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Jacek Cichoń, Jakub Lemiesz, and Marcin Zawada

Institute of Mathematics and Computer Science
Wrocław University of Technology

Poland

Abstract. In this paper we discuss the message complexity of some varia-
nts of the Extrema Propagation techniques in wireless networks. We show
that the average message complexity, counted as the number of messages
sent by each given node, is O (log n), where n denotes the size of the net-
work.
We indicate the connection between our problem and the well known and
deeply studied problem of the number of records in a random permuta-
tion. We generalize this problem onto an arbitrary simple and locally fi-
nite graphs, prove some basic theorems and find message complexity for
some classical graphs such us lines, circles, grids and trees.

1 Introduction

We analyze a synchronous model of communication. At each round each node
(1) receives messages from its neighbors; (2) makes some calculations and fi-
nally (3) sends, if necessary, some messages to its neighbors.

Our main goal is to investigate the message complexity of algorithms based
on Extrema Propagation Techniques discussed and analyzed in [1], [2]. This
technique can be treated as a framework for the construction of efficient al-
gorithms in a distributed environment. For example, in [3] this technique was
adopted to an algorithm for approximate estimation of a size of the network.
The last algorithm was later improved in [4], where the balls and urns model
used in [3] was replaced with independent Bernoulli trials in order to obtain a
provable precision of proposed algorithm. In this paper we will show that the
message complexity of one node for algorithms based on the Extrema Propaga-
tion Technique is logarithmic in the network size.

In Section 2 we consider a distributed algorithm which computes minimum
from random numbers generated by nodes. In Section 3 we extend our dis-
cussion to a distributed algorithm which determines kth order statistics from
numbers generated randomly by nodes, which was used in [3] for the estima-
tion of the cardinality of a wireless network. Theorem 1 and Proposition 1 are
known. The remaining results are presumably original.

? Supported by grant N N206 369739 of the Polish National Science Center



We assume that each node in considered networks can calculate a random
real number uniformly in the interval [0, 1] and that this generators are inde-
pendent.

1.1 Notation and Basic Definitions

We model a network as a simple directed graph G =(V, E), i.e. V is a nonempty
set and E ⊆ V × V \ {(v, v) : v ∈ V}. By d(x, y) we denote the length of a
shortest directed path from x to y. If there is no such path, then we put d(x, y) =
∞. Let x ∈ V and r ≥ 0. We put B(x, r) = {y ∈ V : d(x, y) < r}, D(x, r) =
{y ∈ V : d(x, y) ≤ r} and S(x, r) = {y : d(x, y) = r}. Observe that D(x, 0) =
S(x, 0) = {x}. The diameter of a graph G is the number ∆ = sup{d(x, y) : x, y ∈
V}.

In this paper we shall consider only locally finite graphs, i.e. we shall as-
sume that for all x ∈ V and r ≥ 0 we have |D(x, r)| < ∞.

Let us recall that the nth harmonic number is defined by Hn = ∑n
k=1

1
k

and that Hn = ln(n) + O(1). We will also use the standard extension of the
function Hn to the complex plane defined, for example, by the formula Hz =
∑j≥1 z/(j(z + j)). The Euler Beta function is defined by the formula B(a, b) =∫ 1

0 ta−1(1− t)b−1dt for <(a) > 0 and <(b) > 0. We will use the following iden-
tity B(a, b) = Γ(a)Γ(b)/Γ(a + b). By (x)k we denote the factorial power of x, i.e.
(x)k = ∏k−1

j=0 (x− j). By |A| we denote the cardinality of the set A.

2 Propagation of Minimal Number

We start our investigations from the following algorithm (see [1], [2]) of propa-
gation of minimal value of randomly generated real numbers (the pseudo-code
of this algorithm is shown at Listing 1):

1. Initially each node x ∈ V selects independently at random a real ξx from
the interval [0,1] according to uniform distribution and sends it to all y ∈ V
such that {x, y} ∈ E.

2. At each round each node listens to information sent by nodes S ⊆ {y :
(x, y) ∈ E} and if S 6= ∅ and ξx > min{ξy : y ∈ S} then
(a) it puts ξx = min{ξy : y ∈ S}
(b) it sends ξx to all y ∈ V such that {x, y} ∈ E.

