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Abstract. We propose a simple algorithm generating labelled posets of given

size according to the almost uniform distribution. By �almost uniform� we un-

derstand that the distribution of generated posets converges in total variation to

the uniform distribution. Our method is based on a Markov chain generating

directed acyclic graphs.
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1 Introduction

Partially ordered sets (or, in brief, posets) are widely investiagted math-
ematical structures. A poset consists of a set and binary relation which is
re�exive, antisymmetric and transitive. These features are common for
many structures modelling real-life phenomena. In general, thanks to tran-
sitivity, posets re�ect the concept of ordering, they model well arrangements
in which a pair of elements is either not comparable or one element precedes
the other, e.g. logical task ordering, preferences of people, information �ow
through the network etc.

A lot of research on posets has been done up to now (consult [16] by
Trotter or the chapter �Partially Ordered Sets� also by Trotter in [9]). But
surprisingly, some basic features are still not discovered, e.g. the exact
number of posets on n elements is known only for n ≤ 18 in labelled case
and for n ≤ 16 in unlabelled case (the case n = 16 was solved by McKay
and Brinkmann in [2]). Asymptotically, it is known that the logarithm of
the number of posets on n elements is n2/4 + o(n2) (see [10]).

In this paper we will work with random posets. Random structures
appeared in graph theory by Erdös and Rényi [6]. Random graphs have
received a lot of attention, standard model G(n, p) is nowadays actually
commonplace. Random orders however were not investigated this much,
partly due to the fact that their transitivity forbids the independent choice
of related pairs, which complicates signi�cantly the process of random gen-
eration.

This research was partially supported by Polish National Science Center - NCN,
decision number 2013/09/B/ST6/02258 (OPUS 5).
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This paper describes a method which generates posets of given size ac-
cording to the almost uniform distribution (the expression �almost uniform�
will be explained formally in Section 4). Of course, due to the fact that
the number of posets grows so rapidly with the number of elements, it is
impossible to generate all of them and just sample uniformly. P. Winkler in
[17] and [18] proposed a method for generating random posets of bounded
dimension by taking the intersection of randomly and independently chosen
linear orders. As he says �While our model lacks the �exibility and power of
random graphs and does not weight orders uniformly, it admits a variety of
approaches and may yet prove useful�. M. Albert and A. Frieze propose in
[1] generating random posets by taking a random labelled graph, directing
the edges towards greater vertices and considering their transitive closures.
They discuss some properties (width, dimension, �rst-order properties) of
such obtained posets.

Our method weights posets almost uniformly. We believe that this gen-
erator will prove useful in many applications. The obvious one is generating
random networks. Here one could mention e.g. activity networks for project
scheduling problems or manufacturing (some reasonable network generator
is always needed to test proposed solution methods, consult [3] or [4]). The
other example is modelling the information �ow through decentralized type
of networks (such as ad hoc netowrks), where each node takes part in rout-
ing by forwarding data to the other nodes. From the fundamental research
perspective almost uniform poset generator may be very helpful in investi-
gating some average properties of posets, estimate some poset statistics or
test conjectures about those structures.

One should mention that a couple of years ago a powerful method (called
Boltzmann sampler) for generating combinatorial objects from desired dis-
tribution has been proposed by P. Duchon et al. and is still being developed
(see [5], [8] and [15]). It applies to objects such as permutations, graphs,
integer partitions, necklaces, ect. Nevertheless this method does not cope
with objects being transitive, thus can not be applied to random poset
generation.

The paper is organized as follows. Section 2 contains basic de�nitions
and notation. In Section 3 we introduce the equivalence relation on the
family of directed acyclic graphs, which we use later in the process of poset
generation. In Section 4 we describe a method for almost uniform poset
generation. Section 5 is dedicated to simulations.

2 Basic de�nitions

A partially ordered set or, in brief, poset is a pair (X,R), where X is a
set and R a re�exive, antisymmetric and transitive binary relation on X.
For a, b ∈ X we write a ≤ b whenever (a, b) ∈ R. We write a < b if a ≤ b
and a 6= b. We say that a and b are comparable if either a ≤ b or b ≤ a. The
cardinality of a poset is understood simply as a cardinality of X. Whenever
a < b and there is no c such that a < c and c < b, we say that b covers a. If
a poset is �nite (throughout this paper we will consider only �nite posets
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with |X| = n) it can be represented graphically by a Hasse diagram. In a
Hasse diagram elements of X are represented as vertices in the plane and
a directed edge goes from a to b whenever b covers a (see Fig.1b).

