)nπ
Γ(n+1−z) sin(πz) , hence

(−1)nΓ(n+ α)Γ (2− α− n) =
π(n− 1 + α)

sin(π(2 − α))
, (14)

and then

pn,k =
(α− 1)

n

n!Γ(k + α)(n+ α− 1)

k!Γ(n+ α)(k + α− 1)
.

Since Γ(z + 1) = zΓ(z) we get desired result.

Remark 2. Observe that for d = 2, we have α = 2

and pn,k = 1
n

. It does not depend on k, which greatly

simplifies computations as shown in [13]. Moreover, it equals

P (Yn,1 = k) in the case of the binary search trees. Therefore,

two models for 2-ary plane trees and for binary search trees

are equal. For d > 2 it is not the case. For instance for d = 3,

we have α = 3
2 and

pn,k =
1

2n

(

2k
k

)

22n
(

2n
n

)

22k
,



which clearly depends on k and does not equal n−k−1

(n2)
what

would be the in case of 3-ary search trees.

The recurrence presented in (13) is a novel one that we

need to solve. In lemma below we propose a general solution

of recurrences of this form.

Lemma 2. For constant α, x0 and x1, the recurrence

xn = an +
α

n

n!

Γ(n+ α− 1)

n−1
∑

k=0

Γ(k + α− 1)

k!
xk, n ≥ 2

(15)

has the following solution for n ≥ 2

xn = an + α(n+ α− 1)

n−1
∑

k=0

ak
(k + α− 1)(k + α)

+
n+ α− 1

α+ 1

(

x1 +
x0

α− 1

)

.

Proof. Let us divide both sides of the recurrence by the

normalizing factor
Γ(n+α−1)

n! . Define also x̂n = xnΓ(n+α−1)
n!

and ân = anΓ(n+α−1)
n! . Then

x̂n = ân +
α

n

n−1
∑

k=2

x̂k. (16)

To solve recurrence (16) we compute nx̂n−(n−1)x̂n−1. This

leads us to

x̂n = ân −
(

1− 1

n

)

ân−1 +

(

1 +
α− 1

n

)

x̂n−1,

that holds for n ≥ 3. Then after iterating the above we arrive

at

x̂n = x̂2

n
∏

j=3

(

1 +
α− 1

j

)

+

n
∑

k=3

(

âk −
(

1− 1

k

)

âk−1

) n
∏

j=k+1

(

1 +
α− 1

j

)

.

(17)

The product
∏n

j=k+1

(

1 + α−1
j

)

= k!Γ(n+α)
n!Γ(k+α) , and after some

standard calculations we obtain

x̂n = ân + (x̂2 − â2)
2Γ(n+ α)

Γ(α+ 2)n!
+

Γ(n+ α)

n!

n−1
∑

k=2

âk
k!

Γ(k + α)

α

k + α
.

Going back from x̂n and ân to xn, an, respectively, we obtain

xn = an + α(n+ α− 1)

n−1
∑

k=2

ak
(k + α− 1)(k + α)

+ (x2 − a2)
n+ α− 1

α+ 1
.

Observe that x2 − a2 = x1 +
x0

α−1 . This completes the proof.

Remark 3. Observe that for d = 2 and x0 = x1 = 0 and

an = o (n), we have α = 2 and

xn = 2n
∑

k≥0

ak
(k + 1)(k + 2)

+ o (n)

as in [13]. But with the same assumptions and d = 3 we have

xn =
3

2
n
∑

k≥0

ak

(k + 1
2 )(k + 3

2 )
+ o (n) .

This leads us to out first main result.

Theorem 2. The entropy of an unlabeled d-ary plane tree,

generated according to the model of d-ary plane recursive

tree, is given by

H (Fn) = H
(

V
(d)
n

)

+α(n+α−1)

n−1
∑

k=0

H
(

V
(d)
k

)

(k + α− 1)(k + α)
,

(18)

where α = d
d−1 and

H
(

V
(d)
n

)

= −
∑

‖k‖=n−1

P

(

V
(d)
n = k

(d)
)

logP
(

V
(d)
n = k

(d)
)

.

Fig. 4: Entropy of d-ary plane trees for d = 2, 3, 4, 5 respec-

tively and number of nodes n ∈ [1, 100].

We conclude this section with the following result.

Lemma 3. The entropy rate hd(f) = limn→∞ H (Fn) /n of

the unlabeled d-ary plane trees, generated according to the

model of d-ary plane recursive trees, is given by

hd(f) = α

∞
∑

k=0

H (Vk)

(k + α− 1)(k + α)
, (19)

with α = d
d−1 .