Let G = (V, E) be the communication graph of considered network, i.e.
{x, y} ∈ E if the node x can directly communicate with the node y. Let us
assume for the moment that the graph G is strongly connected. Let ∆ denotes
the diameter of the graph G. It is easy to see that after ∆ rounds for all nodes
x ∈ V we have ξx = min{ξy : y ∈ V}. Therefore, this algorithm may be used,
for example, for leader election in connected networks.



Algorithm 1
Initialization:
1: ξ := Random(0, 1)
2: broadcast 〈ξ〉 to neighbors

At each round:
1: gather {ηi}i∈S from all neighbors
2: x = min{ηi : i ∈ S}
3: if x < ξ then
4: ξ := x
5: broadcast 〈ξ〉 to neighbors
6: end if

The first goal of our paper is to investigate the message complexity of this
algorithm. Let us fix a graph G = (V, E) and x ∈ V. We say that the node
x transmits at the round r if the part (1) or the part (2b) of the considered
algorithm is executed during the rth round. Let Mx,r denote the event “node x
transmits at the rth round”. Notice that Pr[Mx,0] = 1 (each node transmits at
initialization step) and that for r > 0 we have

Pr[Mx,r] = Pr[min{ξb : b ∈ S(x, r)} < min{ξb : b ∈ B(x, r)})] .

Theorem 1. Let G = (V, E) be a simple directed graph and let x ∈ V. Suppose that
S(x, r) 6= ∅. Then the events Mx,1, . . . Mx,r are independent and

Pr[Mx,r] =
|S(x, r)|
|D(x, r)| .

This theorem can be deduced from [5]. We give here a short and self con-
tained proof of it.

Proof. Let (ξv)v∈V be a family of independent uniformly distributed random
variables in the interval (0, 1). Suppose that the theorem is true for a number
r and that S(x, r + 1) 6= ∅. Notice that the event Mx,r+1 holds if and only if
minv∈S(x,r+1) ξv < minv∈D(x,r) ξv.

Let a = |S(x, r + 1)|, b = |B(x, r + 1)|, let X = minv∈S(x,r+1) ξv and Y =

minv∈D(x,r) ξv. Then Pr[X > t] = (1− t)a for t ∈ (0, 1), therefore the function
φX(t) = a(1− t)a−1 is the density function of the random variable X. Hence

Pr[Mx,r+1] =
∫ 1

0
Pr[X < Y|X = t]φX(t)dt =

∫ 1

0
(1− t)ba(1− t)a−1dt =

a
a + b

,

therefore Pr[Mx,r+1] =
a

a+b = |S(x, r + 1)/|D(x, r + 1)|.
Let C denote a conjunction of events of a form (±Mx,1) ∧ . . . ∧ (±Mx,r),

where +Mx,i denotes Mx,i and −Mx,i denotes ¬Mx,i. Observe that

(C ∧Mx,r+1 ∧ (X = t))↔ (C ∧ (Y > t) ∧ (X = t))



and that Pr[C ∧ (Y > t)] = Pr[C] · (1− t)b. Therefore

Pr[C ∧Mx,r+1] =
∫ 1

0
Pr[C ∧Mx,r+1|X = t]a(1− t)a−1dt =∫ 1

0
Pr[C](1− t)ba(1− t)a−1dt = Pr[C]

a
a + b

,

hence the event Mx,r+1 is independent from events {Mx,1, . . . , Mx,r}. ut

Let MCx;G denote the number of times when the part (1) or (2b) of the con-
sidered algorithm is executed. Notice that the energy consumption of sending
message is much higher than the cost of listening. Hence this number may be
treated as the message complexity of the considered algorithm for the node x.
Observe that

MCx;G = ∑
r≥0

1Mx,r .

