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Abstract

In this paper we discuss three kind of routing strategies
for wireless networks where the positions of nodes are fixed,
which is a typical situation in sensor networks. We describe
a strategy for finding optimal deterministic strategies and
solve explicitly the problem of optimal strategies for some
simple but canonical cases when nodes are placed on a line.
Next we describe the notion of probabilistic strategies and
improve a result from [4] giving a precise formula for a cost
of an optimal probabilistic strategies for the nodes placed
at equal distances on a line. Finally we introduce the notion
of mixed strategies and show some its applications.
Keywords: Sensor Network; Placement Strategy; Energy
Cost; Transmission Range; Routing

1 Introduction

Wireless sensor networks (WSNs) may become the cru-
cial component of the information infrastructure in indus-
trial control, environmental monitoring and human life res-
cue operations, as well as in security systems. For this rea-
son a lot of research has been devoted to diverse issues re-
lated to deployment of sensor networks. In WSNs, beside
the critical research problems such as energy consumptions
and network capacity planning, network routing efficiency
stands out as the pivotal factor [5].

In this paper we focus on a set of wireless sensors and
onesinkstation. The problem that we address here is

how to route messages from the sensors to the
sink so that the energy resources of battery op-
erated sensors are used in the optimal way.

We assume that sensors are not mobile, so we are able to
design the optimal routing strategy in advance using high
computational power. We do not consider the energy cost
of the sink - we suppose that the sink is plugged into an
electric network. We do not include in our model the energy
costs of sensing and receiving information.

Notation. By S we denote the set of all sensors (nodes),
by C the set of sinks (called also collectors), and we put
A = S ∪ C. We also assume that the cost of sending
a message fromx to y is E(x, y), whereE : S × A →
[0,∞) ∪ {∞}, andE(x, y) = 0 if and only if x = y. Let
Eini : S → (0,∞) be the initial energy of each sensor.
Finally, functionI : S → (0,∞) describes the number of
messages generated by a node in a fixed periodT of time
(see [1]). Hence a sensor network is described by a tuple
(S, C, E, Eini, I).

Notice that in the most natural settings the setA is a sub-
set of three dimensional spaceR3. It is usually assumed
that (after some rescaling)E is of the form E(x, y) =
(de(x, y))α if de(x, y) ≤ R andE(x, y) = ∞ if de(x, y) >
R, wherede is the euclidean distance,α is called expo-
nent, andR is the maximal transmission distance. The value
α = 2 corresponds to a vacuum andα close to4 describes
a heavily industrialized environment.

We assume that each sensor periodically sends a message
to the sink. We assume that the period is the same for all
sensors and that initially all sensors have an amount of en-
ergy, which is relatively high compared to the cost of send-
ing one message. In this paper we are interested inmaxi-
mizing the life-time of the whole net of sensors - failure of
a single node is treated as a failure of the whole network.

The transmission graphTr(N) of a network N =
(S, C, E, Eini, I) is the directed graph(A, Ẽ), whereẼ =
{(x, y) ∈ S×A : E(x, y) < ∞}). We say thatN is feasible
if for each nodex ∈ Ω there is a path fromx to some sink
in Tr(N).

Let us fix a finite sequence0 = x0 < x1 ≤ ... ≤ xn, let
x = (x1, x2, . . . , xn) and let

Tx,α,Eini = ({x1, . . . , xn}, {0}, |x− y|α, Eini, 1) .

We call the structureTx,α,Eini aTransmission Linewith n
points and one sink with parameterα. In this paper we show
some results about this kind of networks. A special kind
of such networks isLn,α,Eini

= T(1,2,...,n),α,Eini
and we

call this structure aSimple Transmission Line. We shall
omit in this notation the initial energyEini if Eini will be
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constant.

2 Deterministic Strategies

Let N = (S, C, E, Eini, I) be a network and letTr(N)
be its transmission graph.

Definition 2.1 A deterministic simple strategy (dss) of the
networkN is a functionσ : S → A such that for eachx ∈ S
the edge(x, σ(x)) belongs toTr(N) and there existsk ≥ 1
such thatσk(x) ∈ C.

A deterministic strategy is a set of paths inTr(N) such
that each node corresponds to a single path originating in
this node and terminating in some sink.

Simply, a dssσ determines for each nodex ∈ S the node
σ(x) wherex sends all messages it obtains and the mes-
sages generated by itself. The condition(∀x ∈ S)(∃k ≥
1)(σk(x) ∈ C) guarantees that each package will be even-
tually delivered to some sink.