A directed graph G is a pair (V,E), where V is a set of vertices and E is a
set of edges, i.e. ordered pairs of elements from V . A size of G is understood
simply as the cardinality of V . A DAG (which stands for directed acyclic
graph) is a directed graph with no directed cycles. For v, w ∈ V we say
that v is reachable from w if there exists a directed path from w to v in
G. A transitive closure of a DAG G = (V,E) is a graph G = (V,E ∪ F ),
where F = {(v, w) : w is reachable from v in G}. A transitive reduction of
a DAG G = (V,E) is a graph G = (V,D), where D ⊆ E and D is the
smallest subset of edges from E which preserves reachability relation from
G. A transitive closure of a �nite DAG is unique. (See Fig.1.)

Figure 1: The example of transitive reduction and transitive closure of DAG
G.

Throughout this paper we will also work on a discrete-time Markov
chain with a �nite state space S = {s1, s2, . . . , sN}. Such a Markov chain
is a sequence of random variables {X0, X1, . . .}, with each Xi ∈ S, following
so-called Markov property: P[Xt+1 = y|Xt = xt, Xt−1 = xt−1, . . . , X0 =
x0] = P[Xt+1 = y|Xt = xt]. If Xt = x we say that a chain is in state x at
time t. The value P[Xt+1 = y|Xt = x] is called a transition probability and
will be denoted by px,y. Thus a Markov chain can be described by transition
matrix P = [px,y]|S|×|S|. An initial distribution µ(0) is a row vector given

by µ(0) = (µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
N ) = (P[X0 = s1],P[X0 = s2], . . . ,P[X0 = sN ]).

Similarly, µ(1), µ(2), . . . denote the distributions of the Markov chain at
times 1, 2, . . .. We have µ(k) = µ(0)P k. A stationary distribution is a row
vector π = (π1, π2, . . . , πN ) such that

∑N
i=1 πi = 1 and πP = π. A state x

communicates with a state y (we write x → y) if there exists k such that
P[Xm+k = y|Xm = x] > 0. States x and y intercommunicate if x → y
and y → x. A Markov chain is irreducible if every pair of distinct states
intercommunicate. A period of a state x is de�ned as gcd{k ≥ 1 : pkx,x > 0}.
We say that a state is aperiodic if its period equals 1. It is known that any
Markov chain which is aperiodic and irreducible (which is called ergodic)
has a unique stationary distribution (consult [7]).

We will also use a notion of a distance measure for probability distri-
butions. For two probability distributions on S = {s1, s2, . . . , sN}, ν =
(ν1, ν2, . . . , νN ) and ξ = (ξ1, ξ2, . . . , ξN ) a total variation distance is given

by dTV (ν, ξ) = 1/2
∑N

i=1 |νi − ξi|. We say that µ(N) converges to µ in to-
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tal variation if limN→∞ dTV (µ
(N), µ) = 0. Any irreducible and aperiodic

(thus ergodic) Markov chain converges to its stationary distribution in total
variation (consult [11]). We will be interested in how fast a Markov chain
converges to its stationary distribution, thus we introduce also the notion
of a mixing time. Let d(t) = maxs∈S{dTV (P

t(s, .), π)}, where P t(s, .) is the
sth row of P t, which is a distribution ofXt+1 under the conditionXt = s. If
d(t) < ε, we say that Markov chain is ε-close to its stationary distribution.
The mixing time of a Markov chain is given by tmix(ε) = min{t : d(t) < ε}.
In practical considerations ε is usually chosen as 1/(2e) ≈ 0.18 or 1/4 (see
[11] and [14]).

3 Equivalence relation on the family of DAGs

In our algorithm generating posets we will use the following equivalence
relation on the family of DAGs of size n.

De�nition 3.1 Let G1 and G2 be DAGs of size n. We write G1
∼=n G2 if

and only if G1 = G2.

It is easy to check that ∼=n is re�exive, symmetric and transitive, thus
indeed it is the equivalence relation.