Therefore the random variable MCx;G can be expressed as a sum ∑r≥0 ξr of

independent Bernoulli random variables with mean |S(x,r)|
|D(x,r)| . Hence

E (MCx;G) =
∞

∑
r=0

|S(x, r)|
|D(x, r)| (1)

and

var (MCx;G) =
∞

∑
r=1

|S(x, r)|
|D(x, r)|

(
1− |S(x, r)|
|D(x, r)|

)
. (2)

Example. Let us consider the line graph Ln, i.e. let n > 0, V = {1, 2, . . . , n} and
E = {(a, b) ∈ V × V : 1 ≤ a, b ≤ n, |a− b| = 1}. Note that |D(1, r)| = r + 1,
|S(1, r)| = 1 for r < n. Therefore the random variable Ln = MC1;Ln has the same
distribution as a sum ∑n

k=1 Xk of independent random variables, where Xk is a
Bernoulli random variable such that E (Xk) = 1

k . Hence the random variable
Ln has the same distribution as a well studied number of records in random
permutation (see [6]). Thus E (Ln) = Hn and (see e.g. [7]) the normalized ran-
dom variable (Ln−Hn)/

√
Hn converges in distribution to the standard normal

distribution.

2.1 Arbitrary Finite Graphs

It is clear that 1 ≤ MCx;G ≤ 1 + max{r : S(x, r) 6= ∅}. Here we give other
bounds:

Theorem 2. For any finite graph G = (V, E) and any vertex x ∈ V we have

2− 1
N
≤ E (MCx;G) ≤ HN ,

where N = |B(x, ∞)|.



Notice that B(x, ∞) is the set of all nodes from which the node x can obtain
any message hence it is the connected component of the graph G to which the
node x belongs.

Proof. Let Z = B(x, ∞) \ {x}. Then Pr[minz∈Z ξz < ξx] =
N−1

N and any message
ξa such that ξa = minz∈Z ξz will be eventually transmitted to the node x. This
proves the first inequality.

We prove the second inequality using a series of simple transformations of
the original graph (V, E). Observe that if |S(x, r)| ≤ 1 for all r ≥ 1 then (V, E)
is a line graph with the vertex x at its end. Suppose hence that |S(x, r)| ≥ 2 for
some r ≥ 1. Let a ∈ S(x, r). We perform the following transformations:

1. remove all edges adjacent to a,
2. remove all edges joining S(x, r) with S(x, r + 1),
3. add new edges {{a, x} : x ∈ S(x, r)) ∪ S(x, r + 1)}

LetH = (V, E′) be the resulting graph. Due to inequality (b ≥ 1, c ≥ 2)

c
b + c

<
c− 1

b + c− 1
+

1
b + c

we have E (MCx;G) < E (MCx;H). After a finite number of such transformations
we obtain the line graph with n vertices with the vertex x at its end which was
discussed at the end of the previous section. ut

Let us note that the lower limit from Theorem 2 is reached in the complete
graph, and that the upper limit is achieved by the boundary vertex in the line
graph.

2.2 Infinite Graphs

Let us consider an arbitrary locally finite graph G = (V, E) and x ∈ V. Let
Lx,n = ∑n

r=0 Xr, where Xn are independent Bernoulli random variables such
that E (Xr) = pr where pr = |S(x, r)|/|D(x, r)|. Then E (Lx,n) = 1 + p1 + . . . +
pn. Since var (Xr) < 1 for each r we may apply the Strong Law of Large Num-
bers (see e.g. [8], Thm. 22.4) to the sequence Xr and deduce that

Pr[ lim
n→∞

1
n
(Lx,n − E (Lx,n)) = 0] = 1 .

Example. Suppose that |D(x, r)| = 2r2
. Then |S(x, r)| = 2r2 − 2(r−1)2

for r > 0,
so E (Lx,n) = n + 1

3 + 2
3

1
4n . Hence

Pr[ lim
n→∞

Lx,n

n
= 1] = 1 .

The following result is a reformulation of a result formulated in Exercise
20.12 from [8]:



Proposition 1. If S(x, r) 6= ∅ for each r, then Pr[limn→∞ Lx,n = ∞] = 1.

Proof. Let (V, E) be a fixed infinite, locally finite graph. Let (ξv)v∈V be a family
of independent random variables uniformly distributed in [0, 1]. Notice that

lim
n→∞

Lx,n < ∞ ≡ (∃r)
(

min
v∈D(x,r)

ξv < min
v∈V\B(x,r)

ξv

)
.