A path of a deterministic strategy determines how to
route a message generated in the origin point of the path.
Note that now a node may split its outgoing the traffic (in
general, the paths need not to merge when they meet). A
rationale behind this is that by sending all traffic to a single
node one may overload it – the target node has to send out
the messages obtained from other nodes and the messages
generated by itself.

There is a dss strategyσ for T(x1,...,xn),α that we call
trivial : σ(x1) = 0 andσ(xk) = xk−1 for k = 2, . . . , n, i.e.
each node sends all messages to the next node towards the
sink.

Example 2.1 Let consider the networkL2,2 (the sink
placed at point0, the nodes placed at points{1, 2}, and
E(x, y) = |x − y|2). It is easy to check that there are only
two worth to consider strategies, namely dssσ1 andσ2 de-
scribed by the following picture:

σ1 σ2x x- - x x ?
-

σ1 is a trivial dss. For strategyσ1 node1 uses 2 units of
energy and the node2 uses1 unit of energy at each round.
For strategyσ2 node1 uses 1 units of energy and the node
2 uses4 unit of energy at each round.

2.1 Transformation Into Mixed Integer
Linear Programming

Linear Programming. We make use of Linear Program-
ming (LP) technique (see [3]). Mixed Integer Linear Pro-
gramming (MIP) problem is an LP problem in which some
variables are additionally required to be integer. Let us also

remark that today there are many powerful software pack-
ages that can be used to solve problems LP and MIP, let us
mention GLPK, Mathematica, Matlab, LPSolver etc..

One can formulate the problem of finding the optimal
deterministic routing strategy as a problem of MIP.

For each nodex ∈ S andy ∈ A we introduce an integer
valued variableσxy denoting the number of messages that
are routed fromx to y. We introduce also an upper boundD
on the energy decay for all nodes for executing the strategy.
Then we formulate the following conditions:

• for each sensor the incoming traffic plus the traffic pro-
duced by the node is the outcoming traffic:

I(x) +
∑
z 6=x

σzx =
∑
y 6=x

σxy , (1)

• the energy decay for each node is at mostD, i.e.∑
y 6=x

(
E(x, y)
Eini(x)

· σxy

)
≤ D . (2)

In the above formulation we treat the number
E(x, y)/Eini(x) as a constant corresponding to the
variableσxy.

The strategy to derive the optimal routing strategy is to
change the values ofD and try to solve the MIP problem.
A good point is to start with a trivial strategy and then try
to reduceD. This is motivated by the fact that forα ≥ 2
replacing a link to the next node by a longer link increases
the energy cost of a sender in a substantial way.

Simple Transmission Line. ForLn,2 the trivial dss yields
unbalanced energy cost for the sensors: the one located
closest to the sink has the costn to send all messages,
the second one has the costn − 1, and so on. The last
node has the cost1. One may try to reduce the maximal
cost taking the advantage of the fact that the sensors lo-
cated at2, 3, . . . , n have some reserve of energy. So most
of these sensors may afford to send a message to a larger
distance thereby reducing the cost for the sensors that they
are “jumping over”.

Nevertheless, we the trivial dss is the optimal simple de-
terministic strategy.

Theorem 2.1 For eachn ≥ 1 the trivial routing strategy
for the Simple LineLn,2 is an optimal dss, i.e. there is no
dss with the maximal cost per node at mostn− 1.

Proof. Suppose first thatn > 90. Let us recall that the cost
of the trivial strategy is preciselyn. Assume that there exists
a strategy with maximal cost per node less thann. Then the
node located at1 cannot transmit alln messages from the
network and at least one message comes directly to the sink
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from some node located ata ≥ 2. Of coursea <
√

n since
otherwise the cost of sending just one message would be at
leastn.

The messages from nodes from the set{a, . . . , n} must
be directed to some nodes from the set{0, 1, . . . , a − 1}.
First notice that less thann/a2 messages can be transmitted
by a. Indeed, the transmission rangea is a, i.e. the cost is at
leastm · a2, wherem is the number of messages. Ifk ≥ 1
the nodea + k can direct less thann/(k + 1)2 messages to
{0, 1, . . . , a − 1}. So the total number of messages which
may be transmitted by the network is less than

a +
n

a2
+

n−a−1∑
k=1

n

(k + 1)2
<
√

n +
n

4
+ n

∑
k≥2

1
k2

=

√
n + n(

π2

6
− 3

4
).

