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We continue developing the information theory of structured data. In this paper, we take up d-ary trees (d ≥ 2)

and trees with unrestricted degree. We �rst compute the entropy which gives us the fundamental lower bound

on compression of such trees. Then we present e�cient compression algorithms based on arithmetic encoding

that achieve the entropy within a constant number of bits. A naïve implementation of these algorithms has

a prohibitive time complexity of O(nd ) elementary operations, but our e�cient algorithms run in O(n2) of

these operations, where n is the number of nodes. It turns out that extending source coding (i.e., compression)

from sequences to advanced data structures such as general trees is mathematically quite challenging and

leads to new recurrences that �nd ample applications in the information theory of general structures (e.g., to

analyze the information content of general non-plane trees).
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1 INTRODUCTION
Advances in sensing, communication, and storage technologies have created a state of the art

in which our ability to collect data from richly instrumented environments has far outpaced

our ability to process, understand, and analyze this data in a (provably) rigorous manner. A

signi�cant component of this complexity arises from the highly structured nature of data. This

poses signi�cant challenges for theoretical characterization of limits of information storage, content,

and transmission and methods that achieve these limits. While heuristic approaches are often

currently used, critical issues regarding their performance remain. These challenges have motivated

our recent research program [6, 7, 15] and others [2, 12, 20], which aims to characterize limits

on information content of non-sequential data, such as trees and graphs. Quite generally, these

problems consist of two complementary parts: fundamental achievable limits on data compression

(where the Shannon entropy of the probability distribution from which the data arises gives the

minimum possible expected code length), and, conversely, e�cient encoding/decoding algorithms

that achieve those limits.

As a start to understanding structured data in an information-theoretic setting, we focused on

graphs [6] and trees with vertex (correlated) names [15]. In 1990, Naor proposed an e�ciently

computable representation for unlabeled graphs (solving Turán’s open question) that is optimal up

to the �rst two leading terms of the entropy when all unlabeled graphs are equally likely. Naor’s

result is asymptotically a special case of recent work of Choi and Szpankowski [6], who extended
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Naor’s result to general Erdős-Rényi graphs. In particular, in [6] the entropy and an optimal

compression algorithm (up to two leading terms of the entropy) for Erdős-Rényi graph structures

were presented. Recently, these results were extended to preferential attachment graphs in [14]

and to uniform random intersection graphs in [11]. Furthermore, in [16] an automata approach

was used to design an optimal graph compression scheme. For binary plane-oriented trees rigorous

information-theoretic results were obtained in [12], complemented by a universal grammar-based

lossless coding scheme [20]. Finally, in recent work [15] (see also [7]) the authors study binary

trees with structure-correlated vertex names, as well as non-plane binary trees, and design optimal

compression schemes based on arithmetic encoding.

In this paper, we study general plane-oriented d-ary trees without correlated vertex names

(i.e., trees with degree d ≥ 2) and general trees without any restriction on vertex degrees, giving

both precise entropy calculations and information theoretically optimal and e�cient compression

algorithms. It turns out that moving from binary trees to d-ary (general) trees is mathematically

quite challenging. In [15] for binary trees an equivalence was proved between two models: the

binary search tree model and a model in which leaves are selected randomly to expand the tree

by adding two additional nodes (new leaves). This equivalence allowed to analyze the entropy of

such trees by solving a relatively simple recurrence, and then to construct an optimal compression

algorithm. Unfortunately, this equivalence does not work for d ≥ 3, and we develop here a di�erent

methodology to overcome this problem. Furthermore, there are various ways to generalize binary

tree models to larger degrees, and we discuss here three di�erent models.

In this paper, we shall show that for d-ary treesTn on n internal nodes the entropy H (Tn) satis�es

H (Tn) = H (root) + d
n−1∑
k=0

H (Tk )pn,k

where H (root) is the entropy of the split probability distribution at the root (that is, the distribution

of the d-tuple of root subtree sizes), and pn,k is the probability of one speci�ed subtree being of size

k . We consider three models. For them-ary search tree model discussed in Section 2, this recurrence

can be handled by results from [5, 9]. Then we analyze a more interesting (and possibly more

relevant) d-ary tree model in which we randomly select a leaf and add exactly d leaves to it as

children. In [15] d = 2 was studied, but the analysis is more complicated when d > 2. For example,

for d = 2 we have pn,k = 1/n while for d = 3 we can prove that

pn,k =
1

2n

(
2k
k

)
2
2n(

2n
n

)
2
2k
.

Note the dependence on k . We complete our analysis by studying general trees in which there is

no restriction on the node degree.

In Section 3 we show that for d-ary trees we need to analyze a new type of recurrence of the

following form (see Lemma 3.6):

xn = an +
α

n

n!

Γ(n + α − 1)

n−1∑
k=0

Γ(k + α − 1)
k!

xk (1)

where α = d/(d −1), an is a given sequence, and Γ is the Euler gamma function. This is a recurrence

with full history and is amenable to what is called the method of di�erences, by which such a

recurrence can be converted to a linear one of the form xn = Anxn−1 + Bn , for some sequences An ,

Bn . In the case of d ≥ 3, this step is rather complicated and, furthermore, the speci�c form of An
and Bn leads to a “closed-form” solution which makes subsequent asymptotic analysis nontrivial

(this is re�ected in the forms of the singularities of the respective generating functions of {xn}
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for di�erent values of d : when d = 2, the generating function is meromorphic, while for d ≥ 3,

algebraic singularities are introduced). The situation is even more involved when we consider

general trees in Section 3.3 where no restrictions on degrees are imposed.

After describing in Section 2 three possible generalizations of the binary tree model from [15], we

present our main results in Section 3. We �rst provide in Corollary 3.2 the entropy rate form-ary

search trees. Then we considerd-ary increasing trees and in Theorem 3.7 give our expression for the

entropy of such trees. We extend it to general increasing trees in Theorem 3.11. After establishing

these fundamental lower bounds on tree compression, we provide e�cient compression algorithms,

which are optimal in expected code length to within a constant number of bits.

2 MODELS
In this section we describe the concepts of unlabeled plane trees with and without restrictions on

the nodes’ out-degrees. This will allow us to introduce three models of tree generation.

We call a rooted tree a plane tree when we distinguish left-to-right order of the successors of

each node; i.e., we distinguish all di�erent embeddings of a tree into the plane (see [8]). General

unlabeled plane trees are rooted plane trees with no restriction on the number of children of the

nodes. On the other hand, unlabeled d-ary plane trees are rooted plane trees where each internal

(i.e., non-leaf) node has exactly d children (either internal of external). Since they are unlabeled,

they can be seen as objects that encode the structures of a possible labeled (in the graph-theoretic

sense) plane tree. We de�ne the size of the unlabeled plane tree and also unlabeled d-ary plane tree

by the number of internal nodes.

