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Abstract – In this paper, we propose a novel method of
solving the averaging problem for distributed Wireless Sensors
Networks. This method is based on approximated histograms
of measurements made by a sensor network. Our method
uses a set of probabilistic counters and allows to find the
approximation of the average of a set of measures done by
sensor network with arbitrary, controlled by two parameters,
precision. The exchange of information is based on broad-
casting method exploiting extreme propagation technique. Our
method require O(D) rounds, where D is the diameter of
the network. We analyze both kind of errors which occurs
in our method: discretization errors caused by the histogram
representation of the data and errors due to the probabilistic
nature of the used counters.
Keywords – message propagation, distributed algorithm, extreme
propagation, average, probabilistic counter, exponential distribu-
tion, Erlang distribution, Delta method

I. INTRODUCTION

The problem of averaging in distributed Wireless Sensors
Networks (WSN) has been widely studied in a series of
papers (see e.g. [1], [2]). Recent versions of these algorithms
(see [3], [4]) take benefit of the broadcast nature of the wire-
less communication channels. But in all these algorithms the
convergence speed to the true average is large and highly
exceeds the diameter of the network, which is the obvious
lower bound on the number of rounds needed to compute
the exact average.

The idea of using probabilistic counters for estimation of
aggregates in networks was introduced in [5], [6]. In this
paper, we propose a novel method of estimation of average
in the distributed environment. Our method is based on the
extreme propagation technique popularized by C. Baquero,
P. S. Almeida, and R. Menezes in 2009 in [7] and on the
notion of probabilistic counters invented in 1977 by Robert
Morris in [8]. It runs in O (D) steps, where D is the diameter
of network. Its precision is controlled by two parameters. In
our method the approximation of the average is built from
approximated histogram using probabilistic counters.

A. Mathematical Notation and Background

We denote by |A| the cardinality of a set A. We denote by
Γ(x) the standard generalization of the factorial function.

We denote by E [X] and var [X] the expected value and
the variance of the random variable X , respectively. We
denote by d→ the convergence in distribution of random
variables. We will use the following property of this con-
vergence: if Xn

d→ X and g is a continuous function, then
limnE [g(Xn)] = E [g(X)]. Let us recall that a random
variable X has the exponential distribution with parameter
λ (X ∼ Exp(λ)) if its density function fX is given by the
formula fX(x) = λ exp(−λx). If X1, . . . , Xn ∼ Exp(λ)
and are independent and Y = min{X1, . . . , Xn} then
Y ∼ Exp(nλ). If X1, . . . , XL are independent random
variables with a common Exp(µ) distribution, then the
sum S = X1 + . . . + XL has the Erlang distribution with
parameters L and µ (S ∼ Erl(L, µ)), i.e. its density function
is given by the formula fL,µ(x) = µLxL−1e−µx

(L−1)! .

II. HISTOGRAMS

We assume that network is modeled by a connected
graph with relatively small diameter D. The edges of this
graph correspond with bidirectional communication links.
Suppose that the network consists on n nodes numbered
by {1, . . . , n} and that each node stores a value Tk. Let
~T = (Ti)i=1,...,n. Our goal is to estimate the mean
avg(~T ) = 1

n

∑n
k=1 Tk in an efficient and easy way.

Using the extreme propagation technique in its basic form
we may assume that each node knows the values m =
min{Ti : i = 1, . . . , n} and M = max{Ti : i = 1, . . . , n}.
If m = M then the average value of the sequence (Ti) is
known. Suppose hence that m < M and let ∆ = M −m.

We fix a parameter K and we split the interval [m,M ]
into K intervals of equal length: we put Ii = [m + ∆

K (i −
1),m + ∆

K i) for i = 1, . . .K − 1 and IK = [m + ∆
K (K −

1),M ]. Let wi denotes the middle point of the interval Ii,
i.e. we put wi = m+ ∆

K (i− 1
2 ).

Let Hi = |{k : Tk ∈ Ii}|, for i ∈ {0, . . . ,K − 1}.
We call the vector ~H = (Hi)i=1...K a histogram of the
data (Ti)i=1,...n. We are going to approximate the average



value of observed data (Ti)i=1,...,n. For arbitrary vector ~k =
(k1, . . . , kK) we define a function

am~k(x1, . . . , xK) =

∑K
i=1 kixi∑K
i=1 xi

.