But for n > 90 we have
√

n + n(π2

6 − 3
4 ) < n, hence we

obtained a contradiction, which shows that the theorem is
true for alln > 90.

For alln ≤ 90 we have run the program glpsol (which is
a stand-alone LP/MIP solver) from GLPK package for the
MIP problem formulated above and checked that the trivial
strategy is optimal. �

Nevertheless, it seems that the trivial strategy is optimal
in the class of all deterministic strategy forLn,2 for all n ≥
1. Using the program glpsol we check this hypothesis for all
n ≤ 200. Proving this hypothesis seems to be an interesting
mathematical problem.

2.2 Optimal Placement of Sensors on a
Line

We say that a network satisfies ,,Short Jumps Are Better
Hypothesis” (SJBH), if for each1 ≤ a < b ≤ n we have

|xa − xb|α

Eini(xb)
≥

b−1∑
k=a

|xk − xk+1|α

Eini(xk+1)
. (3)

It is easy to check that ifα ≥ 1 and if Eini(xk) = 1 for
eachk, then the networkTx,α satisfies SJBH.

For a given strategyσ let cost(x|σ) denote the energy
decay of sending messages by nodex according to strategy
σ. Let cost(σ) = maxx∈S cost(x|σ). Then bycost [S], the
cost ofS, we meanminσ cost(σ), where the minimum is
takenover all deterministic strategiesfor networkS.

Lemma 2.2 Suppose thatTx,α,Eini satisfies SJBH. Then

cost [Tx,α,Eini
] ≥ 1

n

n∑
k=1

(n + 1− k)
|xk − xk−1|α

Eini(xk)
.

Proof. Let us fix any deterministic strategyη for Tx,α,Eini

and let us consider a message sent from a nodexk. Af-
ter some number of steps this message must reach the
sink placed at point0. Let a0 = xk, a1 = η(ak), . . . ,
am = η(am−1) = 0. We are going to find a lower
bound forCk = |a0 − a1|α/Eini(a0) + . . . + |am−1 −
am|α/Eini(am−1). Let S = {i < m : ai > ai+1}.
ThenCk ≥

∑
{|ai − ai+1|α/Eini(ai) : i ∈ S}. More-

over
⋃
{[ai+1, ai] : i ∈ S} covers the whole interval[0, a0]

and the SJBH hypothesis allow us to replace each jump
from ai to ai+1 by a sequence of short jumps to immedi-
ate predecessors without increasing the valueCk. Hence
Ck ≥

∑k−1
i=0 |xk−i−xk−i−1|α/Eini(xk−i). Hence the sum

of energy consumed by all messages is bounded from below
by

n∑
k=1

k∑
a=1

|xa−1 − xa|α

Eini(xa)
=

n∑
k=1

(n + 1− k)
|xk − xk−1|α

Eini(xa)
.

Hence at least one node must consume at least1
n fraction of

this energy. Therefore

cost(η) ≥ 1
n

n∑
k=1

(n + 1− k)
|xk − xk−1|α

Eini(xa)
,

which finishes the proof. �

2.2.1 Optimal Positions

Let us fixα ≥ 1, let E(x− y) = |x− y|α. Let us define

dk =
(

n

n + 1− k

) 1
α

(4)

and let

xk =
k∑

i=1

dk . (5)

We consider the network

On,α = ({x1, . . . , xn}, {0}, |x− y|α, 1, 1)

where the numbers(xk) are defined by (5) and the trivial
strategyσ. Notice that in particularx1 = 1.

We say that a strategyσ is balanced if there exists a
constantA such that eachx ∈ S we havecost(x|σ) = A.

Theorem 2.3 For eachn ≥ 1 andα ≥ 1 the trivial strat-
egy in the networkOn,α is optimal in the class of of all de-
terministic strategies. Moreover the trivial strategy is bal-
anced andcost [On,α] = n.

Proof. Let σ be the trivial strategy. Notice that the flow
through thekth node in the strategyσ equalsn + 1− k, so

cost(xk|σ) = (n + 1− k)(dk)α = n .
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ThereforeT (σ) = n and the strategyσ is balanced. From
the assumptionα ≥ 1 one can deduce that the networkOn

satisfies SJBH hypothesis, hence from Lemma 2.2 we get

cost [On,α] ≥ 1
n

n∑
k=1

(n + 1− k)|xk − xk−1|α =

1
n

n∑
k=1

(n + 1− k)
n

n + 1− k
= n ,

hencecost [On] = n and the trivial strategy forOn is op-
timal. �

Theorem 2.4 Let Ln denotes the position of last node in
the networkOn,α.

