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Abstract Notation. By S we denote the set of all sensors (hodes),
by C the set of sinks (called also collectors), and we put
In this paper we discuss three kind of routing strategies A = S U C. We also assume that the cost of sending
for wireless networks where the positions of nodes are fixed,a message from: to y is E(z,y), whereE : S x A —
which is a typical situation in sensor networks. We describe [0, c0) U {oo}, andE(z,y) = 0 if and only if x = y. Let
a strategy for finding optimal deterministic strategies and E;,; : S — (0,00) be the initial energy of each sensor.
solve explicitly the problem of optimal strategies for some Finally, function! : S — (0, co0) describes the number of
simple but canonical cases when nodes are placed on a linemessages generated by a node in a fixed péfiad time
Next we describe the notion of probabilistic strategies and (see [1]). Hence a sensor network is described by a tuple
improve a result from [4] giving a precise formulaforacost (S,C, E, E;ni, I).
of an optimal probabilistic strategies for the nodes placed  Notice that in the most natural settings the &é$ a sub-
at equal distances on a line. Finally we introduce the notion set of three dimensional spa&&. It is usually assumed

of mixed strategies and show some its applications. that (after some rescalingy is of the form E(x,y) =
Keywords: Sensor Network; Placement Strategy; Energy (d.(z,y))® if de(z,y) < RandE(z,y) = oo if dc(x,y) >
Cost; Transmission Range; Routing R, whered, is the euclidean distancey is called expo-

nent, andr is the maximal transmission distance. The value
«a = 2 corresponds to a vacuum andclose to4 describes
1 Introduction a heavily industrialized environment.
We assume that each sensor periodically sends a message
to the sink. We assume that the period is the same for all
sensors and that initially all sensors have an amount of en-

cial component of the information infrastructure in indus- hich is relativelv hiah dto th fsend
trial control, environmental monitoring and human life res- ergy, which s re atively 1gh compare tqt € COStO. send-
ing one message. In this paper we are interestedanri-

cue operations, as well as in security systems. For this rea- 2 | he life-t  the Who ; ail ¢
son a lot of research has been devoted to diverse issues réplzmgt e life-time of the whole net of sensors - failure o

lated to deployment of sensor networks. In WSNs beside? single node is treated as a failure of the whole network.
the critical research problems such as energy consumptions The transm|s§|orr1] gdr_aphTI;j(N) of a NnetV\;]ork N =
and network capacity planning, network routing efficiency (S,C, E, Einy, I) is the directed graptw, E), W ereE. -
stands out as the pivotal factor [5]. {(z,y) € SxA: E(z,y) < co}). We say thaN is feasible

In this paper we focus on a set of wireless sensors and!f for each noder € (} there is a path from: to some sink

Wireless sensor networks (WSNs) may become the cru-

onesinkstation. The problem that we address here is in Tr(N). ) .
Let us fix a finite sequende= zy < z1 < ... < x,, let
how to route messages from the sensors to the x = (z1,9,...,z,) and let
sink so that the energy resources of battery op-
erated sensors are used in the optimal way. Txa,Bi0 = ({21520}, {0} |2 — 4|, Bini, 1) -

We assume that sensors are not mobile, so we are able t&Ve call the structurx . z,,, aTransmission Linewith n
design the optimal routing strategy in advance using high points and one sink with parameterIn this paper we show
computational power. We do not consider the energy costsome results about this kind of networks. A special kind
of the sink - we suppose that the sink is plugged into an of such networks ig.,, o z,,, = T(1,2,... n),a,E,,, @Nd We
electric network. We do not include in our model the energy call this structure &imple Transmission Line We shall

costs of sensing and receiving information. omit in this notation the initial energ¥;,,; if E;,; will be



constant. remark that today there are many powerful software pack-
ages that can be used to solve problems LP and MIP, let us
2  Deterministic Strategies mention GLPK, Mathematica, Matlab, LPSolver etc..

One can formulate the problem of finding the optimal
deterministic routing strategy as a problem of MIP.

