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ABSTRACT. For a class £ of subsets of a set Z which is closed under countable
unions we consider the families of functions

MA={f:Z—[0,1]: (Ve)(f ™ ((c,1]) € A)}

and

MA={f:Z—[0,1]: (Vo)(f7'([0,¢)) € A)}

(for instance, if Z is a topological space and A is the family of all open subsets
of Z, then MA and M A are the families of lower and upper semicontinuous
functions from Z to [0, 1], respectively).

Using universal functions we show that under certain natural assumptions
about A there exists a function f € MA such that there is no partition
{Xn:n € N} of Z and a family of functions {hn,: n € N} C M4 such that

f=U, (hnlXn).

This is a generalization of some results of this type proved by Novikov
and Adian, Keldys, and Laczkovich for the Baire hierarchy of functions. The
universal functions technique we use is different from the methods of these
authors.

1. Introduction. We use standard set theoretical notations. For example, if
A and B are sets, then P(A) is the set of all subsets of A, A x B is the Cartesian
product of A and B and B is the family of all functions from A to B. A family
S C P(A) is a partition of A if |JS = A and for any different X,Y € S we have
XNY = . By I we always denote the closed interval [0, 1]. N is the set of natural
numbers and Q is the set of rational numbers.

Suppose that A C P(Z) is a family of sets. We say that A is a o-class if
{D,Z} C A, A is closed under finite intersections, and for any countable A’ C A
we have |JA' € A. By M A we denote the family of all functions f € #I such
that for any ¢ € I we have f~!((c,1]) € A. Similarly, M4 is the family of all
functions f € ZI such that for any ¢ € I we have f~1([0,c)) € A. We also put
M4 =MANMA. Note that f € MA if and only if 1 — f € MA. If X C Z, then
AIX={ANX: A€ A}. By (GM)A we denote the family of all functions f € 41
such that there exists a partition {X,},en of Z such that for any n € N we have
fIXn € M(A|X,). Similarly we define (GM)A and (GM)A (this means that we
replace M A by M A, or M 4, in the above definition).
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PROPOSITION 1.1. If A is a o-class of subsets of Z,X C Z and f € M(A|X),
then there is f* € M A such that f C f*.

PROOF. Suppose that f € M(A|X). For any rational number ¢ € QNI we have
f7'((g,1]) € A|X. Hence there exists a set A, € A such that f~1((g,1]) = 4,NX.
For z € A; we put f,(z) = g and f,(z) = 0 otherwise. Then for any ¢ € QN I we
have f, € MA. Let f* =sup{f,: ¢ € INQ}. Then, as A is closed under countable
unions, f* € MA. It is clear that f C f*.

The functions f € M A have a similar property. Namely, if 4 C P(Z) is a o-class,
X C Z and f € M(A|X), then for some f* € MA we have f C f*. In order to
see this, suppose that f € M(A|X). Then 1 — f € M(A|X), Hence we can find
an extension of 1 — f to a function f; € MA. Then 1 — f; € M 4 is the required
function.

For any family ¥ C ZI let GX be the family of all functions f € ZI such that
there is a partition {X,}n,en of Z and a family of functions {f,}nen C ¥ such
that for any n € N we have f|X,, = fu|Xp.

COROLLARY 1.2. If A is a o-class, then (GM)A = G(M A).

PROOF. The inclusion G(MA) C (GM)A is true for any class A. The second
inclusion follows from Proposition 1.1.

Notice that we also have (GM)A = G(M A) for any o-class A and that equality
(GM)A = G(MA) is not generally true.

PROPOSITION 1.3. For any o-class A of subsets of Z the family M A is closed
under uniform convergence.

PROOF. If {fn}nen C MA is uniformly convergent to a function f, then for
any ¢ € I we have

8

((e;1]) = U H(e+sup{|f(2) — fu(2)|: z € Z},1]).

By C we denote the Cantor set N{0,1} with the product topology. Recall that
a Polish space is a separable complete metric space. We consider the hierarchy of
Borel subsets of Polish spaces. Eg (X) is the ath additive class of subsets of X
where o < w;. E:z (X), n € N, denote the projective hierarchy of subsets of X.

Let us agree to consider throughout this paper a certain class 7 of Polish spaces
such that a finite product of elements of 7 is again in ¥ and if Z € 7 then for each
Polish space X C Z (X has the metric of Z) X is also in . Let us also assume
that C, I € 7. In fact the idea is to include in ¥ any Polish space one wants to
consider (this idea was used in [6]).