Proof. Having Theorem 2 in mind, we just need to prove that

H
(

V
(d)
n

)

= o (n). Let us recall that V
(d)
n : Gn → {0, . . . , n−

1}d. Since the entropy of random variable is upper bounded

by the logarithm of the variable image cardinality, we have

H
(

V
(d)
n

)

≤ log
(

nd
)

= o (n) .



Remark 4. Taking a closer look at H
(

V
(d)
n

)

we find

H
(

V
(d)
n

)

= log
(

n
gn
n!

)

− d

n−1
∑

k=0

pn,k log
(gk
k!

)

.

In particular, H
(

V
(2)
n

)

= H
(

Y
(2)
n

)

= log(n) and the

entropy rate h2(f) ≈ 1.73638, which matches the entropy

rate of the binary search trees. On the other hand, for d = 3

and n > 0 we have

H
(

V
(3)
n

)

= log

(

n

2n

(

2n

n

))

− 3

2n

n−1
∑

k=0

(

2k
k

)

22n
(

2n
n

)

22k
log

(

(

2k
k

)

2k

)

.

This allows us to check numerically that the entropy rate of the

unlabeled 3-ary plane trees, generated according to the model

of 3-ary recursive trees is h3(u) ≈ 2.470.

C. The Entropy of the Unlabeled General Plane Trees

Let rn = |Rn|. From [8] we know that there are

rn = (2n− 3)!! =
n!

n2n−1

(

2n− 2

n− 1

)

(20)

different plane oriented recursive trees of size n.

As in the case of the d-ary plane trees, let Rtn
denote

a subset of Rn trees that have the same structure as a tree

tn ∈ Tn; moreover, let rtn = |Rtn
| be the number of plane

recursive trees that have the same structure as a tree tn.

Observe that

P (Tn = tn) =
rtn
rn

. (21)

Let Dn denote a random variable representing the number

of subtrees of the root. Observe that P (Dn = d) =
r(d)n

rn
, where

r
(d)
n = |R(d)

n | is the number of plane recursive trees with the

root degree equal d. Suppose that the tree tn has d subtrees

tk1 , . . . , tkd
of sizes k1, . . . , kd. Then

P (Tn = tn & tn root degree equals d)

= P (Dn = d)P (Tn = tn|Dn = d)

=

(

n− 1

k1, . . . , kd

)

rk1 · · · rkd

rn

d
∏

j=1

P
(

Tkj
= tkj

)

. (22)

Observe that
(

n−1
k1,...,kd

) rk1 ···rkd
rn

is a probability that the root of

plane recursive tree of size n has degree equal to d and the

root’s subtrees are of sizes k1, . . . , kd. Let W
(d)
n : R(d)

n →
{1, . . . , n− d}d, where its j’th component Wn,j denotes the

size of j-th subtree when the root is of degree d. For n ≥ 1

we have Wn,1 + . . .+Wn,d = n− 1 and

P (Dn = d)P
(

W
(Dn)
n = k

(Dn)|Dn = d
)

=
(

n− 1

k1, . . . , kd

)

rk1 · · · rkd

rn
. (23)

Let us define the entropy of unlabeled plane tree of size n

as

H (Tn) = −
∑

tn∈Tn

P (Tn = tn) log (P (Tn = tn)) .

Observe that

H (Tn, Dn) = H (Tn)−
∑

tn ∈ Tn

0 < d < n

P (Tn = tn, Dn = d) logP (Dn = d|Tn = tn) ,

Since Dn is a function of the tree random variable Tn we have

P (Dn = d|Tn = tn) = 1. Therefore, H (Tn, Dn) = H (Tn)

and in order to calculate H (Tn) we can use (22).

Let us establish the initial conditions of the entropy of

our source. If n = 1 we have just a root node, and the

H (T1) = 0, similarly if n = 2, we have one fixed tree and

the H (T2) = 0. Let us observe that for n > 2 and tree root’s

degree equals to d, there is a bijection between a tree Tn

and a tuple (W
(d)
n , TWn,1 , . . . , TWn,d

) which is an immediate

consequence of (22). Therefore, for n > 2, we have

H (Tn) =

n−1
∑

d=1

H
(

W
(d)
n , TWn,1 , . . . , TWn,d

)

=

n−1
∑

d=1

(

H
(

W
(d)
n

)

+H
(

TWn,1 , . . . , TWn,d
|W(d)

n

))

=

n−1
∑

d=1

H
(

W
(d)
n

)

+

n−1
∑

d=1

∑

‖k‖=n−1

H (Tk1 , . . . , Tkd
)P
(

W
(d)
n = k

(d)
)

.