2.1 Unlabeledm-Ary Search Tree Model
Search trees are plane trees built from a set of n distinct keys taken from some totally ordered set,

for instance a random permutation of the numbers {1, 2, . . . ,n}. Anm-ary search tree is a tree in

which each node has at mostm children; moreover, each node stores up tom − 1 keys. We de�ne

the size of a search tree as the number of keys n. The construction of m-ary search trees can be

described as follows [8].

If n = 0 the tree is empty. If 1 ≤ n ≤ m − 1 the tree consists of a root only, with all keys stored in

the root. If n ≥ m we selectm − 1 keys that are called pivots. The pivots are stored in the root. The

m − 1 pivots split the set of remaining n −m + 1 keys into m sublists I1, . . . , Im : if the pivots are

p1 < p2 < · · · < pm−1, then I1 := (pi : pi < p1), I2 := (pi : p1 < pi < p2), . . . , Im := (pi : pm−1 < pi ).
We then recursively construct a search tree for each of the sets Ii of keys. In order to obtain an

unlabeled search tree of size n we remove the keys from a search tree of size n (see Fig. 1).

The standard probability model assumes that every permutation of the keys {1, . . . ,n} is equally

likely. The choice of pivots can then be deterministic. For example, one always chooses the �rst

m − 1 keys. After removing node labels from am-ary search tree generated by a uniformly random

permutation, we obtain a random unlabeled search tree, where the probability distribution of the

resulting tree on the set of unlabeled search trees is non-uniform.

2.2 Unlabeled d-ary Plane Increasing Tree Model
We consider the following generation model of an unlabeled random d-ary plane increasing tree

[3, 8]. The process starts with an empty tree, that is with just an external node (leaf). The �rst step

in the growth process is to replace this external node by an internal one with d successors that

are external nodes (see Figure 2). Then with probability
1

d each, one of these d external nodes is

selected and again replaced by an internal node with d successors. In each subsequent step one of

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:4 Zbigniew Gołębiewski, Abram Magner, and Wojciech Szpankowski

(4,7,3,5,1,2,9,6,8)

4,7

1,3

2

5,6 8,9

Fig. 1. Example of a 3-ary search tree of size 9 built from the permutation (4, 7, 3, 5, 1, 2, 9, 6, 8) and its
unlabeled counterpart.

the external nodes is replaced (with equal probability) by an internal node with d successors. At

the end, we remove the labels from internal nodes of the tree.
1

It is known that this evolution process (without removing the labels at the end) produces random

d-ary plane increasing trees (see [3, 8]). By de�nition, d-ary plane increasing trees are rooted plane

trees with labels on internal nodes and where each node has exactly d successors (either internal or

external). The root is labeled by 1 and the labels of all internal successors of any node v are larger

than the label of v . We de�ne the size of the d-ary plane increasing tree by the number of internal

nodes.

Let F denote the set of all unlabeled d-ary plane trees and, for each integer n ≥ 0, let Fn be

the subset of F consisting of all trees that contains exactly n internal nodes. Let Fn be a random

variable supported on Fn , constructed by the generation process just described.

Similarly, let G and Gn be the analogous sets of labeled d-ary plane increasing trees. Throughout

the paper, we will denote a given unlabeled d-ary plane tree of size n as fn and a given labeled

d-ary plane increasing tree of size n as gn .

Observe that the above described evolution process (choosing an external node to replace with

uniform distribution among all external nodes) generates every d-ary plane increasing tree of size n
in a unique way and with uniform distribution. However, after removing labels from a d-ary plane

increasing tree gn we obtain an unlabeled d-ary plane tree fn with a non-uniform distribution. For

example, there are

(
3

2,0,1

) (
1

0,1,0

)
= 3 ways to obtain the resulting tree from Figure 2, but there is only

1
Observe that labels describe the history of the evolution process.
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(a) (b)

1

(c)

1

2

(d)

1

2

3

(e)

1

2

3

4

(f)

Fig. 2. Example of the generation process that produces 3-ary plane tree of size 4 and its unlabeled counterpart.

one way (exactly

(
3

3,0,0

) (
2

2,0,0

) (
1

1,0,0

)
= 1) to obtain a tree where every internal node is a leftmost

child of a parent node.

2.3 Unlabeled General Plane Increasing Tree Model
We consider the following generation model of unlabeled plane trees. Suppose that the process

starts with the root node carrying a label 1. Then we add a child node with label 2 to the root.

The next step is to attach a node with label 3. However, there are three possibilities: either to add

it to the root (as a left or right sibling of 2) or to the node with label 2. One proceeds further in

the same way, as shown in Figure 3. At the end, we remove the labels from internal nodes of the

tree. Observe that if a node already has out-degree k (where the descendants are ordered), then

there are k + 1 possible ways to add a new node (this time we do not distinguish between external

and internal nodes). Hence, if a plane tree already has j − 1 nodes then there are precisely 2j − 3
possibilities to attach the jth node (see Figure 3). More precisely, the probability of choosing a node

of out-degree k equals (k + 1)/(2j − 3).
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(a)

1

(b)

1

2

(c)

1

2

3

(d)

1

4 2

3

(e)

1

4 2

3

5

(f)

Fig. 3. Example of the generation process that produces a labeled general plane tree of size 5 and its unlabeled
counterpart.

3 MAIN RESULTS
In this section we present our main results. In particular, we brie�y address the entropy ofm-ary

search trees. Then we present our derivation of the recurrence for the entropy of unlabeled d-

ary plane increasing trees that leads us to a formula for the entropy rate. Finally, we derive the

entropy rate for general trees. In the next section, we give e�cient and nearly optimal compression

algorithms, which achieve an expected code length within a small constant number of bits of the

entropies derived here.

In all our models, the probability distribution on the relevant set of trees is non-uniform, and

subtrees of the root are conditionally independent given their respective sizes. Indeed, let Tn be a

random variable representing a tree tn on n internal nodes. Assume now that at the root we split

tn into d subtrees of size k1, . . . ,kd , respectively, where k1 + · · · + kd = n − 1. Then the probability

P (Tn = tn) of generating tree tn in all our models satis�es

P (Tn = tn) = P (k1, . . . ,kd )
d∏
i=1

P
(
Tki = tki

)
(2)

where P (k1, . . . ,kd ) is the probability of a split at the root of n internal nodes into subtrees of sizes

k1, . . . ,kd , respectively. This split probability is di�erent form-ary search trees, d-ary trees, and

general trees, as we shall see in this section.