1. If α = 1, thenLn = n(lnn + γ) + 1
2 + O( 1

n ),

2. If α > 1, thenLn = α
α−1n + 1

2 + α
√

nζ
(

1
α

)
+ O( 1

n ).

Proof. Let us recall thatLn = xn =
∑n

k=1 dk, so

Ln = α
√

n
n∑

k=1

1
α
√

n + 1− k
= α
√

n
n∑

k=1

1
α
√

k
.

The numbersHr
n =

∑n
k=1 k−r are called generalized har-

monic numbers. We haveH1
n = ln n+γ+ 1

2n +O( 1
n2 ), and

Hr
n = n−r( n

1−r + 1
2 −

r
12n + O( 1

n3 )) + ζ(r) for 0 < r < 1
(hereγ = 0.5772 . . . is the Euler-Mascheroni constant and
ζ(z) is the Riemann zeta function). Putting these facts to-
gether we get the thesis. �

Let us recall thatζ(z) < 0 for z ∈ [0, 1). We also have
ζ( 1

2 ) ≈ −1.46035. In the caseα = 2 we get by Thm. 2.4
Ln ∼ 2n + 1

2 − 1.46035
√

n, therefore we are able to build
a transmissions line of length almost2n usingn sensors in
which all sensors use the energy in the same rate when the
trivial routing is used.

The networkOn,α is in some sense optimal. Namely,
using backward induction one can prove the following re-
sult:

Theorem 2.5 Let x = (x1, x2, . . . , xn), where0 ≤ x1 ≤
x2 ≤ . . . ≤ xn and letα ≥ 1. Suppose thatcost [Tx,α] ≤
n. Thenxn ≤ Ln, where numbersLn are defined as in
Thm. 2.4.

2.2.2 Optimal Distribution of Energy

Finally, let us consider the network

Sn,α = ({1, . . . , n}, {0}, |x− y|α, Eini, 1)

whereEini(k) = n + 1 − k and the trivial strategyσ. It
is clear that this strategy is balanced andcost(x|σ) = 1 for
eachx ∈ {1, . . . , n}.

Theorem 2.6 If α ≥ 1 then the trivial strategy for the net-
workSn,α is an optimal deterministic strategy.

Proof. It can be shown that the networkSn,α satisfies SJBH
hypothesis. Therefore we are able to apply Lemma 2.2 and
we get

cost [Sn,α] ≥ 1
n

n∑
k=1

(n + 1− k)
1

Eini(xk)
= 1 ,

socost [Sn,α] = cost(σ) for the trivial strategyσ. �

3 Probabilistic Strategies

In this section we define a class of routing strategies
which is wider that the considered in the previous section
deterministic strategies. This strategies are based on proba-
bilistic protocols and implementation of such strategies re-
quires a random number generators of reasonably quality
embedded in the environment of each node.

Let N = (S, C, E, Eini, I) be a fixed formal model of
sensors network. Let us recall that we putA = S ∪ C. Let
PD(A) denotes that set of all probability distributions on
the setA, i.e. PD(A) = {p ∈ [0, 1]A :

∑
x∈A p(x) = 1}.

Definition 3.1 A probabilistic strategyfor a sensor net-
work N = (S, C, E, Eini, I) is a collection(pa)a∈S of ele-
ments fromPD(A) such that(∀a ∈ S)(pa(a) = 0).

Notice that each deterministic strategy may be treated as
a special case of a probabilistic strategy.

Suppose that the time is divided into discrete time slots.
Suppose that at the beginning we haveI(a) messages
placed at nodea. Each message chooses at random a new
destination according to the probabilistic strategy(pa)a∈S:
namely if the current position of a message is a nodex ∈ S,
then its next position is chosen according to the distribution
px. If a message falls into some sink, then it stays there for-
ever. We assume also that all choices made by all messages
are independent. LetN(x, y) denote the expected number
of transmissions from nodex to nodey, Then the numbers
N = (N(x, y))x∈S,y∈A have the following properties:
(F1) for alla ∈ S: N(a, a) = 0
(F2) for alla ∈ S:

I(a) +
∑

x∈S\{a}

N(x, a) =
∑

y∈A\{a}

N(a, y) (6)

The original probabilities may be recovered fromN by the
formulapa(y) = N(a, y)/

∑
z∈A N(a, z).