Let us assume that we have defined a certain family of subsets A on each Z € 7
simultaneously. A defined on subsets of a specific Z € 7 will be denoted by A(Z).
We say that A is closed under continuous substitution if for each X,Y € ¥, for
every continuous function f € XY and for each A € A(Y) we have f~1(A) € A(X).
A will be called a hereditary o-class if A is closed under continuous substitution
and if for each Z € ¥:

(i) A(Z) is a o-class,

(ii) A(Z)|X = A(X) for each Polish space X C Z.
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The classes Zg, a < wi, and Z;, n € N, are examples of hereditary o-classes.

ForACX xY andze X let A, ={yeY: (z,y) € A}. Let A C P(Y). A set
A C X xY is a universal set for Aif A ={A;: z € X}. Recall that if X and Y are
Polish spaces and X is uncountable, then for any o < w; there is a universal set for
Eg(Y) in the class Zg (X x Y) and the same is true for the classes Z,ll, neN
(see (6]).

2. Universal functions. For a function F € **Y[ and (z,y) € X x Y we
put F.(y) = F(z,y). Suppose that ¥ C YI. A function F € X*Y[ is called a
universal function for ¥ if ¥ = {F,: z € X}.

THEOREM 2.1. Let A be a hereditary o-class. If Z € ¥ s uncountable and
there exists a universal set for A(Z) in A(C x Z), then there ezists a universal
function for MA(Z) in MA(Z?).

PROOF. First we prove that there exists a universal function for MA(Z) in
MA(C x Z).
For any X C Z let
0 ifzeZ\X,
X =
x(X.2) { 1 ifzeX.

Let ¢ = (¢1,¢2,...) be a homeomorphism of C and NC. Let A € A(C x Z) be a
universal set for A(Z). We fix an enumeration {r,}p,en of QN 1I.

For any n € N and (¢, z) € C x Z we put Fy(c,2) = x(Ay,(c),2) and ¢,(c,z) =
(¢n(c), 2). Obviously, @,, is a continuous function and for any n € N the function
F, is the characteristic function of the set ¢, !(A). Hence F, € MA(C x Z), for A
is closed under continuous substitution.

Let F(c,z) = sup{rn-Fn(c,2): n € N}. Then for any ¢ € C we have F, € MA(Z)
and F € MA(C x Z). Suppose that f € M A(Z). For any n € N let ¢, € C be such
that A., = {2z € Z: f(z) > rp}. Let ¢ € C be such that ¢(c) = (c1,c2,...). Then
we have F; = f. Hence F is a universal function for M A(Z).

Because we can embed C into any uncountable Polish space and because A is
closed under continuous substitution, we can consider C here as a compact subset
of Z.

We have A(C x Z) = A(Z?)|C x Z whence, by Proposition 1.1, there exists an
extension F* € M A(Z?) of F. For every z € Z the function F} belongs to M A(Z),
because A is closed under continuous substitution. Thus F* is universal for M A(Z).

3. Generalized classes of functions. N. N. Lusin asked the qupstion whether
M(U¢<w, 22) C (GM) E(l) This question was answered negatively by P. S.
Novikov (see [2]). Later S. I. Adian and P. S. Novikov showed in [1] ([7]) that

M I\ (GM) (D) # 2.
It was shown by L. Keldys in [2] that
<o

MY0 (M\G ( U Mz:‘;H(N)) %

for any o < w;, where N = NN is the space of irrational numbers. Quite recently
M. Laczkovich proved that for each o < w; and for any uncountable Polish space
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Z there exists a function f € M Eg(Z ) such that for no partition Z = (J,;2; X,
the functions f|X, are of class M Zgn(Xn) where a,, < a, for each n € N. His
proof gives for any o < w; [4]:

MY 0(2)\ (GM) L0(2) # 2.

We prove (Corollary 3.3) that if a class A satisfies the assumptions of Theorem
2.1 and Z is an uncountable Polish space, then M A(Z) \ (GM)A(Z) # @. Note
that this is equivalent to M A(Z) \ (GM)A(Z) # & by the definition of M A. This
gives in particular M 3°0(Z) \ (GM) ¥2(Z) # @.