We shall use the following notation. Let k(d ) = (k1, . . . ,kd ) denote an d-dimensional vector of

non-negative integers and ‖k(d )‖ = |k1 | + . . . + |kd | be its L1 norm. Let (k, k(d−1)) = (k,k2 . . . ,kd )
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denote a d-dimensional vector with the �rst coordinate equal to k . We often write k for k(d ) when

the vector dimension is obvious.

3.1 The Entropy of the Unlabeledm-ary Search Trees
LetUn denote a random unlabeledm-ary search tree with n keys, generated according to the process

described earlier. We write un for an arbitrary �xedm-ary (unlabeled) search tree with n keys.

We describe the splitting of keys at the root of the search tree by the random vector Y(m)n =

(Yn,1, . . . ,Yn,m), where Yn, j = |Ij | is the number of keys that go into the jth subtree of the root. If

n ≥ m − 1 we have Yn,1 + · · ·Yn,m = n −m + 1 and

P
(
Y(m)n = k(m)

)
=

1( n
m−1

) . (3)

Notice that P
(
Y(m)n = k(m)

)
does not depend on the vector k(m) coordinates k1, . . . ,km , which

simpli�es calculations.

Suppose that the tree un has subtrees uk1 , . . . , ukm of sizes k1, . . . ,km . Then by (2)

P (Un = un) = P
(
Y(m)n = k(m)

) m∏
j=1

P
(
Ukj = ukj

)
. (4)

Let us establish the initial conditions of the entropy of m-ary search trees. If n = 0 we have

an empty tree, and H (U0) = 0. Moreover, if 1 ≤ n ≤ m − 1, all keys are stored in one node, and

H (Un) = 0. For n > m − 1 there is a bijection between a treeUn and a tuple (Y(m)n ,UYn,1 , . . . ,UYn,m ),
which is an immediate consequence of (4). Therefore, for n > m − 1, we have

H (Un) = H
(
Y(m)n ,UYn,1 , . . . ,UYn,m

)
= H

(
Y(m)n

)
+ H

(
UYn,1 , . . . ,UYn,m |Y

(m)
n

)
= H

(
Y(m)n

)
+m

n−m+1∑
k=0

H (Uk )P
(
Yn,1 = k

)
,

where the second equality is by conditional independence of the root subtrees given their sizes,

where two subtrees having the same size have the same distribution.

For n ≥ m − 1 and 1 ≤ j ≤ m, the random variables Yn, j are identically distributed, and for

0 ≤ k ≤ n − 1,

P
(
Yn,1 = k

)
=

∑
‖k(m−1) ‖=n−m+1−k

P
(
Y(m)n =

(
k, k(m−1)

))
=

(n−k−1
m−2

)( n
m−1

) . (5)

The last equation comes from the fact that there are

(n−l−1
m−2

)
ways of split n − l − 1 keys into m − 1

sublists (i.e. choosingm − 2 pivots from n − l − 1 keys); it also can be found, e.g., in [8].

To �nish the calculation of H (Un), we need to calculate H (Y(m)n ). >From (3) we have

H
(
Y(m)n

)
= −

∑
‖k‖=n−m+1

P
(
Y(m)n = k(m)

)
logP

(
Y(m)n = k(m)

)
=

1( n
m−1

) log (
n

m − 1

) ∑
‖k‖=n−m+1

1 = log

(
n

m − 1

)
.

The last equality comes from the fact that the sum

∑
‖k‖=n−m+1 1 equals to the number of choices

ofm − 1 pivots from n keys, which is

( n
m−1

)
.
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Finally, we arrive at the following recurrence for the entropy of unlabeledm-ary search trees:

H (Un) = log

(
n

m − 1

)
+

m( n
m−1

) n−m+1∑
k=0

(
n − k − 1
m − 2

)
H (Uk ) .

The asymptotics of a recurrence like this one have been studied before; see Proposition 7 in [5] and

Theorem 2.4 in [9], which we quote below.

Theorem 3.1 ([9], Theorem 2.4, Asymptotic Transfer Theorem). Let

an = bn +
m( n
m−1

) n−(m−1)∑
j=0

(
n − 1 − j
m − 2

)
aj , n ≥ m − 1,

with speci�ed initial conditions (say) aj := bj , 0 ≤ j ≤ m − 2. If

bn = o (n) and
∑
n≥0

bn
(n + 1)(n + 2) converges,

then

an =
K1

Hm − 1
n + o (n) , where K1 :=

∑
j≥0

bj

(j + 1)(j + 2) .

Here,Hm is themth harmonic number.

Hence, the entropy of them-ary search tree becomes

H (Un) = cmn + o (n) ,
where

cm = 2ϕm
∑
k≥0

log

( k
m−1

)
(k + 1)(k + 2)

and ϕm =
1

2Hm−2 is called occupancy constant.

Observe that if m = 2 the number of nodes of an m-ary search tree equals n, the number of

inserted keys; but form > 2 the number of nodes is a random variable Sn,m . Knuth [13] was the

�rst to show that E
(
Sn,m

)
∼ ϕmn.

In order to compare the constant cm ofm-ary search trees with that for d-ary increasing trees

(discussed next), we note thatm-ary search trees of size n have on average ∼ ϕmn internal nodes.

Thus, it makes sense to normalize the constant cm as ĉm = cm/ϕm . Then numerically ĉ2 ≈
1.73638, ĉ3 ≈ 2.5014, ĉ4 ≈ 2.93994, ĉ5 ≈ 3.22688.

Using Theorem 3.1 and the fact that H
(
Y(m)n

)
= log

( n
m−1

)
= o (n), we conclude this section with

the following result.

Corollary 3.2. The entropy rate hm,u = limn→∞H (Un) /n of the unlabeledm-ary trees, generated
according to them-ary search tree model, is given by

hm,u = 2ϕm
∑
k≥0

log

( k
m−1

)
(k + 1)(k + 2) . (6)

Remark 1. It can be checked numerically that the entropy rate for unlabeledm-ary search trees for

m = 2, 3, 4, 5 is h2,u ≈ 1.73638, h3,u ≈ 1.50084, h4,u ≈ 1.3569, h5,u ≈ 1.25723 respectively. Notice

that the entropy rate decreases as we increasem. Intuitively, this is to be expected: consider the

extreme case, with m = n (though, in the rest of the paper, we always consider constant m). In this

case, every pattern of insertions into an m-ary search tree results in the same unlabeled tree (since

them slots of the root are never �lled), so the entropy is 0.
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3.2 The Entropy of the Unlabeled d-ary Plane Increasing Trees
Let дn = |Gn | be the number of d-ary plane increasing trees with n internal nodes. From [8] we

know that for d = 2 we have дn = n!. Moreover, for d > 2 we have

дn = (−1)n(d − 1)n
Γ(2 − d

d−1 )
Γ(2 − d

d−1 − n)
(7)

which is a consequence of the hook length formula [13].