The property (F2) can be interpreted as a conservation of
flow condition. It can be checked, that when the networkS
is feasible, then the above equalities uniquely determine the
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sequenceN . We call a sequenceN = (N(x, y))x∈S,y∈A a
message flowonS if it satisfies (F1) and (F2).

Similarly as in the case of dss we define thecost func-
tion of a message flowN by the equationcost(a|N ) =∑

y∈A
E(a,y)
Eini(a)N(a, y). Our goal is to minimize the func-

tion
max
a∈S

cost(a|N ) (7)

over the class of all messages flowsN over networkS.

3.1 Translation into LP Problem

We follow [1], [2] and translate this problem into the
language of Linear Programming. For this goal we in-
troduce one variableD for upper bound for energy decay
and we use variables(Nxy)x∈S,y∈A corresponding to values
(N(x, y))x∈S,y∈A. Our goal (7) translates into the follow-
ing linear programming problem:

goal minimize D

s.t. (∀a ∈ S)
(∑

x Nxa + I(a) =
∑

y Nay

)
(∀a ∈ S)

(
D ≥

∑
y

E(a,y)
Eini(a)Nay

)
(∀a ∈ S)(∀y ∈ A)(Nay ≥ 0)

(8)

Let us also remark that we are able to model this situation
when some sensors from considered network have an upper
bound on transmission range. We can use two strategies: (1)
we can eliminate variablesNxy from our model wheny is
not accessible fromx, (2) we can add an additional equation
Nxy = 0 wheny is not accessible fromx.

If the networkS is feasible, then there is a subforest of
Tr(S) with roots inC. This forest defines a dss from which
we obtain one feasible message flow satisfying (8). So there
are feasible solutions of the problem (8).

We say that a message flowN is balanced, if there exists
a constantc such that(∀a ∈ Ω)(cost(a|N ) = c). Balanced
flows use evenly energetic resources of all sensors from the
network, hence optimal balanced solutions are the preferred
ones in planning of routing strategies.

Example 3.1 Let us consider the networkT(0.1,0.2,0.9,1),2

The LP solver glpk gives the following probabilistic strategy

(pa,b)a=1..4
b=0...4

=


1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0.866071 0.133929 0


Hence there are the following jumps:0.01 → 0, 0.2 → 0,
0.9 → 0.2, and1 → 0.9 (with probability 0.133929),1 →
0.2 (with probability 0.866071). The costs of the nodes are,
respectively, 0.01, 0.12, 0.555625, 0.555625, hence the cost
of this network is 0.555625.

The cost of a trivial strategy is 0.98 in this case. The
cost of an optimal deterministic strategy defined by{1 →
0.2, 0.8 → 0.2, 0.2 → 0, 0.1 → 0} is 0.64.

3.2 Simple Transmission Line

We consider once again the Simple Transmission Line
Ln,α The following theorem was proved in [4]:

Theorem 3.1 For each n > 0 there is an optimal bal-
anced probabilistic strategy for the structureLn,2. More-
over, there are only two kind of hops in the optimal solution:
to the sink and to the previous node.

We shall explicitly describe the optimal strategy for the
structureLn and prove the following result:

Theorem 3.2 The cost in the optimal strategy forLn,2 is

n− ((1 +
1
n

)Hn − 2) , (9)

whereHn denotes thenth Harmonic Number.

Let us notice that(1 + 1
n )Hn − 2 > 0 for eachn > 1,

hence the cost of the optimal strategy for the structureLn,2

is smaller thann.
Proof. From Thm. 3.1 we know that the optimal strategy for
Ln is balanced and we know its architecture. LetNi denote
the flow from theith node to the(i− 1)th node and letMi

denote the flow from theith node to the sink0. Notice that
M1 = 0. Moreover for eachi = 1, . . . n− 1 we have

Ni + Mi = 1 + Ni+1 (10)

andNn + Mn = 1. If we put additionallyNn+1 = 0, then
the equationNi+Mi = 1+Ni+1 holds for alli = 1, . . . , n.