For each node € S andy € A we introduce an integer
valued variabler,,, denoting the number of messages that
Definition 2.1 A deterministic simple strategy (dss) of the &re routed fromx toy. We introduce also an upper bound
networkN is a functions : S — A such that for each € S on the energy decay for all nodes for executing the strategy.
the edgg(z, o()) belongs toIr(N) and there existé > 1 Then we formulate the following conditions:
such that*(z) € C.

A deterministic strategy is a set of pathsTia(N) such
that each node corresponds to a single path originating in
this node and terminating in some sink. I(z) + Z - Z oy » 1)

z#x y#T

LetN = (S,C, E, E;p;, I) be a network and IeTr(N)
be its transmission graph.

e for each sensor the incoming traffic plus the traffic pro-
duced by the node is the outcoming traffic:

Simply, a dss determines for each nodec S the node
o(x) wherex sends all messages it obtains and the mes-

sages generated by itself. The conditigfy € S)(3k > * the energy decay for each node is at mbst.e.

1)(o*(z) € C) guarantees that each package will be even- E(z,y)
tually delivered to some sink. Z <E .’(x) cr:,;y> <D. 2
A path of a deterministic strategy determines how to yAz N

route a message generated in the origin point of the path.

Note that now a node may split its outgoing the traffic (in In the above formulation we treat the number
general, the paths need not to merge when they meet). AE(z,y)/E;,:(x) as a constant corresponding to the
rationale behind this is that by sending all traffic to a single variableo,,.

node one may overload it — the target node has to send out The strategy to derive the optimal routing strategy is to
the messages obtained from other nodes and the messagebange the values dp and try to solve the MIP problem.

generated by itself. A good point is to start with a trivial strategy and then try
There is a dss strategy for T(,, . ...« that we call to reduceD. This is motivated by the fact that fer > 2
trivial : o(z1) = 0ando(xg) = xx—1 fork =2,...,n, i.e. replacing a link to the next node by a longer link increases

each node sends all messages to the next node towards tHe energy cost of a sender in a substantial way.
sink.
Simple Transmission Line. ForL,, » the trivial dss yields
unbalanced energy cost for the sensors: the one located
closest to the sink has the costto send all messages,
the second one has the cost- 1, and so on. The last
s ) X node has the codt. One may try to reduce the maximal
scribed by thegfollowmg picture: . cost taking the advantage of the fact that the sensors lo-
! z cated a2, 3, ...,n have some reserve of energy. So most
o— 00— £ o—[] of these sensors may afford to send a message to a larger
distance thereby reducing the cost for the sensors that they
o1 is a trivial dss. For strategyr; nodel uses 2 units of ~ are ‘jumping over”.
energy and the nod® usesl unit of energy at each round. Nevertheless, we the trivial dss is the optimal simple de-
For strategyo, nodel uses 1 units of energy and the node terministic strategy.
2 usest unit of energy at each round.

Example 2.1 Let consider the networld.s o (the sink
placed at point0, the nodes placed at poinfd, 2}, and
E(x,y) = |z — y|?). Itis easy to check that there are only
two worth to consider strategies, namely dgsand o, de-

Theorem 2.1 For eachn > 1 the trivial routing strategy
for the Simple Lind.,, » is an optimal dss, i.e. there is no

2.1 Transformation Into Mixed Integer  jqqith the maximal cost per node at most 1.

Linear Programming
Proof. Suppose first that > 90. Let us recall that the cost
Linear Programming. We make use of Linear Program- of the trivial strategy is precisely. Assume that there exists
ming (LP) technique (see [3]). Mixed Integer Linear Pro- a strategy with maximal cost per node less thaithen the
gramming (MIP) problem is an LP problem in which some node located at cannot transmit alh messages from the
variables are additionally required to be integer. Let us alsonetwork and at least one message comes directly to the sink



from some node located at> 2. Of coursex < /n since

Proof. Let us fix any deterministic strategyfor Tx .

ini

otherwise the cost of sending just one message would be aand let us consider a message sent from a ngde Af-

leastn.
The messages from nodes from the get. .., n} must
be directed to some nodes from the §et1,...,a — 1}.