For each fixed r the event minv∈D(x,r) ξv < minv∈V\B(x,r) ξv has probability null,
since the set D(x, r) is finite and the set V \ B(x, r) is infinite. ut

The trivial inequality Lx,n ≤ 1 + n can be improved:

Proposition 2. E (Lx,n) ≤ 1 + n
(

1− n
√

1
|D(x,n)|

)
Proof. Let pr = |S(x, r)|/|D(x, r)| and qr = 1− pr. Then

qr = |D(x, r− 1)|/|D(x, r)|

for r > 0. Therefore q1 · . . . · qn = 1/|D(x, r)|. From the inequality of arithmetic
and geometric means we get q1 + . . . + qn ≥ n/ n

√
|D(x, n)|. Hence, E (Lx,n) =

1 + ∑n
r=1(1− qr) ≤ 1 + n− n/ n

√
|D(x, n)|. ut

Example. Let us consider an infinite complete binary tree T = (V, E) and let
x ∈ V be its root. Note that |D(x, r)| = 2r+1 − 1. Then, from Proposition 2 by
the simple calculation we get E (Lx,n) ≤ f (n), where

f (n) = 1 + n
(

1− 1
2 n
√

2

)
=

n
2
+ 1 +

ln 2
2

+ O
(

1
n

)
.

Note that 1 + ln 2
2 ≈ 1.3466 . One can verify that this upper bound is sharp.

Namely, by some technical manipulation in this case we are able to show that
E (Lx,n) =

n
2 + α + O (2−n), where α ≈ 1.3033.

There are a lot of examples of infinite graphs where |S(x, r)|/|D(x, r)| =
Θ( 1

r ) when r runs to infinity - natural examples of such graphs are the grid-like
graphs of arbitrary dimension.

Theorem 3. Suppose that |S(x, r)|/|D(x, r)| = Θ( 1
r ). Then E (Lx,n) = Θ(ln n)

and the random variable (Lx,n − E (Lx,n))/
√

var (Lx,n) converges in distribution to
the standard normal variable.

Proof. Let xr = |S(x, r)|/|D(x, r)|. From the assumption xr = Θ( 1
r ) we deduce

that ∑n
r=0 xr = Θ(ln n) and ∑n

r=0 x2
r = O (1). This implies that E (Ln) = Θ(ln n)

and var (Ln) = ∑r xr(1 − xr) = Θ(ln n). Thus the Lindeberg condition (see
e.g. [8]) is satisfied, so we may apply Central Limit Theorem. ut



2.3 Examples

In this section we shall study message complexity of Algorithm 1 on some clas-
sical graphs. Equation 1 gives a possibility to estimate the expected value and
variance of the random variable MCx;G for many graphs with any required pre-
cision. For example, if Cn denotes the complete graph with n vertices then for
any x ∈ Cn we have E (MCx;Cn) = 2− 1

n and var (MCx;Cn) =
n−1
n2 .

Line graph Let us consider once again the line graph Ln, i.e. let V={1, 2, . . . , n}
and E = {(a, b) ∈ V × V : 1 ≤ a, b ≤ n, |a− b| = 1}. For an arbitrary number
1 ≤ a ≤ n/2 we have

E (MCa;Ln) = 1 +
a−1

∑
k=1

2
2k + 1

+
n

∑
k=2a

1
k

.

Hence

E
(

MCb n
2 c;Ln

)
= Hn − ln

e
2
+ O

(
1
n

)
≈ Hn − 0.306853 + O

(
1
n

)
.

At Fig. 1 we plot the diagram of the function f (a) = E
(
MCa;L100

)
for a =

1, . . . , 100. We observe that the maximum value of f is achieved at ends of the
graph Ln.

Circle Let Cn denote the circle graph with n vertices. If n = 2k + 1 then for each
x ∈ Cn we have

E (MCx;Cn) = 1 +
k

∑
a=1

2
2a + 1

= Hk+ 1
2
+ log

4
e
= Hn − ln

e
2
+ O

(
1
n

)
.

For n = 2k we obtain a similar formula

E (MCx;Cn) = Hk− 1
2
+ log

4
e
+

1
n
= Hn − ln

e
2
+ O

(
1
n

)
.