Let us brie�y review the hook length formula and see how it is related to counting the number of

increasing labelings for a given tree. The relation between the hook length formula and increasing

trees belongs to folklore and is in fact an exercise of [13, p. 67].

Lemma 3.3. (Hook length formula) The number lt of increasing trees induced by an unlabeled plane
rooted tree t is

lt =
|t|!∏

s subtree of t |s|
, (8)

where | · | corresponds to the tree size measure.

From this we conclude the following corollary

Corollary 3.4. The probability of an unlabeled plane rooted tree t obtained by removing labels
from a plane increasing rooted tree is

P(T = t) = |t|!
д |t |

∏
s subtree of t |s|

, (9)

where д |t | is the number of increasing trees of size |t|.

Observe that (9) works for di�erent kinds of increasing trees, we just have to put the right дn in

it. In the case of d-ary increasing trees it is (7).

Let Gfn denote the subset of Gn of trees that have the same structure as the unlabeled tree

fn ∈ Fn ; that is, Gfn is the set of labeled representatives of fn . Moreover, let дfn = |Gfn | be the

number of d-ary plane increasing trees that have the same structure as a tree fn . Observe that the

probability that the d-ary plane increasing tree source generates a given unlabeled tree fn ∈ Fn is

P (Fn = fn) =
дfn
дn
. (10)

Suppose that the tree fn has subtrees fk1 , . . . , fkd of sizes k1, . . . ,kd . Then

P (Fn = fn) =
1

дn

(
n − 1

k1, . . . ,kd

) d∏
j=1

дfkj =

(
n − 1

k1, . . . ,kd

)
дk1 · · ·дkd

дn

d∏
j=1

P
(
Fkj = fkj

)
. (11)

Observe that

( n−1
k1, ...,kd

) дk
1
· · ·дkd
дn

is the probability that the subtrees of the root are of sizes k1, . . . ,kd

and thus (11) can be also derived from Equation (2). Let us de�ne a random vector V(d )n : Gn →
{0, . . . ,n − 1}d whose jth component Vn, j denotes the size of the jth subtree. For n ≥ 1 we have

Vn,1 + . . . +Vn,d = n − 1 and

P
(
V(d )n = k(d )

)
=

(
n − 1

k1, . . . ,kd

)
дk1 · · ·дkd

дn
. (12)

The entropy of unlabeled d-ary plane increasing trees of size n is given by

H (Fn) = −
∑

fn ∈Fn

P (Fn = fn) log (P (Fn = fn)) .

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:10 Zbigniew Gołębiewski, Abram Magner, and Wojciech Szpankowski

Let us establish the initial conditions of the entropy of our source. If n = 0 we have an empty tree,

and H (F0) = 0. If n = 1, we have one �xed tree and H (F1) = 0. By (11) for n > 1 there is a bijection

between a tree Fn and a tuple (V(d )n , FV1
, . . . , FVd ). Therefore, for n > 1, we have

H (Fn) = H
(
V(d )n , FVn,1 , . . . , FVn,d

)
= H

(
V(d )n

)
+ H

(
FVn,1 , . . . , FVn,d |V

(d )
n

)
= H

(
V(d )n

)
+

∑
‖k‖=n−1

H
(
Fk1 , . . . , Fkd

)
P

(
V(d )n = k(d )

)
.

Since subtrees Fk1 , . . . , Fkd are conditionally independent given their sizes, we have

H (Fn) = H
(
V(d )n

)
+ d

n−1∑
k=0

H (Fk )
∑

‖k(d−1) ‖=n−1−k
P

(
V(d )n =

(
k, k(d−1)

))
.

For k = 0, . . . ,n − 1, let pn,k be the probability that one speci�ed subtree in a d-ary increasing

tree is of size k , that is,

pn,k =
∑

‖k(d−1) ‖=n−1−k
P

(
V(d )n =

(
k, k(d−1)

))
. (13)

Then

H (Fn) = H
(
V(d )n

)
+ d

n−1∑
k=0

H (Fk )pn,k . (14)

The next lemma, proved in Section 4.1, gives an explicit formula for pn,k .

Lemma 3.5. For k = 0, . . . ,n − 1 and d > 1, let α = d
d−1 , then

pn,k =
(α − 1)

n

n!Γ(k + α − 1)
k!Γ(n + α − 1) .

Remark 2. Observe that for d = 2, we have α = 2 and pn,k =
1

n . It does not depend on k , which

greatly simpli�es computations as shown in [15]. Moreover, it equals P
(
Yn,1 = k

)
in the case of

the binary search trees. Therefore, the two models, one for binary plane increasing trees and the

other for binary search trees, are equal. For d > 2, this is not the case. For instance, for d = 3, we

have α = 3

2
and

pn,k =
1

2n

(
2k
k

)
2
2n(

2n
n

)
2
2k
,

which clearly depends on k and does not equal
n−k−1
(n
2
) , which would be the case for 3-ary search

trees.

The recurrence presented in (14) is a novel one that we need to solve. In the lemma below we

propose a general solution for recurrences of this form. It is proved in Section 4.2.

Lemma 3.6 (Exact solution to a generalized entropy recurrence for d-ary trees). For
constant α ,x0 and x1, the recurrence

xn = an +
α

n

n!

Γ(n + α − 1)

n−1∑
k=0

Γ(k + α − 1)
k!

xk , n ≥ 2 (15)

has the following solution for n ≥ 2:

xn = an + α(n + α − 1)
n−1∑
k=0

ak
(k + α − 1)(k + α) +

n + α − 1
α + 1

(
x1 +

x0
α − 1

)
.
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Remark 3. Observe again that for d = 2 and x0 = x1 = 0 and an = o (n), we have α = 2 and

xn = 2n
∑
k≥0

ak
(k + 1)(k + 2) + o (n)

as in [15]. But with the same assumptions and d = 3 we have

xn =
3

2

n
∑
k≥0

ak

(k + 1

2
)(k + 3

2
)
+ o (n) .

This leads us to out �rst main result.

Theorem 3.7. The entropy of an unlabeled d-ary plane tree, generated according to the d-ary plane
increasing tree model, is given by (see Figure 4)

H (Fn) = H
(
V(d )n

)
+ α(n + α − 1)

n−1∑
k=0

H
(
V(d )k

)
(k + α − 1)(k + α) , (16)

where α = d
d−1 and

H
(
V(d )n

)
= −

∑
‖k‖=n−1

P
(
V(d )n = k(d )

)
logP

(
V(d )n = k(d )

)
.

Fig. 4. Entropy of d-ary plane increasing trees for d = 2, 3, 4, 5 respectively and number of nodes n ∈ [1, 100].

We conclude this section with the following result.