Notice that the cost of theith node equalsNi + i2Mi.
Since the optimal flow is balanced, we get

Ni + i2Mi = Ni+1 + (i + 1)2Mi+1 (11)

From Eq. 10 and 11 we deduce that(i + 1)2Mi+1 =
1 + (i2 − 1)Mi and this recurrence can be solved explic-
itly, giving us Mk = (k − Hk)/((k − 1)k). From this we
deduce that the cost the last node equals

Nn + n2Mn = 1−Mn + n2Mn =

2 + n− (1 + n)Hn

n
.

�

A standard approximation of the numberHn yields the fol-
lowing result:

Corollary 3.1 cost [Ln,2] = n− lnn + (2− γ) + O( ln n
n )
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Notice that the cost of one round of transmission in the
trivial routing on the structureLn,2 is preciselyn. There-
fore, the use of the optimal probabilistic routing strategy de-
scribed in [4] give us an improvement of orderlnn. Hence
the sense of using this kind of strategiesis problematic in
this case: we get a slightly better strategy but the protocol
is more complicated. In fact, using the optimal probabilistic
strategy we obtain only one property - all nodes in the net-
work die more of less precisely in the same time, while in
the trivial strategy the first node (i.e. the node with number
1) dies first.

Let us consider the optimal probabilistic routing on the
structureLn,2. Let pn,k denote the probability of rout-
ing from thekth node directly to the sink placed at point
0. Using the above notation we see thatpn,k = Mk

Nk+Mk
.

SinceMk = (k − Hk)/((k − 1)k) and Nk + k2Mk =
2 + n− (1 + 1/n)Hn we get

pn,k =
k −Hk

(k − 1)k((n + 1− k) + (1 + 1
k
)Hk − (1 + 1

n
)Hn)

.

From this equation we can, for example, deduce that ifn
tends to infinity thenpn,n ∼ 1

n . This observation shows
some threats of using probabilistic strategies. Namely, if
the initial energyEini is relatively small (for example if
Eini(x) = n2, i.e. there is a sufficient account of energy
for n rounds of collecting messages by a sink), then due to
probabilistic uncertainty with a quite high probability the
last node will exhaust its energy before thenth round. The
problem in this example disappears, if the initial energy is
essentially larger, for example ifEini(x) = n3 andn ≥ 10.

4 Mixed Strategies

A mixed strategy is a strategy which is a probabilistic
combination of deterministic simple strategies. Instead of
giving precise mathematical definition we shall illustrate
this concept by two examples.

Example 4.1 In Example 2.1 we considered two strategies
σ1 andσ2 for the networkL2,2. We checked thatcost(σ1) =
2 andcost(σ2) = 4. Let us consider the strategyη = 3

4σ1+
1
4σ2. A simple implementation of this strategy is a ,,round-
robin” way: we use 3 timesσ1, then 1 timeσ2 and so on.
The cost of this mixed strategy is1 3

4 . In factη is an optimal
probabilistic strategy forL2,2.

Example 4.2 In Example 3.1 we found an optimal prob-
abilistic strategy for the structureT(0.1,0.2,0.9,1),2. Let us
consider the following two dss for this network:σ1 =
{1 → 0.2, 0.8 → 0.2, 0.2 → 0, 0.1 → 0} and σ2 =
{1 → 0.8, 0.8 → 0.2, 0.2 → 0, 0.1 → 0}. Theσ1 is an
optimal dss andcost(σ1) = 0.64. It is easy to check that
andcost(σ2) = 0.98. Letη = 8

9σ1 + 1
9σ2. The cost of this

mixed strategy is0.577 and the cost of the optimal proba-
bilistic strategy was0.555625. As before, this strategy can
be implemented in a ,,round-robin” way: we use 8 timesσ1,
then 1 timeσ2 and so on.

The above example shows that the notion of mixed rout-
ing strategy with fractional probabilities with small denom-
inators are easy for implementations and may be useful as
an approximations of optimal probabilistic strategies.

Further Works

It would be desirable to extend our investigations to two
dimensional structures. However, this kind of networks pro-
duces large LP problems consuming large computational
resources. Therefore it is essential to reduce size of these
problems by using, for example, symmetries of considered
networks or any theoretical information about the shape of
optimal solutions.

Another interesting area is the problem of approxima-
tion of an arbitrary probabilistic routing strategy by mixed
strategies, which as we shown in Section 4 are easier to im-
plement and behave in a more predictable way than the pure
probabilistic strategies.
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