We approximate the average value of observed data
(Ti)i=1,...,n by the value am( ~H) = am~w( ~H), where ~w is
the sequence of middle points of histograms intervals, i.e.
we define

am( ~H) =

∑K
i=1 wiHi∑K
i=1Hi

. (1)

In this approach each observed value is approximated
by the nearest element from the set of middle points
(wi)i=1,...,K , so some error in this method is unavoidable.
We call this error a discretization error. This error is
controlled by the number K of sub-intervals into which
we divide the range of observed data and by the spread
of observed data:

Theorem 1 (Discretization error). For arbitrary vector ~T
of observed data we have∣∣∣am( ~H)− avg(~T )

∣∣∣
M −m

≤ 1

2K
,

where m = min{Ti : i = 1, . . . , n} and M = max{Ti :
i = 1, . . . , n}.

A. Approximate Counters

Probabilistic counters have been intensively investigated
in last years. They were invented in 1977 by Robert Morris
(see [8]). This version was carefully analyzed in the early
1980s by Philippe Flajolet (see [9]), who coined the name
Approximate Counting. In a more recent investigations some
other methods were proposed for estimation of a cardinality
of a stream of data. Some of them are well suited for
counting the size of distributed network (see e.g. [10], [11]).

In this paper we use a method based on exponential
distribution. It uses the following property of this distribu-
tion: if X1, . . . , Xn are independent random variables with
the common distribution Exp(1), then the random variable
Y = min{X1, . . . , Xn} has the distribution Exp(n). One
random variable with Exp(n) is not sufficient for the
estimation of the the parameter n. However, if we have a
sequence Y1, . . . , YL of independent random variables with
Exp(n) distribution where L > 2, then the random variable
Z = Y1 + . . . + YL has the Erlang distribution Erl(L, n).
We easily deduce that E

[
L−1
Z

]
= n and var

[
L−1
Z

]
= n2

L−2 .
Therefore, the random variable C = L−1

Z is an unbiased
estimator of the number n and its precision is controlled by
the parameter L. We will use this approach in this paper.

B. Approximated Histograms

Let ~T = (Ti)i=1,...,n be the sequence of observed values.
We split the interval [min(~T ),max(~T )] into K intervals
(Ii)i=1,...,IK of equal length. We associate with each in-
terval Ii an approximate counter CL,i counting the number
Hi = |{k : Tk ∈ Ii}| based on the Erlang distribution
Erl(L,Hi).

We call the vector ~CL = (CL,i)i=1...K an approximate
histogram of the data (Ti)i=1,...n. Let ~H be the histogram
obtained from ~T . We will prove the number am(~CL) is an
asymptotically unbiased estimator of the number am( ~H).

Theorem 2. Let ~H ∈ RK be a vector of non-negative
numbers such that C =

∑K
i=1Hi > 0. Then

√
L
(
am(~CL)− am( ~H)

) d→ N (0, s2) ,

where s2 =
∑K
i=1

(∑K
j=1(j − i)HiHj

)2

· C−4.

Proof:
Let us fix i such that Hi ≥ 1. Then CL,i = L−1

X ,
where X ∼ Erl(L,Hi). From Lemma 1 proved in Sec-
tion VI we deduce that the sequence

√
L(CL,i − Hi)

converges (if L grows to infinity) in distribution to the
normal distribution N (0, H2

i ). Notice that if Hi = 0, then
CL+1,i = 0, so

√
L(CL,i − Hi) = 0, hence also in this

case we have a convergence to N (0, 0), interpreted as the
Dirac’s delta function. Observe also that random variables
CL,1, . . . , CL,K are independent. Therefore

√
L(CL,1 −H1, . . . , CL,K −HK)

d→ N (0,Σ) ,

where Σ = diag(H2
1 , . . . ,H

2
K) is the square diagonal matrix

with elements (H2
1 , . . . ,H

2
K) on the main diagonal.

We are going to apply the Multivariate Delta Method to
the function am(). Notice that

d

dxi
am() =

d

dxi

∑K
j=1 wjxj∑K
j=1 xj

=

∑K
j=1(wi − wj)xj
(
∑K
j=1 xj)

2

Let ∇ ~H be the gradient ( d
dx1

am(), . . . , d
dxK

am()) evaluated
at the point ~H = (H1, . . . ,HK). From the Multivariate
Delta Method we get

√
L(am(~CL)− am( ~H))

d→ N (0,∇T~HΣ∇ ~H) ,

hence
√
L(am(~CL)− am( ~H))

d→ N (0, s2) ,

where

s2 =

 K∑
i=1

 K∑
j=1

(wj − wi)HiHj

2
( K∑

i=1

Hi

)−4

.