THEOREM 3.1. If A is a o-class of subsets of Z and f € (GM)A, then there
exists a function g € M A such that for any z € Z we have f(z) # g(z).

PROOF. For any k € N and for any sequence ny,...,ny € N we choose num-
bers a(ny,...,ng) € (0,1) and €(ny,...,ng) > 0 in such a way that the following
conditions hold:

(i) the sequence {a(n)}neN is strictly increasing and tends to 1;

(ii) for any ny,...,ng the sequence {a(ny,...,nk, n)}nenN is strictly increasing
and tends to a(ny,...,ng);

(iii) for any k,m € N, k < m, and ny,...,n,, € N the following inequality
holds:

a(ny,...,ng) +e(my,...,nk) <amy, ..., Ng—1,0k + L,Ngs1, ooy N );
(iv) for any ny,...,nx € N we have
a(ny,...,ng) —a(ny,...,ng, 1) < 1/k.

It is easy to see that such a choice is possible.

We have assumed that f € (GM)A(Z) = G(MA(Z)) (Corollary 1.2) whence
there is a partition {A,: n € N} of Z and a family {f,,: n € N} C M £ such that
fnlAn = f|A, for each n € N.

Let S(1) ={z€ Z: fi(2) > a(l) + &(1)} and for n > 1

S(n)={z€ Z: fu(z) > a(n) +e(m)}\ | J{S.: i <n}.

Suppose now that the set S(ni,...,n,) has been defined. Then for n < n; we
put S(ny,...,ng,n) = and for n > ny we define
S(niy...,ng,n) =S(ng,...,nk)

N{zeZ: fo(z) 2 a(ny,...,nk,n)+e(ny,...,ng,n)}
\U{S(nu-..,nk,i): 1< n}.
Let g1(2) = a(n) if z € S(n) for some n € N and g;(2) = 1 otherwise.

Suppose that g is defined. Then we put gx+1(2) = a(ny,...,ne+1) if 2 €
S(ny,...,nk4+1) for some ny,...,ngt1 € N and gx+1(2) = gk(2) otherwise.
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Let ¢ € [0,1) and k € N. We define inductively a sequence ny,ng, ... as follows:
ny =min{n : ¢ < a(n)}, ngy =min{n: ¢ < a(ny,...,nk_1,n)}. Then

n1—1

i (e, 1)) = U [T ([a(d) + €(4), 1))

3
U (ﬂ a(ny,...,n,) +¢e(ny,...,n,), 1)

— =1

ny+1—1 ‘
n U ffl([a(nl,.-wnﬂ)+€(n1,---,"ﬂ)])))-

r=n;+1

Hence g, € M A. Moreover condition (iv) ensures that the sequence {gi : k € N} is
uniformly convergent. Let g = limg gx. Then by Proposition 1.3 we have g € M A.
We shall show that f(z) # g(z) for any z € Z.

Assume that for some z € Z we have f(z) = g(z). Let us fix k € N such that
z € Ag.

Note that we must have z € [J{S(n): n € N}, because otherwise g(z) = 1 and
f(2) < a(k) < 1. Moreover, note that z € [J{S(n): n < k}, because otherwise
either z € S(k), whence f(z) = fr(z) > a(k) + (k) and g(z) < a(k), or z € S(n)
for some n > k, whence f(z) = fi(z) < a(k) + (k) and g(2) > a(k) + (k).

Hence there exists n; < k such that z € S(n;).

Using the same argument we can find ny < k such that z € S(n;,ng). Iterating
this procedure we define a sequence {n, },cn such that for any m € N we have n,, <
kand z € S(ny,...,ny,). But this givesn; < ng < ---, because S(ny,...,ny) #
implies n; < ng < --- < ny,. This is a contradiction. Hence the function g has the
required properties.

We prove now the main theorem of this paper.

THEOREM 3.2. Let A be a o-class of subsets of Z and let F € __Z__XZI be a
universal function for MA. Let ¢(z) = F(z,z2) for € Z. Then ¢ ¢ (GM)A

PROOF. Suppose that ¢ € (GM)A. By Theorem 3.1 there exists f € M A such
that for any z € Z we have ¢(z) # f(z). Let 29 € Z be such that f = F,,. Then
we have f(z9) = F,,(20) = F(20,20) = ¢(20) # f(20). This gives a contradiction.

By Theorem 2.1 we obtain the following corollary.