Grid Let Gn denote the grid graph with vertices V = {1, . . . , n} × {1, . . . , n}
and edges E = {{(x, y), (x′, y′)} : |x − x′|+ |y− y′| = 1}. Theorem 2 implies
that E

(
MC(a,b);Gn

)
≤ Hn2 for each vertex (a, b) ∈ V.

Proposition 3. Let n = 2k− 1 and N = n2. Then

(a) E
(

MC(1,1);Gn

)
= HN − δ1 + O

(
1√
N

)
where δ1 ≈ 0.729637 ,

(b) E
(

MC(k,k);Gn

)
= HN − δ2 + O

(
1√
N

)
where δ2 ≈ 1.415467 .
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Fig. 1. Plot of E
(
MCa;L100

)
for a= 1,. . . ,100

Fig. 2. Plot of E
(

MC(a,b);G20

)
for a, b ∈

{1, . . . , 20}

Proof. (a) Let us consider the vertex v = (1, 1) and let us define S r2
r1 (x) =

∑r2
r=r1

|S(x,r)|
|D(x,r)| . Then E (MCv;Gn) = S

n−1
0 (v) + S2n−2

n (v) where (see Fig. 3)

Sn−1
0 (v) =

n−1

∑
r=0

r + 1
1
2 (r + 1)(r + 2)

= 2(Hn+1 − 1)

and

S2n−2
n (v) =

n−1

∑
r=1

n− r
1
2 n(n + 1) + r

(
n− r+1

2

) = ln 2 + O
(

1
n

)
.

Hence,

E (MCv;Gn) = 2Hn+1− 2+ ln 2+O
(

1
n

)
= Hn+1 +(γ− 2+ ln 2)+O

(
1√
N

)
.

(b) Let us now consider the vertex v = (k, k). In a similar way we split the
required sum into two parts E (MCv;Gn) = 1 + Sk−1

1 (v) + Sn−1
k (v) and check

that

Sk−1
1 (v) =

k−1

∑
r=1

4r
1 + 2r(r + 1)

= HN + c + O
(

1√
N

)
,

where c = −3.108614341 . . . and

Sn−1
k (v) =

k−1

∑
r=1

4(k− r)
(1− 2k + 2k2) + (−2 + 4k)r− 2r2 = ln 2 + O

(
1√
N

)
.

Finally we have 1− 3.108614341 + ln 2 = −1.415467160 . . ..



Fig. 3. Division of the graph G7 into layers depending on the distance from the vertex
(1, 1) and from the vertex (4, 4).

At Fig. 2 we plot the diagram of the function f (a, b) = E
(

MC(a,b);G20

)
for

all a, b = 1, . . . , 20. We may observe that the maximum value of f is achieved at
”corners” of the graph G20.

3 Propagation of Order Statistics

In [3] and [4] a protocol for wireless networks which propagate kth order statis-
tics of real numbers randomly generated by nodes was used for estimation of
the size of a network. Here is the description of the transmission part of this
algorithm:

1. Initially each node v ∈ V sets Xv[1..k] = (1, 1, . . . , 1), selects a random num-
ber ξv ∈ (0, 1), puts Xv[1] = ξv and sends Xv to all its neighbors.

2. At the beginning of each round the node v makes a copy Y = Xv; next
with each obtained array Z from a neighbor the node v makes the following
operation: Xv = sort(Xv ⊕ Z)[1, . . . , k] (where ⊕ denotes the concatenation
of arrays); finally, at the end of the round, if Xv 6= Y then node v sends the
array Xv to all its neighbors.

The pseudo-code of this algorithm is shown at Listing 2. Let us note that the
case k = 1 was considered in previous section.

Lemma 1. Let A, B ⊆ V, |A| = a, |B| = b, A ∩ B = ∅. Suppose that 1 ≤ k ≤ a.
Let (ξv)v∈A∪B be a family of independent random variables uniformly distributed in
(0, 1). Let ξ1:a ≤ . . . ≤ ξa:a be the order statistics generated by (ξv)v∈A. Then

Pr[min
v∈B

ξv < ξk:a] = 1−
(a

k)

(a+b
k )

.