Hence the theorem is proved.



Corollary 1. limL→∞E
[
am(~CL)

]
= am( ~H)

Corollary 2. Let C =
∑K
i=1Hi. If C > 0 then

var
[
am(~CL)

]
=

1

L
·
K∑
i

 K∑
j=1

(wj − wi)HiHj

2

C−4 + o

(
1

L

)
.

Proof: If Xn
d→ Z then for every continuous function g

we have limnE[g(Xn)] = E[g(Z)]. If we apply this prop-
erty for function g(x) = x2 to conclusion of Theorem 2 then
we get limL→∞ L · var

[
am(~CL)

]
= var

[
N (0, s2)

]
= s2,

so the Corollary is proved.

III. PRECISION OF APPROXIMATED HISTOGRAMS

Our goal is to compare the number am( ~H) (see Formula
1) with am(~CL). In section V we shall discuss series of
experimental results. For a proper interpretation of obtained
results we will use the following measure of error of the
estimate am(~CL):

err(am( ~H), am(~CL)) =
|am( ~H)− am(~CL)|

M −m
.

Notice that 0 ≤ err(am( ~H), am(~CL)) ≤ 1.

Theorem 3. Let ~b = (b1, . . . , bk), α, β ∈ R and α > 0. Let
~v = (αb1 + β, . . . , αbk + β). Then for arbitrary ~x, ~y ∈ Rk
we have

err(am~b(~x), am~b(~y)) = err(am~v(~x), am~v(~y)) .

Proof: Notice that the distance M − m may be cal-
culated from coefficients wK and w1, namely M − m =
(wK − w1)K+1

K . For arbitrary ~z ∈ Rk we have

am~v(~z) =

∑k
i=1 vizi∑k
i=1 zi

=

∑k
i=1(αbi + β)zi∑k

i=1 zi
=

α

∑k
i=1 bizi∑k
i=1 zi

+ β = α · am~b(~z) + β .

Therefore

err(am~v(~x), am~v(~y)) =
|am~v(~x)− am~v(~y)|

(vk − v1)K+1
K

=

α|am~b(~x)− am~b(~y)|
α(vk − v1)K+1

K

= err(am~b(~x), am~b(~y)) .

From this theorem we deduce that the investigation of
errors of the estimator of average value based on proba-
bilistic counters may be reduced to such data where the
middle points (wi)i=1,...,K are fixed and are equal to ~b =
(1, 2, . . . ,K). In this case we have

am~b(~x) =

(
K∑
i=1

i · xi

)
/

(
K∑
i=1

xi

)

and (see Corollary 2) var
[
err(am( ~H), am(~CL))

]
≈

h(H1, . . . ,HK) where

h(x1, . . . , xK) =
1

L · (K + 1)2

(
K∑
j=1

(
K∑
i=1

(j − i)xixj
))2

(
K∑
i=1

xi

)4 .

Theorem 4 implies that when
∑K
i=1Hi = C is fixed,

then the function h attains its maximum value at point ~c =

(C2 , 0, . . . , 0,
C
2 ). In this case we have h(~c) = 1

8L
(K−1)2

(K+1)2 .
The case of highly concentrated data at two extremal values
will be carefully discussed in Section V where we present
results of numerical experiments.

In the case when Hi = a for each i = 1, . . . ,K we have
h(a, a, . . . , a) = 1

12L
K2−1

K(K+1)2 ≤
1

12·L·K .

IV. ALGORITHM

In this section we show a pseudo-code of the algorithm
discussed in this paper. This algorithm is executed by every
node in the network. We assume that the communication in
the network is divided into rounds and that in each round
each pair of connected nodes can exchange information in
both directions.

The input of this algorithm are:
1) D: an upper approximation of a diameter of a network
2) m: a minimal value of observed data
3) M: a maximal value of observed data
4) K: a number of sub-intervals the range [m,M ]
5) L: a number of exponential random variables con-

nected with each sub-intervals
We assume that in an initial phase before running this

algorithm an another algorithm calculates the numbers m
and M . Observe that this algorithm stabilizes (no new
messages are sent) after D∗ steps, where D∗ is the precise
network diameter.