From conditional independence Tk1 , . . . , Tkd
we conclude

H (Tn) =
n−1
∑

d=1

H
(

W
(d)
n

)

+

n−1
∑

d=1

d

n−d
∑

k=1

H (Tk)
∑

‖k(d−1)‖=n−1−k

P

(

W
(d)
n =

(

k,k(d−1)
))

.

For k = 1, . . . , n− 1, let qn,k be defined as the probability

that one specified subtree in a plane recursive tree, with root’s

degree equals to d, is of size k. Hence

q
(d)
n,k =

∑

‖k(d−1)‖=n−1−k

P

(

W
(d)
n =

(

k,k(d−1)
))

. (24)

Therefore

H (Tn) =
n−1
∑

d=1

H
(

W
(d)
n

)

+
n−1
∑

d=1

d
n−d
∑

k=1

H (Tk) q
(d)
n,k. (25)

We need an expression for the probability q
(d)
n,k which we

present in the next lemma.



Lemma 4. For k = 1, . . . , n− 1 we have

• q
(1)
n,n−1 = 1

2n−3 and if k 6= n− 1 : q
(1)
n,k = 0,

• for d > 1:

q
(d)
n,k = 2d

d− 1

k(n− 1− k)

(

2k−2
k−1

)(

2(n−1−k)−d

n−2−k

)

(

2n−2
n−1

) .

Proof. If d = 1 then the root has only 1 subtree with all other

nodes, so its size has to be equal to n− 1 and

q
(1)
n,n−1 =

rn−1

rn
=

1

2n− 3
;

moreover, if k 6= n−1 : q
(1)
n,k = 0. In the case of d > 1, using

(23), we can rewrite (24) as follows

q
(d)
n,k =

(n− 1)!rk
k!(n− 1− k)!rn

×
∑

k2+...+kd=n−1−k

(

n− 1− k

k2, . . . , kd

)

rk2 · · · rkd
.

Let us define the exponential generating function R(z) =
∑

n≥0 rn
zn

n! with g0 = 0. Observe that

∑

k2+...+kd=n−1−k

(

n− 1− k

k2, . . . , kd

)

rk2 · · · rkd

is the n−1−k’th coefficient of the function R(z)d−1 (denoted

as
[

zn−1−k

(n−1−k)!

]

R(z)d−1). Therefore,

qn,k =
(n− 1)!rk

k!rn

[

zn−1−k
]

R(z)d−1.

From (20) we find R(z) = 1 −
√
1− 2z, which is also the

solution of the equation

R =
z

1− R
2

.

Hence, by Lagrange’s inversion formula (see [10]), we obtain

explicit formula for

[zn−1−k]R(z)d−1 = 2d−n+k d− 1

n− 1− k

(

2(n− 1− k)− d

n− 2− k

)

.

Putting everything together we arrive at the desired result.

Recurrence found in (25) is another recurrence that we need

to analyze. Its general solution is presented next.

Lemma 5. For constant y1 and y2, the recurrence

yn = bn +

n−1
∑

d=1

d

n−d
∑

k=1

q
(d)
n,k · yk, n > 2 (26)

has the following solution for n > 2

yn =
2(2n− 1)

3
b1 + bn +

1

2

(

n− 1

2

) n−1
∑

j=2

bj
(

j − 1
2

) (

j + 1
2

) .

Proof. Using Lemma 4, for n > 2, we find

yn = bn +
yn−1

2n− 3
+

n−1
∑

d=2

d(d− 1)2d
n−d
∑

k=1

yk
k(n− 1− k)

(

2k−2
k−1

)(

2n−2k−2−d
n−k−2

)

(

2n−2
n−1

) .

Multiplying both sides by
(2n−2

n−1 )
n

and substituting ŷn =
yn(2n−2

n−1 )
n

, b̂n =
bn(2n−2

n−1 )
n

we get

ŷn = b̂n +
2ŷn−1

n(n− 1)
+

1

n

n−1
∑

d=2

d(d− 1)2d
n−d
∑

k=1

ŷk
(n− 1− k)

(

2n− 2k − 2− d

n− k − 2

)

.