First notice that less than/a? messages can be transmitted
by a. Indeed, the transmission rangés a, i.e. the cost is at
leastm - a?, wherem is the number of messages.Alf> 1
the nodez + k can direct less than/(k + 1)? messages to
{0,1,...,a — 1}. So the total number of messages which
may be transmitted by the network is less than

n—a—1

n —a
B Y i v e T
“ k=1 (k+ 1)? =k
2
\/ﬁ—i—n(%—%)

But for n > 90 we have/n + n(% — 3) < n, hence we

ter some number of steps this message must reach the
sink placed at poind. Let ag Ty, a1 n(ag), .-,
am = n(am—1) = 0. We are going to find a lower

bound forCy = |ag — a1|%/Eini(ag) + ... + |am—1 —
am|0‘/Emi(am,1). Let S = {Z < m : a; > ai+1}.
Thean > Z{|ai — ai+1|a/Eim»(ai) S S} More-

over| J{[ai+1,a;] : i € S} covers the whole intervdd, a]

and the SJBH hypothesis allow us to replace each jump
from a; to a;41 by a sequence of short jumps to immedi-
ate predecessors without increasing the vallye Hence

Cr > X0 |wki—a5—i1|*/ Eini(x1_;). Hence the sum

of energy consumed by all messages is bounded from below
by

ZZ |Ta—1 — la\

k=1a=1 Eini x“

n

=Y (n+1-k)

k=1

| — Tp—1]*
Eini(wa) ’

obtained a contradiction, which shows that the theorem 'SHence at least one node must consume at Raamwon of

true for alln > 90.
For alln < 90 we have run the program glpsol (which is

a stand-alone LP/MIP solver) from GLPK package for the
MIP problem formulated above and checked that the trivial

strategy is optimal.

Nevertheless, it seems that the trivial strategy is optimal

in the class of all deterministic strategy tby, , for all n >

1. Using the program glpsol we check this hypothesis for all
n < 200. Proving this hypothesis seems to be an interestingLet us fixa > 1, let E(z — y) =

mathematical problem.

2.2 Optimal Placement of Sensors on a
Line

We say that a network satisfies ,,Short Jumps Are Better

Hypothesis” (SIBH), if for each < a < b < n we have
Z |l’k - l’k+1|
—u Eznz(karl) '

It is easy to check that ix > 1 and if E;,,;(x;) = 1 for
eachk, then the networklx , satisfies SIBH.

For a given strategy let cost(x|o) denote the energy
decay of sending messages by nedeccording to strategy
o. Letcost(o) = max,es cost(x|o). Then bycost [S], the
cost of S, we meanmin,, cost(c), where the minimum is
takenover all deterministic strategiesfor networksS.

|Za _xb‘a

Eznz ((Eb) (3)

Lemma 2.2 Suppose thal'x . £,,, satisfies SIBH. Then

int
\xk — x|

1 n
cost Bl > — n+1—-k)—————
T n Z:: Eini(2)

this energy. Therefore

n

S 1k

k=1

|z) — 21"

N |k — wpa |
cost(n) > Eini(za)

which finishes the proof.

2.2.1 Optimal Positions

| — y|*. Let us define

Q=

dy,

B n
C\n+1-—k
k

I’k:de

i=1

4)
and let

®)
We consider the network

On,a = ({1'17 e 7$n}a {0}7 ‘l’ - y‘a7 L 1)

where the numberéz;,) are defined by (5) and the trivial
strategyo. Notice that in particulag; = 1.

We say that a strategy is balancedif there exists a
constant4 such that each € S we havecost(z|o) = A.

Theorem 2.3 For eachn > 1 anda > 1 the trivial strat-
egy in the networlO,, ,, is optimal in the class of of all de-
terministic strategies. Moreover the trivial strategy is bal-
anced anctost [O,, ] = n.

Proof. Let o be the trivial strategy. Notice that the flow
through thekth node in the strategy equalsn + 1 — &, so

cost(aglo) = (n+1—k)(dp)* =n.



ThereforeT' (o) = n and the strategy is balanced. From
the assumptiosr > 1 one can deduce that the netwadk,
satisfies SIBH hypothesis, hence from Lemma 2.2 we get

1 n
cost [ |>— (n+1—k)|zy —=x
na_nZ |k kl

n

LS 1- k)

n
k=1

n

n+1—k

:n’

hencecost [O,,] = n and the trivial strategy fo©,, is op-
timal. 0

Theorem 2.4 Let L,, denotes the position of last node in
the networkO,, .