Algorithm 2
Initialization:
1: X := (1, . . . , 1)︸ ︷︷ ︸

k
2: X[1] := Random(0, 1);
3: broadcast X to neighbors

At each round:
1: Y := X;
2: for every obtained array Z from neighbors do
3: append Z to X;
4: sort X;
5: X := X[1 . . . k];
6: end for
7: if X 6= Y then
8: broadcast X to neighbors;
9: end if

Proof. Let us recall (see e.g. [9]) that the density of the kth order statistic de-
rived from a sequence (ξ1, . . . , ξa) of independent random variables uniformly
distributed in (0, 1) is given by the formula fk:a(t) = B(k, a− k + 1)−1tk−1(1−
t)a−k. Let η = minv∈B ξv. Notice that Pr[η < t] = 1 − (1 − t)b and that η is
independent from ξk:a. Therefore

Pr[η < ξk:a] =
∫ 1

0
(1− (1− t)b)

1
B(k, a− k + 1)

tk−1(1− t)a−kdt =

1− 1
B(k, a− k + 1)

∫ 1

0
tk−1(1− t)a+b−kdt = 1− B(k, a + b− k + 1)

B(k, a− k + 1)
.

ut

Let MC(k)
x denote the number of rounds in which the node x ∈ V sends a

message. Observe that if |D(x, ∞)| ≤ k then

MC(k)
x = 1 + max{r : S(x, r) 6= ∅} .

Theorem 4. Suppose that |D(x, ∞)| > k. Let s = min{r : |D(x, r)| ≥ k} and
m = max{r : S(x, r) 6= ∅}. Then

MC(k)
x =

m

∑
r=0

ξr ,

where (ξr)r=0,...,m is a sequence of independent Bernoulli trials such that E (ξr) = 1
for r ≤ s and

E (ξr) = 1−
(|D(x,r−1)|

k )

(|D(x,r)|
k )

for r > s.



Proof. Notice that while |D(x, r)| ≤ k then from each sphere S(x, j) where j ≤ r
some new information about the kth statistic will be obtained with probability
1. If r > s then the node x has gathered at least k different values from nodes
from ball B(x, r). Hence, its register changes its contents if minv∈S(x,r) ξv <

Xv[k]. So we may apply Lemma 1 and deduce that this happens with proba-
bility

1−
(|B(x,r)|

k )

(|B(x,r)|+|S(x,r)|
k )

= 1−
(|D(x,r−1)|

k )

(|D(x,r)|
k )

.

The proof of independence of constructed random variables follows the same
lines as in the proof of Theorem 1 of the corresponding fact. ut

Example. Let us again consider the vertex x = 1 of the line graphLn={1, . . . , n}.
Recall that |D(1, r)| = r + 1. Let us suppose that k < n. Therefore we have
min{r : |D(1, r)| ≥ k} = k− 1 and from Theorem 4 we get

E
(

MC(k)
1

)
= k +

n−1

∑
r=k

(
1−

(r
k)

(r+1
k )

)
= k +

n−1

∑
r=k

k
r + 1

= k (Hn −Hk + 1) .

The next result is a generalization of Theorem 2 onto the case of kth order
statistics.

Theorem 5. Let k ≥ 2. Suppose that N = |D(x, ∞)| > k. Then

2 ≤ E
(

MC(k)
x

)
≤ k (HN −Hk + 1) .

Proof. The proof follows the same lines as the proof of Theorem 2: we transform
original graph as long as we get a line graph and use the inequality

1−
(a

k)

(a+b
k )

< 1−
(a

k)

(a+b−1
k )

+ 1−
(a+b−1

k )

(a+b
k )

which holds for k ≥ 2. ut

Let us now consider an infinite graph. Suppose that s and the sequence
(ξr)r=0,1,... are defined similarly as in Theorem 4 and let us denote Lk

x,n = ∑n
r=0 ξr.

Theorems 4 and 6 presented below can be proved in the analogous way as the
corresponding theorems in Section 2.2.

Proposition 4. E
(

Lk
x,n

)
≤ 1 + s + (n− s)

(
1− n−s

√
|D(x,s)|k
|D(x,n)|k

)
Proof. Note that

E
(

Lk
x,n

)
= 1 + s + (n− s)−

n

∑
r=s+1

(1− ξr) .



From the inequality of arithmetic and geometric means we get

n

∑
r=s+1

(1− ξr) ≥ (n− s) n−s

√
|D(x, s)|k
|D(x, n)|k

.