Corollary 3.8. The entropy rate hd,f = limn→∞H (Fn) /n of the unlabeled d-ary plane trees,
generated according to the model of d-ary plane increasing trees, is given by

hd,f = α
∞∑
k=0

H (Vk )
(k + α − 1)(k + α) , (17)

with α = d
d−1 .
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Proof. Having Theorem 3.7 in mind, we just need to prove that H
(
V(d )n

)
= o (n). Let us recall

that V(d )n : Gn → {0, . . . ,n − 1}d . Since the entropy of random variable is upper bounded by the

logarithm of the variable image cardinality, we have

H
(
V(d )n

)
≤ log

(
nd

)
= o (n)

as needed. �

Remark 4. Taking a closer look at H
(
V(d )n

)
we �nd

H
(
V(d )n

)
= log

(
n
дn
n!

)
− d

n−1∑
k=0

pn,k log
(дk
k!

)
.

In particular, H
(
V(2)n

)
= H

(
Y(2)n

)
= log(n − 1) and the entropy rate h2,f ≈ 1.73638, which matches

the entropy rate of the binary search trees. On the other hand, for d = 3 and n > 0 we have

H
(
V(3)n

)
= log

(
n

2
n

(
2n

n

))
− 3

2n

n−1∑
k=0

(
2k
k

)
2
2n(

2n
n

)
2
2k

log

( (
2k
k

)
2
k

)
.

This allows us to check numerically that the entropy rate of the unlabeled 3-ary plane trees,

generated according to the model of 3-ary increasing trees is h3,f ≈ 2.470.

3.3 The Entropy of the Unlabeled General Plane Trees
Let rn = |Rn |, the number of labeled plane increasing trees with n nodes. From [3, 8] we know that

there are

rn = (2n − 3)!! =
n!

n2n−1

(
2n − 2
n − 1

)
(18)

di�erent labeled plane oriented increasing trees of size n.

As in the case of thed-ary plane increasing trees, letRtn denote the subset of trees inRn that have

the same structure as a given unlabeled tree tn ∈ Tn (i.e., Rtn is the set of labeled representatives of

tn ); moreover, let rtn = |Rtn | be the number of such trees. Observe that

P (Tn = tn) =
rtn
rn
. (19)

Let Dn denote the random variable representing the number of subtrees of the root. Observe

that P (Dn = d) = r (d )n
rn

, where r (d )n = |R(d )n | is the number of plane increasing trees with root degree

equal to d . Suppose that the tree tn has d subtrees tk1 , . . . , tkd of sizes k1, . . . ,kd . Then by (2) and

the fact that P (Tn = tn) = P (Tn = tn ,Dn = d) by assumption,

P (Tn = tn) = P (Dn = d)P (Tn = tn |Dn = d) =
(

n − 1
k1, . . . ,kd

)
rk1 · · · rkd

rn

d∏
j=1

P
(
Tkj = tkj

)
. (20)

Observe that

( n−1
k1, ...,kd

) rk
1
· · ·rkd
rn

is the probability that the root of a plane increasing tree of size n has

degree equal to d and the root’s subtrees are of sizes k1, . . . ,kd . Let W(d )n : R(d )n → {1, . . . ,n − d}d ,

where its jth componentWn, j denotes the size of the jth subtree when the root is of degree d . For

n ≥ 1 we haveWn,1 + . . . +Wn,d = n − 1 and

P (Dn = d)P
(
W(Dn )

n = k(Dn ) |Dn = d
)
=

(
n − 1

k1, . . . ,kd

)
rk1 · · · rkd

rn
. (21)
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The entropy of unlabeled plane increasing trees of size n is given by

H (Tn) = −
∑

tn ∈Tn
P (Tn = tn) log (P (Tn = tn)) .

The initial conditions for the entropy are as follows. If n = 1, we have just a root node, so

H (T1) = 0. Similarly, if n = 2, we have one �xed tree, so H (T2) = 0. Let us observe that for

n > 2 and the tree’s root degree equal to d , there is a bijection between a tree Tn and a tuple

(W(d )n ,TWn,1 , . . . ,TWn,d ) which is an immediate consequence of (20). Therefore, for n > 2, we have

H (Tn) =
n−1∑
d=1

H
(
W(d )n ,TWn,1 , . . . ,TWn,d |Dn = d

)
P (Dn = d)

=

n−1∑
d=1

(
H

(
W(d )n |Dn = d

)
+ H

(
TWn,1 , . . . ,TWn,d |W

(d )
n ,Dn = d

) )
P (Dn = d)

=

n−1∑
d=1

H
(
W(d )n |Dn = d

)
P (Dn = d)+

n−1∑
d=1

∑
‖k‖=n−1

H
(
Tk1 , . . . ,Tkd

)
· P

(
W(d )n = k(d ) |Dn = d

)
P (Dn = d) .

From conditional independence of Tk1 , . . . ,Tkd , we conclude

H (Tn) =
n−1∑
d=1

H
(
W(d )n |Dn = d

)
P (Dn = d)

+

n−1∑
d=1

P (Dn = d)d
n−d∑
k=1

H (Tk )
∑

‖k(d−1) ‖=n−1−k
P

(
W(d )n =

(
k, k(d−1)

))
.

For k = 1, . . . ,n − 1, let q(d )n,k be de�ned as the probability that the root of a plane increasing tree

has degree d and that one speci�ed root subtree is of size k . Then

q(d )n,k = P (Dn = d)
∑

‖k(d−1) ‖=n−1−k
P

(
W(d )n =

(
k, k(d−1)

))
. (22)

Therefore

H (Tn) =
n−1∑
d=1

H
(
W(d )n |Dn = d

)
P (Dn = d) +

n−1∑
d=1

d
n−d∑
k=1

H (Tk )q(d )n,k . (23)

We need an expression for the probability q(d )n,k which we present in the next lemma proved in

Section 4.3.

Lemma 3.9. For k = 1, . . . ,n − 1 we have
• q(1)n,n−1 =

1

2n−3 and if k , n − 1 : q
(1)
n,k = 0,

• for d > 1:

q(d )n,k = 2
d d − 1
k(n − 1 − k)

(
2k−2
k−1

) (
2(n−1−k )−d

n−2−k
)(

2n−2
n−1

) .

The recurrence found in (23) is another one that we need to analyze. Its general solution is

presented next and proved in Section 4.4.
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Lemma 3.10 (Exact solution to a generalized entropy recurrence for unrestricted

trees). For constant y1 and y2, the recurrence

yn = bn +
n−1∑
d=1

d
n−d∑
k=1

q(d )n,k · yk , n > 2 (24)

has the following solution for n > 2:

yn =
2(2n − 1)

3

b1 + bn +
1

2

(
n − 1

2

) n−1∑
j=2

bj(
j − 1

2

) (
j + 1

2

) .
This leads us to our second main result.