1. Ifa=1,thenL, = n(lnn+7) + 3 + O(%),

2. Ifa>1,thenl, = ;%5

-n+ 1+ ¢n¢ (L) + Of

Proof. Let us recall that.,, = z,, = Y _,_, dx, SO

3=

).

rL—f;\/i_\/»Z%

The numberdd”;, = >~ _, k~" are called generalized har-
monic numbers. We havd! = 1nn+’y+ L +0(%),and

H] =n""(:& +,_m+0( =) +¢(r )for0<r< 1
(herey =0. 5772 . is the Euler-Mascheroni constant and
¢(z) is the Riemann zeta function). Putting these facts to-
gether we get the thesis. O

Let us recall that(z) < 0 for z € [0,1). We also have
¢(3) ~ —1.46035. In the caser = 2 we get by Thm. 2.4
Ly, ~ 2n+ 5 — 1.46035./n, therefore we are able to build
a transmissions line of length almdst usingn sensors in

Theorem 2.6 If o > 1 then the trivial strategy for the net-
work S, , is an optimal deterministic strategy.

Proof. It can be shown that the netwos, ,, satisfies SIBH
hypothesis. Therefore we are able to apply Lemma 2.2 and
we get

n

1 1
cost (S, .] > — n+1l—k)———
Sul 2 3301 =B s

L,

socost [S,, o] = cost(c) for the trivial strategy.

O

3 Probabilistic Strategies

In this section we define a class of routing strategies
which is wider that the considered in the previous section
deterministic strategies. This strategies are based on proba-
bilistic protocols and implementation of such strategies re-
quires a random number generators of reasonably quality
embedded in the environment of each node.

LetN = (S,C, E, E;,,;, I) be a fixed formal model of
sensors network. Let us recall that we pue= SU C. Let
PD (A) denotes that set of all probability distributions on
the setd, i.e.PD (A) = {p € [0,1]*: > ., p(z) = 1}.

Definition 3.1 A probabilistic strategyfor a sensor net-
workN = (S,C, E, E;,;, I) is a collection(p, ) qcs Of ele-
ments fronPD (A) such thatVa € S)(p,(a) = 0).

Notice that each deterministic strategy may be treated as
a special case of a probabilistic strategy.

Suppose that the time is divided into discrete time slots.
Suppose that at the beginning we half:) messages
placed at node. Each message chooses at random a new

which all sensors use the energy in the same rate when thelestination according to the probabilistic stratégy),cs:

trivial routing is used.

The networkO,, , is in some sense optimal. Namely,
using backward induction one can prove the following re-
sult:

Theorem 2.5 Letx = (z1, 22, ...,z,), Wwhere0 < x; <
z2 < ... <z, andleta > 1. Suppose thatost [Tx ] <
n. Thenz, < L,, where numberd,, are defined as in
Thm. 2.4,

2.2.2 Optimal Distribution of Energy
Finally, let us consider the network

Sn,a == ({17 -an}7{0}7|l‘7y|a7Einial)

whereFE;,;(k) = n+ 1 — k and the trivial strategy. It
is clear that this strategy is balanced anst(z|o) = 1 for
eachr € {1,...,n}.

namely if the current position of a message is a nodeS,

then its next position is chosen according to the distribution
p.. If a message falls into some sink, then it stays there for-
ever. We assume also that all choices made by all messages
are independent. L&V (z,y) denote the expected number

of transmissions from nodeto nodey, Then the numbers

N = (N(z,y))zes,yen have the following properties:
(F1)foralla € S: N(a,a) =0

(F2) foralla € S:

Z N(a,y)

yeA\{a}

(6)

The original probabilities may be recovered fr@vhby the
formulap,(y) = N(a,y)/ >_.cp N(a, 2).

The property (F2) can be interpreted as a conservation of
flow condition. It can be checked, that when the netw®rk
is feasible, then the above equalities uniquely determine the



sequenceV. We call a sequenct’ = (N (z,y))zes,yea @
message flown S if it satisfies (F1) and (F2).