Theorem 6. Suppose that |S(x, r)|/|D(x, r)| = Θ( 1
r ). Then E

(
Lk

x,n

)
= Θ(ln n)

and the random variable (Lk
x,n − E

(
Lk

x,n

)
)/
√

var
(

Lk
x,n
)

converges in distribution to
the standard normal variable.

Proof. Note that from the fact that |S(x, r)|
/
|D(x, r)| = Θ(1/r) we can easily

deduce that 1− |D(x,r−1)|k
|D(x,r)|k = Θ(1/r) . One can also check that above relation

holds if we replace power k by the falling factorial k.

3.1 Examples

Circle Let us consider the circle graph CN where N = 2n + 1. Let x be any
vertex from this graph. Then |D(x, r)| = 2r + 1 for r ≤ n, so

E
(

MC(k)
x

)
= m +

n

∑
r=m+1

(
1−

(2r−1
k )

(2r+1
k )

)
,

where m =
⌈

k−1
2

⌉
. After some simplification we get

E
(

MC(k)
x

)
= m +

n

∑
r=m+1

(
k
2r

+
k

2r + 1
− k2

2r(2r + 1)

)
=

m + k(HN −H2m+1)− k2
n

∑
r=m+1

1
2r(2r + 1)

=

m + k(HN −H2m+1) + k2(Hm −Hm+ 1
2
) + O

(
1
N

)
.

Therefore, E
(

MC(k)
x

)
≈ k

2 + k(HN −Hk)− k, so E
(

MC(k)
x

)
≈ k(HN −Hk − 1

2 ).

Grid Let us consider the set Vn = {(x, y) ∈ N × N : |x| + |y| ≤ n}, En =
{((x, y), (x′y′)) : |x − x′| + |y − y′| = 1} and the vertex v = (0, 0). Let Gn =
(Vn, En). Then, for all r ≤ n we have |D(v, r)| = 1+ 2r+ 2r2. Applying Theorem
4 to the graph Gn we get

E
(

MC(2)
v

)
= 2 +

n

∑
r=2

(
1− (1− 2r + 2r2)2

(1 + 2r + 2r2)2

)
= 2 +

n

∑
r=2

2 + 8r2

1 + 3r + 4r2 + 2r3 .

After some transformations we obtain

E
(

MC(2)
v

)
= 4 ·Hn − 5.62667 . . . + O

(
1
n

)
.



Notice that the average message complexity in this case very close to the upper
bound

2(H2+2n+2n2 −H2 + 1) = 4 ·Hn − 0.768137 . . . + O
(

1
n

)
.

given by Theorem 5. In a similar way we can show that for an arbitrary k

E
(

MC(k)
v

)
= (2k) ·Hn + O (1) ,

in the graph Gn when n→ ∞.

Tree

Let Tn be a complete binary tree of depth n rooted at node v. Let us recall that
|D(v, r)| = 2r+1 − 1 and let us set s = min{r : 2r+1 − 1 ≥ k}. Then, from Theo-
rem 4 we have

E
(

MC(k)
v

)
= 1+ s+

n

∑
r=s+1

(
1− (2r − 1)k

(2r+1 − 1)k

)
= 1+n−

n

∑
r=s+1

(
2−k + O

(
2−r)) .

Hence, we obtain

E
(

MC(k)
v

)
= (1− 2−k)n + O (1) = αkH(2n+1−1) + O (1) ,

where αk ≤ 1.4427. Observe that in the upper bound given by Theorem 5 the
corresponding constant is equal to k.

4 Summary

We analyzed a message complexity of two algorithms based on the Extrema
Propagation Techniques - a simple algorithm and an algorithm gathering kth
order statistics. We showed that the average message complexity for each node
in both algorithms is of order O (log n), where n denotes the size of the network.

Note that while considering the records of i.i.d. continuous random vari-
ables only the relative order of their outcomes matters (see e.g. [10]). Hence, it
is straightforward to observe that the presented results hold for any random
variables with a common continuous distribution function. Thus, they can be
widely applied. For instance, in [2] Shah et al. consider a general framework for
a distributed computing of separable functions, which is based on finding the
minimum of exponential random variables.
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