Theorem 3.11. The entropy of an unlabeled general plane tree, generated according to the model of
plane increasing tree, is given by

H (Tn) =
n−1∑
d=1

H
(
W(d )n |Dn = d

)
P (Dn = d) +

1

2

(
n − 1

2

) n−1∑
j=2

∑j−1
d=1H

(
W(d )j |D j = d

)
P

(
D j = d

)(
j − 1

2

) (
j + 1

2

) ,

(25)

where

H
(
W(d )n |Dn = d

)
= −

∑
‖k‖=n−1

P
(
W(d )n = k(d ) |Dn = d

)
logP

(
W(d )n = k(d ) |Dn = d

)
.

We conclude this section with the following result.

Corollary 3.12. The entropy rate ht = limn→∞H (Tn) /n of the unlabeled general plane trees,
generated according to the model of plane increasing trees, is given by

ht =
1

2

∞∑
j=2

∑j−1
d=1H

(
W(d )k |Dn = d

)
P (Dn = d)(

j − 1

2

) (
j + 1

2

) . (26)

Proof. From Theorem 3.11 we just need to prove that

∑n−1
d=1H

(
W(d )n |Dn = d

)
P (Dn = d) = o (n).

Let us recall that the random vector W(d )n : R(d )n → {1, . . . ,n − d}d describes the split at the root of

a tree: precisely that a tree root degree equals d and its subtrees are of sizesW (d )n,1 , . . . ,W
(d )
n,d . Since

the entropy of random variable is upper bounded by the logarithm of the variable image cardinality,

we have

n−1∑
d=1

P (Dn = d)H
(
W(Dn )

n |Dn = d
)
≤

n−1∑
d=1

P (Dn = d) log
(
nd

)
= log(n)

n−1∑
d=1

d P (Dn = d) .

Observe that E(Dn) =
∑n−1
d=1 d P (Dn = d) is the expected value of the general plane increasing tree

root degree. From [3] we know that E(Dn) =
√
πn +O (1), which gives us the desired result. �

Remark 5. Taking a closer look at H
(
W(Dn )

n |Dn

)
we �nd that

H
(
W(Dn )

n |Dn

)
= log

(
n
rn
n!

)
−

n−1∑
d=1

d
n−d∑
k=1

q(d )n,k log

(rk
k!

)
.

This allows us to check numerically that the entropy rate of the unlabeled general plane trees,

generated according to the model of plane increasing trees is ht ≈ 1.68.
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3.4 Optimal Compression
Here we address optimal compression of the trees generated by the sources under consideration.

We will use a variant of the arithmetic coding method. We explain in detail the generalization for

compression of unlabeled d-ary plane increasing trees (the case of general plane increasing trees

can be handled along analogous lines).

In a nutshell, we �rst de�ne a total order < on the set of such trees with a given size. Having �xed

this, we must show how to e�ciently compute two quantities, for a given tree t : the probability of

all trees t ′ < t , as well as the probability of t itself. Granted e�cient procedures for computing these,

we produce a subinterval I (t) of [0, 1], unique to t , which has length |I (t)| equal to the probability

of t and whose left endpoint is the probability of all trees t ′ < t . Arithmetic coding then prescribes

that the code word corresponding to t be given by the binary expansion of the midpoint of the

interval assigned to t , truncated to a length of dlog |I (t)|e + 1 bits. The expected length of this code

is then easily at most the entropy of the source, plus at most 2 bits.

We now de�ne the total order on the set Fn on unlabeled d-ary trees: we denote by ≺ the

lexicographic order on tuples of non-negative integers, and then we have the following de�nition.

De�nition 3.13 (Total order of the set of unlabeled d-ary plane trees). The relation < on F is de�ned

as follows: let f1, f2 ∈ F with subtrees sizes (s1, . . . , sd ), (k1, . . . ,kd ) respectively, then f1 < f2 if

and only if one of the following holds:

• (s1, . . . , sd ) ≺ (k1, . . . ,kd ),
• or if (s1, . . . , sd ) = (k1, . . . ,kd ) and �rst subtree of f1 < �rst subtree of f2,
• or if (s1, . . . , sd ) = (k1, . . . ,kd ), �rst subtree of f1 = �rst subtree of f2 and second subtree

of f1 < second subtree of f2,
• . . .
• or if (s1, . . . , sd ) = (k1, . . . ,kd ), �rst d − 1 subtrees of f1 = �rst d − 1 subtrees of f2 and dth

subtree of f1 < dth subtree of f2.

It is simple to check that this is a total order. Next, we present an algorithm which computes the

subinterval corresponding to an input tree f ∈ F (see Algorithm 1).

This does exactly as intuitively described above: it implements a depth-�rst search of the input

tree f , and at each step re�ning the current interval based on the split of vertices among the root

subtrees of the current node.

Now, we explain more precisely the procedures CalculateSplitProbability and CalculateIn-

tervalBegin. The former simply calculates the probability that a d-ary tree of size n has root

subtrees of sizes k1, ...,kd (giving the length of the next subinterval). This is illustrated in Figure 5.

The latter gives the probability that such ad-ary tree has a root subtree size tuple lexicographically

less than (s1, ..., sd ). That is, it computes the expression

∑
(k1, . . . , kd ) ≺ (s1, . . . , sd )

k1 + . . . + kd = n − 1

(
n − 1

k1, . . . ,kd

)
дk1 · · ·дkd

дn

Observe that a naive implementation of this calculation generates all Θ(nd ) integer partitions

with d parts of the number n − 1 and calculates the split probability for each of them. To reduce the
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Algorithm 1 Unlabeled d-ary Plane Tree Compression

1: function CompressDTree(f ∈ F) . f tree to be compressed

2: [a,b) ← Explore(root of f, [0, 1))
3: return �rst d− log

2
(b − a)e + 1 bits of (a + b)/2

4: function Explore(v ∈ f, [l , r ) ⊆ [0, 1))
5: visited(v) ← true
6: n ← size of a subtree of f hanging from node v
7: (s1, . . . , sd ) ← sizes of subtrees of v
8: a ← l + (r − l)· CalculateIntervalBegin(n, s1, . . . , sd )

9: p ← (r − l)· CalculateSplitProbability(n, s1, . . . , sd )

10: Inew ← [a,a + p)
11: for all u descendant of v do
12: if not visited(u) then
13: Inew ← Explore(u, Inew)

14: return Inew

15: function CalculateSplitProbability(n,k1, . . . ,kd )

16: return
( n−1
k1, ...,kd

) дk
1
· · ·дkd
дn

17: function CalculateIntervalBegin(n, s1, . . . , sd )

18: return

1

дn

d∑
i=1

(n − 1)!
s1! · · · si−1!