Changing the order of summation gives us

n−1
∑

d=2

d(d− 1)2d
n−d
∑

k=1

ŷk
(n− 1− k)

(

2n− 2k − 2− d

n− k − 2

)

=

n−2
∑

j=1

ŷj
n− j − 1

n−j
∑

s=0

s(s− 1)2s
(

2n− 2j − 2− s

n− j − 2

)

.

Since for N > 0:

N
∑

s=0

s(s− 1)2s
(

2N − 2− s

N − 2

)

= (N − 1)22N−1,

we obtain

ŷn = b̂n +
2ŷn−1

n(n− 1)
+

1

n

n−2
∑

j=1

ŷj2
2n−2j−1.

Dividing both sides by 22n and substituting ỹn = ŷn

22n , b̃n =
b̂n
22n we find

ỹn = b̃n +
1

2n

n−1
∑

j=1

ỹj .

Solving this recurrence relation by calculating nỹn − (n −
1)ỹn−1 we obtain

ỹn = b1
Γ
(

n+ 1
2

)

Γ
(

5
2

)

n!
+ b̃n +

Γ
(

n+ 1
2

)

n!

n−1
∑

j=2

b̃j
2j + 1

j!

Γ
(

j + 1
2

) .

Substituting ỹn into yn with ỹn = yn
(2n−2

n−1 )
n22n , we find the

desired result.

This leads us to our second main result.

Theorem 3. The entropy of an unlabeled general plane tree,

generated according to the model of plane recursive tree, is

given by

H (Tn) =

n−1
∑

d=1

H
(

W
(d)
n

)

+
1

2

(

n− 1

2

) n−1
∑

j=2

∑j−1
d=1H

(

W
(d)
k

)

(

j − 1
2

) (

j + 1
2

) ,

(27)



where

H
(

W
(d)
n

)

= −
∑

‖k‖=n−1

P

(

W
(d)
n = k

(d)
)

logP
(

W
(d)
n = k

(d)
)

.

We conclude this section with the following result.

Lemma 6. The entropy rate h(t) = limn→∞ H (Tn) /n of

the unlabeled general plane trees, generated according to the

model of plane recursive trees, is given by

h(t) =
1

2

∞
∑

j=2

∑j−1
d=1 H

(

W
(d)
k

)

(

j − 1
2

) (

j + 1
2

) . (28)

Proof. Having Theorem 3 in mind, we just need to prove

that
∑n−1

d=1 H
(

W
(d)
n

)

= o (n). Let us recall that the random

vector W
(d)
n : R(d)

n → {1, . . . , n − d}d describes the split at

the root of a tree: precisely that a tree root degree equals d

and its subtrees are of sizes W
(d)
n,1 , . . . ,W

(d)
n,d . Since the entropy

of random variable is upper bounded by the logarithm of the

variable image cardinality, we have

n−1
∑

d=1

P (Dn = d)H
(

W
(Dn)
n |P (Dn = d)

)

≤

n−1
∑

d=1

P (Dn = d) log
(

nd
)

= log(n)
n−1
∑

d=1

dP (Dn = d) .

Observe that E(Dn) =
∑n−1

d=1 dP (Dn = d) is the expected

value of the general plane recursive tree root degree. From

[3] we know that E(Dn) =
√
πn + O (1), what gives us the

desired result.

Remark 5. Taking closer look at H
(

W
(d)
n

)

we find that

H
(

W
d
n

)

= log
(

n
rn
n!

)

−
n−1
∑

d=1

d
n−d
∑

k=1

q
(d)
n,k log

(rk
k!

)

.

This allows us to check numerically that the entropy rate of

the unlabeled general plane trees, generated according to the

model of plane recursive trees is h(t) ≈ 1.68.

IV. CONCLUDING REMARKS

In this paper we focus on finding entropies of various

advanced trees, namely, m-ary search trees, d-ary increasing

trees, and general trees. In the course of deriving these

entropies we encounter interesting novel recurrences that we

show how to solve in their generalities. These recurrences will

find ample of applications in analyzing such general trees. For

example, as in [13], the next natural question is to find entropy

of non-plane d-ary trees and general trees. For arbitrary d, we

expect to meet some challenging mathematical problems to

find these entropies (see [7]).

We did not address here how to compress optimally these

trees. But it is not hard to see that a direct generalization

of arithmetic encoding proposed in [13] can be used. More

precisely, we need to traverse the tree from left to right and

encode the ratio of the number of internal nodes in a subtree

to all internal nodes.
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