COROLLARY 3.3. If 4 is a hereditary o-class, Z € 7 is uncountable and there
erists a universal set for A(Z) in A(C x Z), then MA(Z)\ (GM)A(Z) # <.

In particular the following holds:
COROLLARY 3.4. If Z is any uncountable Polish space, then
M3 (Z)\(GM) T4(2) # @
for every a < w; and _M_E;(Z) \ (GM) Z:;(Z) # O for everyn € N.

4. Additional remarks. A set X C [ is a Lusin set if for any first Baire
category set A C I we have |[AN X| < 2% and | X| = 2%.
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Sierpinski in [8] showed that if there exists a Lusin set, then there exists a
function f € MZ?([) and a set E C I such that |[E| = 2% and for any F' C E of
cardinality 2¢ the function f|F is not continuous.

Let us recall that the Continuum Hypothesis as well as Martin’s Axiom imply
that there exists a Lusin set.

COROLLARY 4.1. Suppose that Martin’s Aziom holds. Then there exists a
function f e M Z?(I) such that for any family ¥ consisting of continuous functions
on their domains if (X = f, then |H| =2%.

PROOF. Let f € MZ? and E C I be such that |E| = 2“ and for every F' C E,
if |F| = 2, then f|F is not continuous. Suppose that (JX = f and [X| < 2¥.
Then there exists hg € ¥ such that |E N domain(hg)| = 2*. Therefore kg is not a
continuous function.

We shall show later that the assumption about Lusin sets in Sierpinski’s result
is necessary. But before this we show that under the Continuum Hypothesis we
can generalize Sierpinski’s result to wider classes of functions.

THEOREM 4.2. Assume the Continuum Hypothesis. Let A C P(Z) be a o-field,
|A| <29, X U{f} C MA and f ¢ GX. Then there exists E C Z, |E | = 2%, such
that for every h € X we have |{z € E: h(z) = f(2)}| <2*.

PROOF. Let I be a family of subsets of Z defined as follows:
Xel ifandonlyif (3{A,:n€N}C P(Z))(I{hn:neN}CX)
(X CU,, Ar and (Vn € N)(f|A, = hnl|An)).

Note that I is a proper o-ideal of subsets of Z. Moreover, for any X € I we can
find A € I N A such that X C A.
Let INA={As: @ <wp}. For any o < w; we choose a point

ea €2\ |J(AcU{ec})

(<a

and we put E = {e5: @ < wi}.

Suppose now that h € ¥. Then {z € Z: h(z) = f(2)} € I N A. Hence there
is @ < wy such that {z € Z: h(2) = f(2)} = Aa. Thus {z € E: h(2) = f(2)} €
{ee: € L a}.

Let D denote the minimal cardinality of a family ¥ € NN such that for any
f € NN there is g € X satisfying the inequality f(n) < g(n) for each n € N. It is
well known that the theory ZFC+(2% = wy) + (0 = wy) is consistent (see [5]).

THEOREM 4.3. For any function f € MZ;(I) there is a family X of contin-
uous functions such that |¥| <d and JX = f.

PROOF. Note that if f € M E;(I) then f € Z;(IQ) (treated as subset of I xI).
Hence there exists a sequence { By }o<w, of Borel sets such that f = ,,,, Ba (see
[3, p. 391]). Since any Borel set is an analytic set, we can find for any o < w; a
continuous function fu from N = NN onto By.

Let {hg: B <0} C NN be such that for any f € NN there exists f# < such
that f(n) < hg(n) for eachn € N. Forany § <0vlet Kg ={f € NN: f(n) < hg(n)
for each n € N}. Note that for any 3 < the set Kg is a compact subset of NN.
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For @ < w; and f# < ® we put By g = fo(Kg) and ¥ = {Bag: & < w; and
B <0}. Then |¥| <0 and X = f. Moreover, if @ < w; and § <, then B, g is a
compact set. Hence ¥ consists of continuous functions.

COROLLARY 4.4. Suppose that 2¥ = wg and 0 = wy. Then for every function
f e MZ;(I) and a set E C I of cardinality 2 there exists F C E such that
|F| =2% and f|F s continuous.

PROOF. Let fe M Z;(I), E C I,and |E| = 2%. Theorem 4.3 implies that there
is a family ¥ consisting of continuous functions such that ¥ = f and |¥| = w;.
Then there exists a function A € ¥ such that |domain(h) N E| = w,.
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