(
i−1∏
j=1

дsj

)
si−1∑
k=0

дk
k!

(
n − 2 − k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d − 1)n−1−k−

∑i−1
l=1 sl

0 1

0 1

a a + p
CalculateIntervalBegin() CalculateSplitProbability()

l rl + a(r − l)

l + (a + p)(r − l)

scaling and shifting

Fig. 5. Visualization of lines 8 − 10 in the Algorithm 1 listing.

time complexity, we rewrite the sum as follows:∑
(k1, . . . , kd ) ≺ (s1, . . . , sd )

k1 + . . . + kd = n − 1

(
n − 1

k1, . . . ,kd

)
дk1 · · ·дkd

дn
=

1

дn

d∑
i=1

дs1 · · ·дsi−1
si−1∑
k=0

∑
ji+1+...+jd

(
n − 1

s1, . . . , si−1,k, ji+1, . . . , jd

)
дkдji+1 · · ·дjd .
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v1

v2 v3

v4

The following example describes algorithm

CompressDTree in detail for a given 3-ary

tree. From Equation (9), probability of the

given tree equals to
4!

д44·1·2·1 =
1

35
. More-

over, consecutive calls of the Explore pro-

cedure for the tree vertices outputs the follow-

ing intervals: v1 →
[
1

7
, 8

35

)
, v2 →

[
1

7
, 8

35

)
,

v3 →
[
6

35
, 1
5

)
, v4 →

[
6

35
, 1
5

)
. In the last

step d− log
2

(
1

5
− 6

35

)
e + 1 = 7 bits of the

1

2

(
6

35
+ 1

5

)
= 13

70
= 0.001011111000101011111... is

returned, i.e. 0010111.

Fig. 6. Illustration to Algorithm 1

For a given i , the ith term of the outermost sum gives the contribution of all tuples of the form

(s1, ..., si−1,ki ,ki+1, ...,kd ) with varying ki , ...,kd . We can, furthermore, write the multinomial

coe�cient as a product of two other multinomial coe�cients, one of which can be brought outside

the k sum. The kth term of the resulting sum can then be written as follows:

1

(n − 1 − k −∑i−1
l=1 sl )!

∑
ji+1+...+jd

(
n − 1 − k −∑i−1

l=1 sl
ji+1, . . . , jd

)
дji+1 · · ·дjd

=
[
zn−1−k−

∑i−1
l=1 sl

]
(1 − (d − 1)z)−

d−i
d−1

=

(
n − 2 − k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d − 1)n−1−k−

∑i−1
l=1 sl .

We thus get, �nally,∑
(k1, . . . , kd ) ≺ (s1, . . . , sd )

k1 + . . . + kd = n − 1

(
n − 1

k1, . . . ,kd

)
дk1 · · ·дkd

дn

=
1

дn

d∑
i=1

(n − 1)!
s1! · · · si−1!

(
i−1∏
j=1

дsj

)
si−1∑
k=0

дk
k!

(
n − 2 − k −∑i−1

l=1 sl +
d−i
d−1

1−i
d−1

)
(d − 1)n−1−k−

∑i−1
l=1 sl .

Observe that the resulting expression only requires to perform O (n) calculations, where each of

them is of the same order as the calculation of the split probability. An application of Algorithm 1

to a 3-tree is presented in Figure 6.

This leads us to the time complexity of the algorithm: observe that for each vertex v of an input

tree f of size n, the procedure Explore calls one time both procedures CalculateSplitProbability

and CalculateIntervalBegin. Therefore we get O (n) calls of both procedures. Since the Cal-

culateIntervalBegin procedure performs O (n) calculations where each of them is of the same

time complexity as one CalculateSplitProbability procedure, we have that the compression

algorithm runs in time O(n2 · f (d,n)), where f (d,n) denotes the number of bit operations in the

CalculateSplitProbability procedure (it is not too di�cult to see that f (d,n) can be bounded

by a small polynomial function of n alone, by taking into account cancellations of factors in the

expression for the split probabilities).
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n 50 100 150 200 250 300 350 400 450 500

d = 3

H (Fn ) 115.63 238.17 361.12 484.24 607.46 730.73 854.04 977.39 1100.75 1224.14
code

length

117.04 239.46 362.07 484.94 608.70 731.56 853.72 978.67 1103.61 1223.66

d = 8

H (Fn ) 192.63 394.08 595.95 797.99 1000.12 1202.31 1404.54 1606.80 1809.09 2011.39
code

length

193.85 396.05 599.79 799.56 1001.24 1205.07 1404.22 1609.57 1810.42 2012.90

Table 1. Comparison of the entropy ofd-ary trees and the compressed code length obtained from experimental
results (100 uniformly drawn trees for each d and n sizes of a tree).

Finally, standard arithmetic coding arguments show that the algorithm is optimal up to a small

constant number of bits, in expectation. Experimental results con�rming this statement can be

seen in Table (1).

Remark 6. It is instructive to compare the performance of our algorithm with a natural compact

representation (which we think of as an uncompressed representation) of the trees in question. In

particular, in the parenthesis representation, a plane tree is encoded as a bit string via a depth-�rst

search. When a node is �rst encountered (and pushed), a 0 is appended. When the same node is

popped (i.e., the search leaves that node’s subtree), a 1 is appended.

In such a representation, the number of bits needed per vertex of a d-ary tree is approximately 2d .

In Figure (7) we highlight the gain obtained by using our optimal compression algorithm. Although

we observe that hd,f = Θ(d) the di�erence in constant is signi�cant.

Fig. 7. Entropy rate of d-ary plane increasing trees and the number of bits needed to encode one vertex of
d-ary tree in the parenthesis representation.
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4 PROOFS OF TECHNICAL LEMMAS
4.1 Proof of Lemma 3.5
Using (12), we can rewrite (13) as

pn,k =
(n − 1)!дk

k!(n − 1 − k)!дn

∑
k2+...+kd=n−1−k

(
n − 1 − k
k2, . . . ,kd

)
дk2 · · ·дkd .

Let us de�ne the exponential generating function G(z) = ∑
n≥0 дn

zn
n! with д0 = 1. From [8] we

know that

G(z) = (1 − (d − 1)z)− 1

d−1 .

Observe that ∑
k2+...+kd=n−1−k

(
n − 1 − k
k2, . . . ,kd

)
дk2 · · ·дkd

is the n − 1 − kth coe�cient of the function G(z)d−1 (denoted as

[
zn−1−k
(n−1−k )!

]
G(z)d−1). Hence

pn,k =
(n − 1)!дk

k!(n − 1 − k)!дn

[
zn−1−k

(n − 1 − k)!