1: function COUNTAVGMEAN(D,m,M,K,L)
2: T = observed value
3: for a=1 . . . K do . Initialization
4: for j=1 . . . L do
5: X[a][j] = +∞;
6: end for
7: end for
8: ∆ = M −m
9: find a such that T ∈ [m+ ∆

K (a− 1),m+ ∆
K a]

10: for j=1 . . . L do
11: X[a][j] = RandomExp(1)
12: end for
13: send pair (a,X[a]) to all neighbors
14: for I=1 . . . D do . broadcasting loop
15: C = X;
16: for all received (a,Y) do



17: for j=1 . . . L do
18: C[a][j] = min(C[a][j],Y[j])
19: end for
20: end for
21: for a=1 . . . K do
22: if C[a] 6= X[a] then
23: X[a] = C[a]
24: send pair (a,X[a]) to all neighbors
25: end if
26: end for
27: end for
28: for a=1 . . . K do . final calculations
29: S[a] = 0;
30: for j=1 . . . L do
31: S[a] = S[a] + X[a][j]
32: end for
33: H[a] = (L-1)/S[a]
34: end for
35: S1 =

∑K
i=1(m+ ∆

K (i− 1
2 ))H[i]

36: S2 =
∑K
i=1H[i]

37: return S1/S2
38: end function

V. EXPERIMENTS

At the end of Sec. III we showed that we should check the
precision of proposed estimator on a symmetric distribution
concentrated at two points. This case will be discussed in
Sec. V-A. In the next section we will show how our estimator
behaves on randomly distributed data.

Let us notice that in our experiments we take into account
both kinds of errors. The first one is due to the discretization
error (see Thm. 1) and is controlled by the number K of
sub-intervals representing data. The second one is due to
probabilistic nature of probabilistic counters and it is con-
trolled by the number L of probabilistic counters attached
to every sub-interval.

A. Worst case

Fig. 1 depicts the outcomes of the experiments of the
worst case data for different network sizes n varying from
50 to 10000 with step 10. For each n we performed 100
independent experiments where n/2 nodes have the value
0 and the remaining n/2 the value 1. The parameters were
set to K = 4 and L = 50. We can observe that in all
experiments our algorithm counts the average with 20%
precision.

Fig. 2 shows the maximal and average errors for these
experiments as a function of the network size. We can
observe that regardless of the number of nodes in almost
all experiments the average is counted with 20% precision
and the mean error is about 5%.

Finally, Fig. 3 and 4 show the results of experiments
performed for data concentrated at two extremal points
where a fraction p of n nodes have the value 0 and (1− p)

Figure 1. Errors of algorithm COUNTAVGMEAN with parameters K = 4,
L = 50 for data concentrated on end points with respect to the number of
nodes in the network.

Figure 2. Maximal and average errors of algorithm COUNTAVGMEAN
with parameters K = 4, L = 50 for data concentrated on end points with
respect to the number n of nodes in the network. For each n we run 100
experiments.

have the value 1 for n = 100, 1000 and 10000 and for p
from the set {0.05i : 1 ≤ i < 20}. As previously we chose
K = 4 and L = 50. For each n and p 1000 independent
experiments were performed. We can observe that both mean
and maximal errors of the proposed estimator don’t depend
on the network size and decrease as the distribution of the
values becomes more skewed.

Figure 3. Mean errors of algorithm COUNTAVGMEAN with parameters
K = 4, L = 50 for data concentrated on end points with respect to
the fraction p of nodes with minimal value. Experiments were repeated
independently 1000 times for networks of size 100, 1000 and 10000.



Figure 4. Maximal errors of algorithm COUNTAVGMEAN with parameters
K = 4, L = 50 for data concentrated on end points with respect to
the fraction p of nodes with minimal value. Experiments were repeated
independently 1000 times for networks of size 100, 1000 and 10000.

B. Uniform and Normal Distribution

Fig. 5 presents the outcomes of the experiments for
different network sizes n for the case where the randomly
generated data are distributed uniformly over the unit inter-
val. We performed 100 independent experiments for each
n in the range from 50 to 5000 with step 10. In each
experiment the interval between the minimal and maximal
value was split into K = 20 equal sub-intervals and L = 20
probabilistic counters were used. The maximal and average
errors as a function of the network size are shown in Fig. 6.
We can see that for each n the mean error of our estimator
is below 2% and in all experiments the approximation error
doesn’t exceed 8%.