Lemma 3.2 The number of equivalence classes of ∼=n equals the number
of posets of size n.

Proof. Let G = (V,E) be a DAG. Consider G = (V, F ). Note that we
can iterpret each edge (v, w) of G as a pair which belongs to some binary
relation on V . Since G is a transitive closure of DAG, the obtained relation
will be re�exive, antisymmetric and transitive. Thus (V, F ) is a poset. On
the other hand each poset can be easily transformed into DAG using the
same interpretation of edges. The obtained DAG will form some transitive
closure. Note that this operation gives us one-to-one correspondence be-
tween the family of posets of size n and the family of equivalence classes of
∼=n. The conclusion follows.

�

From now on by [G] we denote the equivalence class of G and by |[G]| its
cardinality.

Lemma 3.3 Let G be an arbitrary DAG with k disconnected components
G1, G2, . . . , Gk. The cardinality of the equivalence class of G satis�es

|[G]| = 2
∑k

i=1(li−ri),

where li is the number of edges in Gi and ri is the number of edges in Gi.

Proof. Consider an equivalence class of any G. Note that each graph from
this class contains all the edges from G = (V,E) (G is here the smallest
graph which preserves the proper reachability relation). G = (V, F ) is in
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this class the richest graph preserving reachability relation. Thus every
graph from this class is of the form H = (V,E ∪ D), where D ⊆ F \ E.
|F \ E| =

∑k
i=1(li − ri), thus |[G]| = 2

∑k
i=1(li−ri).

�

4 Almost uniform poset generation

In this section we present an algorithm which samples labelled posets of
given size almost uniformly. By �almost uniformly� we mean that the dis-
tribution of posets generated by our algorithm converges in total variation
to the uniform distribution (see Theorem 4.8).

Let P = {P1, P2, . . . , PM} be the family of all labelled posets on n ele-
ments (the cardinality of P is denoted by M). Still, S = {G1, G2, . . . , GN}
denotes the set of all labelled DAGs on n vertices. The relation ∼=n parti-
tions S into M equivalence classes C1, C2, . . . , CM (recall Lemma 3.2) such
that if G ∈ Ci then G corresponds to Pi.

In our method we will modify the Markov chain that was introduced by
Bousquet-Mélou, Melançon and Dutour in [12]. We start this section with
describing the original Markov chain from [12].

4.1 Almost uniform DAG generation

Below we present a Markov chain introduced in [12].

De�nition 4.1 (Markov chain MCn) Let S (the set of all labelled DAGs
on n vertices) be the state space of a Markov chain MCn = {X0, X1, . . .}.
We start with an empty graph as X0. At each step t = 1, 2, . . . we choose
uniformly at random a directed edge (i, j). Afterwards

1. If there exists an edge (i, j) in Xt then Xt+1 = Xt \ (i, j).

2. If there is no (i, j) in Xt, then Xt+1 = Xt ∪ (i, j) provided that the
graph remains acyclic; otherwise Xt+1 = Xt.

It is easy to verify that this Markov chain is irreducible and aperiodic
and that its transition matrix is symmetric. It follows that its stationary
distribution is uniform over the set of all labelled DAGs.

4.2 DAG generator MC∗
n with arbitrary stationary dis-

tribution

For the algorithm sampling posets almost uniformly we need a Markov
chain with state space S, but stationary distribution other than uniform.
We aim for a stationary distribution π = { 1

M |[G1]| ,
1

M |[G2]| , . . . ,
1

M |[GN ]|},
which means that in stationary distribution each DAG corresponds with
the probability being the reciprocal of the cardinality of its equivalence
class multiplied by the normalization constant 1/M . In order to achieve it,
we apply the Metropolis algorithm that transforms any irreducible Markov
chain into Markov chain with a required stationary distribution.
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Lemma 4.2 ([13], Lemma 10.8) For a �nite space S and the neighbor-
hood structure {N(x) : x ∈ S}, let L = maxx∈S |N(x)|. Let K be any
number such that K ≥ L. For all x ∈ S, let πx > 0 be the desired prob-
ability of state x in the stationary distribution. Consider a Markov chain
where

px,y =


(1/Kmin{1, πy/πx}) if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−

∑
x 6=y px,y if x = y.