]
G(z)d−1 = (n − 1)!дk

k!дn

[
zn−1−k

]
1

1 − (d − 1)z

=
(n − 1)!дk

k!дn
(d − 1)n−1−k .

For d = 2, we have дn = n! and the result is immediate. For d > 2, from (7) we �nd

pn,k =
(α − 1)

n

(−1)nn!Γ(2 − α − n)
(−1)kk!Γ(2 − α − k)

.

From [21] we know that Γ(z − n) = (−1)nπ
Γ(n+1−z) sin(πz) ; hence

(−1)nΓ(n + α)Γ (2 − α − n) = π · (n − 1 + α)
sin(π (2 − α)) , (27)

and then

pn,k =
(α − 1)

n

n!Γ(k + α)(n + α − 1)
k!Γ(n + α)(k + α − 1) .

Since Γ(z + 1) = zΓ(z) we get the desired result.

4.2 Proof of Lemma 3.6
Let us multiply both sides of the recurrence by the normalizing factor

Γ(n+α−1)
n! . De�ne also

x̂n =
xnΓ(n + α − 1)

n!
, ân =

anΓ(n + α − 1)
n!

.

Then

x̂n = ân +
α

n

n−1∑
k=2

x̂k . (28)

To solve the recurrence (28) we compute nx̂n − (n − 1)x̂n−1. This leads us to

x̂n = ân −
(
1 − 1

n

)
ân−1 +

(
1 +

α − 1
n

)
x̂n−1,
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which holds for n ≥ 3. Then after iterating the above we arrive at

x̂n = x̂2

n∏
j=3

(
1 +

α − 1
j

)
+

n∑
k=3

(
âk −

(
1 − 1

k

)
âk−1

) n∏
j=k+1

(
1 +

α − 1
j

)
. (29)

The product

∏n
j=k+1

(
1 + α−1

j

)
=

k !Γ(n+α )
n!Γ(k+α ) , and after some standard calculations we obtain

x̂n = ân + (x̂2 − â2)
2Γ(n + α)
Γ(α + 2)n! +

Γ(n + α)
n!

n−1∑
k=2

âk
k!

Γ(k + α)
α

k + α
.

Going back from x̂n and ân to xn ,an , respectively, we obtain

xn = an + α(n + α − 1)
n−1∑
k=2

ak
(k + α − 1)(k + α) + (x2 − a2)

n + α − 1
α + 1

.

Observe that x2 − a2 = x1 +
x0
α−1 . This completes the proof.

4.3 Proof of Lemma 3.9
If d = 1 then the root has only 1 subtree with all other nodes, so its size has to be equal to n − 1 and

q(1)n,n−1 =
rn−1
rn
=

1

2n − 3 ;

moreover, if k , n − 1 : q(1)n,k = 0. In the case of d > 1, using (21), we can rewrite (22) as follows

q(d )n,k =
(n − 1)!rk

k!(n − 1 − k)!rn
×

∑
k2+...+kd=n−1−k

(
n − 1 − k
k2, . . . ,kd

)
rk2 · · · rkd .

Let us de�ne the exponential generating function R(z) = ∑
n≥0 rn

zn
n! with д0 = 0. Observe that∑

k2+...+kd=n−1−k

(
n − 1 − k
k2, . . . ,kd

)
rk2 · · · rkd

is the n − 1 − kth coe�cient of the function R(z)d−1 (denoted as

[
zn−1−k
(n−1−k )!

]
R(z)d−1). Therefore,

qn,k =
(n − 1)!rk

k!rn

[
zn−1−k

]
R(z)d−1.

>From (18) we �nd R(z) = 1 −
√
1 − 2z, which is also the solution of the equation

R =
z

1 − R
2

.

Hence, by Lagrange’s inversion formula (see [10]), we obtain explicit formula for

[zn−1−k ]R(z)d−1 = 2
d−n+k d − 1

n − 1 − k

(
2(n − 1 − k) − d

n − 2 − k

)
.

Putting everything together we arrive at the desired result.
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4.4 Proof of Lemma 3.10
Using Lemma 3.9, for n > 2, we �nd

yn = bn +
yn−1
2n − 3 +

n−1∑
d=2

d(d − 1)2d
n−d∑
k=1

yk
k(n − 1 − k)

(
2k−2
k−1

) (
2n−2k−2−d
n−k−2

)(
2n−2
n−1

) .

Multiplying both sides by
(2n−2n−1 )
n and substituting ŷn =

yn(2n−2n−1 )
n ,

ˆbn =
bn(2n−2n−1 )

n we get

ŷn = ˆbn +
2ŷn−1

n(n − 1) +
1

n

n−1∑
d=2

d(d − 1)2d
n−d∑
k=1

ŷk
(n − 1 − k)

(
2n − 2k − 2 − d

n − k − 2

)
.

Changing the order of summation gives us

n−1∑
d=2

d(d − 1)2d
n−d∑
k=1

ŷk
(n − 1 − k)

(
2n − 2k − 2 − d

n − k − 2

)
=

n−2∑
j=1

ŷj

n − j − 1

n−j∑
s=0

s(s − 1)2s
(
2n − 2j − 2 − s

n − j − 2

)
.

Since for N > 0:

N∑
s=0

s(s − 1)2s
(
2N − 2 − s
N − 2

)
= (N − 1)22N−1,

we obtain

ŷn = ˆbn +
2ŷn−1

n(n − 1) +
1

n

n−2∑
j=1

ŷj2
2n−2j−1.

Dividing both sides by 2
2n

and substituting ỹn =
ŷn
2
2n ,

˜bn =
ˆbn
2
2n we �nd

ỹn = ˜bn +
1

2n

n−1∑
j=1

ỹj .

Solving this recurrence relation by calculating nỹn − (n − 1)ỹn−1 we obtain

ỹn = b1
Γ

(
n + 1

2

)
Γ

(
5

2

)
n!
+ ˜bn +

Γ
(
n + 1

2

)
n!

n−1∑
j=2

˜bj

2j + 1

j!

Γ
(
j + 1

2

) .
Substituting ỹn into yn with ỹn = yn

(2n−2n−1 )
n22n , we �nd the desired result.

5 CONCLUDING REMARKS
In this paper we focused on �nding entropies of various trees: namely, m-ary search trees, d-

ary increasing trees, and general increasing trees. In the course of deriving these entropies we

encountered novel recurrences that we showed how to solve in a general setting. These recurrences

�nd ample applications in analyzing variations on such general trees. For example, as in [15], the

next natural question is to �nd entropy of non-plane d-ary trees and general trees. For arbitrary

d , such a problem is quite challenging as one can see the approach of [7] for the binary case.

Generalization to the d-ary case is highly non-trivial.

Finally, we presented optimal, polynomial-time (with small exponents) compression algorithms

that achieve these entropies via an arithmetic coding approach.
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