Figure 5. Errors of algorithm COUNTAVGMEAN with parameters K =
20, L = 20 for randomly generated data from uniform distribution over
[0, 1] with respect to the number of nodes in the network.

We performed similar experiments to the previous ones
for random data following the normal distribution with mean
1000 and the variance equals to 100. As before, for each
network size n between 50 and 5000 (with step 10) we
ran 100 independent simulations with the same choice of
parameters (i.e. K = L = 20). Fig. 7 and 8 depict the
errors of the individual experiments and the maximal and
average errors for each n, respectively. Observe that in this
case the average is estimated with 5% precision.

Figure 6. Maximal and average errors of algorithm COUNTAVGMEAN
with parameters K = 20, L = 20 for randomly generated data from
uniform distribution over [0, 1] with respect to the number n of nodes in
the network. For each n we run 100 experiments.

Figure 7. Errors of algorithm COUNTAVGMEAN with parameters K =
20, L = 20 for random data following normal distribution with mean
equal to 1000 and variance 100 with respect to the number of nodes in the
network.

Figure 8. Maximal and average errors of algorithm COUNTAVGMEAN
with parameters K = 20, L = 20 for random data following normal
distribution with mean equal to 1000 and variance 100 with respect to the
number n of nodes in the network. For each n we run 100 experiments.

VI. PROOFS

Lemma 1. Suppose that XL ∼ Erl(L,m) where L > 2.
Let YL = L−1

X . Then E [YL] = m, var [YL] = m2

L−2 and
the sequence

√
L(YL −m) converges in distribution to the

normal distribution N (0,m2).

Proof of this lemma is skipped due to restrictions on the
length of the article.



Theorem 4. Let c > 0, k ≥ 2, Σc,k = {~x ∈ Rk :∑k
i=1 xi = c ∧

∧k
i=1(xi ≥ 0)} and

f(x1, . . . , xk) =

k∑
j=1

x2
j

(
k∑
i=1

(j − i)xi

)2

.

Let ~b = ( c2 , 0, . . . , 0,
c
2 ) ∈ Σc,k. Then f(~b) = sup{f(~x) :

~x ∈ Σc,k} and f(~b) = (k−1)2c4

8 .

Proof: Notice that Σc,k is a compact subset of Rk and
that f is a continuous function on Σc,k. Therefore there
exists a point ~b ∈ Σc,k such that f(~b) = sup{f(~x) : ~x ∈
Σc,k}. We shall prove that f(~b) = f(( c2 , 0, . . . , 0,

c
2 )).

Lemma 2. Suppose that ~x = (x1, . . . , xk) ∈ Σc,k, 1 < l <
k and xl > 0. Let

~x′ =
(
x1 +

k − l

k − 1
xl, x2, . . . , xl−1, 0, xl+1, . . . , xk−1, xk +

l − 1

k − 1
xl

)
.

Then f(~x) ≤ f(~x′).

We omit the proof of this lemma. We show only main
hint: namely if we define Ij(y1, . . . , yk) =

∑k
i=1(j − i)yi

then we have Ij(~x′) = Ij(~x) for each j = 1, . . . , k.
From Lemma 2 we deduce that the maximal value of

the function f on the set Σc,n is attached on the subset
{(a, 0, . . . , 0, c− a) : 0 ≤ a ≤ c}. Let us observe that

f(α, 0, . . . , 0, c− α) = 2(k − 1)2α2(c− α)2.

Therefore the function g(α) = f(α, 0, . . . , 0, c−α) reaches
its maximum on the interval [0, c] at the point α = c

2 and
g( c2 ) = (k−1)2c4

8 . Hence the theorem is proved.

VII. CONCLUSIONS

The proposed in this paper method of counting the aver-
age value in distributed environment may be summarized as
follows: represent data by a histogram of K bins and use a
sequence of L independent probabilistic counters connected
with each bin to approximately count the number of balls
in each bin. This can be done in an efficient way using
broadcasting and the extreme propagation technique. The
worst case for the proposed method are symmetric data
concentrated at two points. Using 200 probabilistic counters
we get a precision of order 20%. However, at the end of
algorithm each node has at its disposal an approximated
histogram, so it can recognize this phenomena and may take
an appropriate action.
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