Then, if this chain is irreducible and aperiodic, the stationary distribution
is given by the probabilities πx.

Now, consider the following Markov chain.

De�nition 4.3 (Markov chain MC∗n) Let S be the state space of Markov
chain MC∗n = {X0, X1, . . .}. Start with an empty graph at X0. At each
step t = 1, 2, . . . choose uniformly at random a directed edge (i, j). Let
Y = Xt ∪ (i, j) and Z = Xt \ (i, j).

1. If there exists an edge (i, j) in Xt then with probability min
{
1, |[Xt]|
|[Z]|

}
set Xt+1 = Z and with probability 1−min

{
1, |[Xt]|
|[Z]|

}
set Xt+1 = Xt.

2. If there is no (i, j) in Xt, then if Y has a directed cycle, Xt+1 =

Xt; otherwise with probability min
{
1, |[Xt]|
|[Y ]|

}
set Xt+1 = Y and with

probability 1−min
{
1, |[Xt]|
|[Y ]|

}
set Xt+1 = Xt.

Remark 4.4 Note that given any DAG we are able to calculate the cardi-
nality of its evuivalence class from Lemma 3.3.

Lemma 4.5 The stationary distribution of the Markov chain MC∗n is π ={
1

M |[G1]| ,
1

M |[G2]| , . . . ,
1

M |[GN ]|

}
.

Proof. We de�ne the neighborhood structure on S in a natural way. For
x, y ∈ S we say that x and y are neighbors (x ∈ N(y) and y ∈ N(x)) if
they di�er in exactly one edge (i.e., if we can obtain one from the other by
adding or removing one edge). Then we can present the transition matrix
of MC∗n as follows:

px,y =


(1/(n(n− 1))min{1, πy/πx}) if x 6= y and y ∈ N(x),
0 if x 6= y and y /∈ N(x),
1−

∑
x 6=y px,y if x = y,

where (as in Lemma 4.2) for x ∈ S πx is the desired probability of the state
x in the stationary distribution (πx = 1/(M |[x]|)). Note that 1/(n(n− 1))
is exactly the probability of drawing uniformly a directed edge (i, j) and
maxx∈S |N(x)| = n(n− 1) (consider e.g. an empty graph whose neighbors
are all DAGs with only one edge). The chain is irreducible and aperiodic
thus, by Lemma 4.2, π is the stationary distribution of MC∗n.
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A DAG returned by MC∗n after performing m steps will be denoted by
G∗n,m, i.e. Xm = G∗n,m.

4.3 Almost uniform poset generator PGn,m

In this section we describe a method for almost uniform poset generation
and discuss how close is the resulting distribution to the uniform one.

De�nition 4.6 (Almost uniform poset generator PGn,m) Run a Markov

chain MC∗n for m steps. Return G
∗
n,m as the desired poset.

Remark 4.7 Recall that there exists a one-to-one correspondence between
the family of transitive closures of DAGs of size n and the family of posets
on n elements.

Theorem 4.8 Let ξ(m) be the distribution of the poset returned by PGn,m.
ξ(m) converges in total variation to the uniform distribution ξ = {1/M, . . . , 1/M},
i.e. limm→∞ dTV (ξ

(m), ξ) = 0.

Proof. Recall that S = {G1, G2, . . . , GN} and P = {P1, P2, . . . , PM}. For
i ∈ {1, 2, . . . ,M} let Ci = {j : Gj = Pi}, i.e. Ci is the set of indices of those
DAGs which belong to the equivalence class of the poset Pi. Recall that
π = { 1

M |[G1]| ,
1

M |[G2]| , . . . ,
1

M |[GN ]|} is the stationary distribution of MC∗n,

thus π(m) = (π
(m)
1 , π

(m)
2 , . . . , π

(m)
N ) is the distribution of MC∗n in the mth

step. Note that ξ
(m)
i =

∑
j∈Ci

π
(m)
j because PGn,m returns Pi if and only

ifMC∗n returns in the mth step one of the DAGs from the equivalence class
of Pi (and these events are disjoint and independent). We have

dTV (ξ
(m), ξ) = 1/2

M∑
i=1

|ξ(m)
i − 1/M | = 1/2

M∑
i=1

∣∣∣∣∣∣
∑
j∈Ci

π
(m)
j − 1/M

∣∣∣∣∣∣
= 1/2

M∑
i=1

∣∣∣∣∣∣
∑
j∈Ci

(
π
(m)
j − 1

|Ci|M

)∣∣∣∣∣∣
≤ 1/2

M∑
i=1

∑
j∈Ci

∣∣∣∣π(m)
j − 1

|Ci|M

∣∣∣∣
= dTV (π

(m), π)
m→∞−−−−→ 0,

where the inequality follows from the triangle inequality and the last line
from the fact that MC∗n is irreducible and aperiodic, thus converges to its
stationary distribution in total variation.

�
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We already know that the distribution of posets generated by PGn,m

converges (in total variation) to the uniform one. However, we are also
interested in how fast does it converge to know for how long should we
run MC∗n in order to be acceptably close to the uniform distribution. The
desired number of iterations can be described by the notion of mixing time
(this is a very common approach while working with Markov chains, consult
[14] or [11]) of Markov chain which in this case seems to be di�cult to
calculate. However, one can state a conjecture drawn from the fact that the
maximal distance between any two acyclic graphs is bounded by n(n − 1)
- the path connecting them (for sure not always the optimal one) goes
through the empty graph (one can delete all edges from the �rst graph and
then add all the edges from the second graph). This observation suggests
that performing the quadratic number of steps ofMC∗n brings us acceptably
close (e.g. 1/4-close, recall the de�nition of mixing time from Section 2)
to the uniform distribution. The simulations we conducted (see Section 5)
con�rm the soundness of this conjecture.

5 Results of simulations

We have implemented and tested the generator PGn,m in Python 2.7.13
using version 7.6 of mathematical package SageMath. The experiments we
have conducted suggest that running MC∗n for quadratic number of steps
brings the distribution of posets close (even less then 0.1-close for n = 4 or
n = 5) to the uniform one.

5.1 Time complexity of PGn,m

The overall time complexity of our algorithm depends on the complexity
of two procedures. First is the method of checking if DAG is acyclic every
time we try to add a new edge to Xt; the method we use has in worst
case complexity O(n2) . Second is counting the probability of moving to a
new state ofMC∗n, which is combined with counting the number of edges in
transitive closure and transitive reduction of some DAG (recall Lemma 3.3);
here the upper bound for number of computational operations is O(n4). It
may happen that we will have to perform both procedures in every step
of the chain MC∗n. Since we run MC∗n for quadratic number of steps, we
obtain that the time complexity of our algorithm is O(n6), thus polynomial
in the number of elements of the poset.

5.2 Empirical distribution of posets generated by PGn,m

In Figures 2 and 3 we present two histograms generated by running
PGn,m. We have generated 100 000 samples of labelled posets of cardinality
4 and the same number of samples of labelled posets of cardinality 5. We
ranMC∗n for quadratic number of steps. Thus below one can see the results
of running PG4,16 and PG5,25.

We have calculated also the empirical total variation distances d̃TV as
follows. For n = 4 for i ∈ {1, 2, . . . , 219} let zi be the number of samples of
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Figure 2: The histogram of 100 000 samples of labelled posets returned by
PG4,16. (There are 219 posets of cardinality 4; they were numbered in the
order of appereance during the algorithm execution.)

Figure 3: The histogram of 100 000 samples of labelled posets returned by
PG5,25. (There are 4231 posets of cardinality 5; they were numbered in the
order of appereance during the algorithm execution.)

ith category. Then d̃TV = 1/2
∑219

i=1 |zi/100 000− 1/219| (and analogously

for n = 5). We obtained d̃TV ≈ 0.026 for n = 4 and d̃TV ≈ 0.092 for n = 5.
Both values are signi�cantly smaller than 1/4 or 1/(2e) - the constants
chosen usually as acceptale in practical considerations while examining the
mixing time ([11], [14]).

Presenting histograms for bigger n would be rather illegible. Already
for n = 6 the number of labelled posets reaches 130 023 while e.g. for n = 8
about 4·108. Nevertheless, the algorithm samples easily the posets of bigger
cardinalities. The example of a poset of size 21 generated by PG21,441 is
given in Figure 4 (the exact number of labelled posets for n > 18 is not
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known).

Figure 4: The poset on 21 elements generated by PG21,441.
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