Similarly as in the case of dss we define ttwest func-
tion of a message floww" by the equatiorvost(a|N) =
dyeh ]ﬁfi’&))]\f(a,y). Our goal is to minimize the func-

tion

max cost(alN)

a€s

@)

over the class of all messages flasover networks.
3.1 Translation into LP Problem

We follow [1], [2] and translate this problem into the
language of Linear Programming. For this goal we in-
troduce one variablé for upper bound for energy decay
and we use variabldsV,, ) .cs yea COrresponding to values
(N(z,y))zes,yea. Our goal (7) translates into the follow-
ing linear programming problem:

goal minimize D
s.t. (Va S S) Zm Nga + I(a) = Zy Na!l) @8)
(VCL S S) D > Zy EE7(73’(€Z)) Nay

(Va € S)(Vy € A)(N,y > 0)

The cost of a trivial strategy is 0.98 in this case. The
cost of an optimal deterministic strategy defined{lly—
0.2,0.8 — 0.2,0.2 — 0,0.1 — 0} is 0.64.

3.2 Simple Transmission Line

We consider once again the Simple Transmission Line
L, ~ The following theorem was proved in [4]:

Theorem 3.1 For eachn > 0 there is an optimal bal-
anced probabilistic strategy for the structulg, .. More-
over, there are only two kind of hops in the optimal solution:
to the sink and to the previous node.

We shall explicitly describe the optimal strategy for the
structurell,, and prove the following result:

Theorem 3.2 The cost in the optimal strategy f, o is

n— (14 1) H, -2,

©)

whereH,, denotes thexth Harmonic Number.

Let us notice thafl + %)Hn — 2 > 0 foreachn > 1,
hence the cost of the optimal strategy for the struciure

Let us also remark that we are able to model this situationijs smaller tham.

when some sensors from considered network have an uppeproof, From Thm. 3.1 we know that the optimal strategy for
bound on transmission range. We can use two strategies: (1}, s balanced and we know its architecture. Detdenote

we can eliminate variable¥, from our model whery is
not accessible from, (2) we can add an additional equation
N, = 0 wheny is not accessible from.

If the networksS is feasible, then there is a subforest of
Tr(S) with roots inC. This forest defines a dss from which

the flow from theith node to thei — 1)th node and lefi/;
denote the flow from thé&h node to the sink. Notice that
M; = 0. Moreover for eachh = 1,...n — 1 we have

Ni+ M; =1+ N;1q (20)

we obtain one feasible message flow satisfying (8). So there

are feasible solutions of the problem (8).
We say that a message flowis balanced if there exists
a constant such thatVa € Q)(cost(a|A) = ¢). Balanced

andN,, + M,, = 1. If we put additionallyN,,; = 0, then
the equationV; +M; = 1+ N, holdsforalli = 1,...,n.
Notice that the cost of théth node equalsV; + i2M;.

flows use evenly energetic resources of all sensors from theSince the optimal flow is balanced, we get
network, hence optimal balanced solutions are the preferred

ones in planning of routing strategies.

Example 3.1 Let us consider the netwofK.1,0.2,0.9,1),2
The LP solver glpk gives the following probabilistic strategy

10 0 0 0
1o 0 0 0
(Pap)a=ta =1 ¢ ¢ 1 0 0
0 0 0866071 0.133929 0

Hence there are the following jump8:01 — 0, 0.2 — 0,
0.9 — 0.2, and1 — 0.9 (with probability 0.133929)] —

0.2 (with probability 0.866071). The costs of the nodes are,

N; +i?M; = Njjq + (i + 1)° M4 (11)

From Eq. 10 and 11 we deduce th@@t+ 1)2M;,; =

1 + (i2 — 1)M; and this recurrence can be solved explic-
itly, giving us My, = (k — Hy)/((k — 1)k). From this we
deduce that the cost the last node equals

N, +n?M, =1— M, +n’M, =
1 H,
2+n,%.

n O

A standard approximation of the numb#y, yields the fol-
lowing result:

respectively, 0.01, 0.12, 0.555625, 0.555625, hence the cost

of this network is 0.555625.

Corollary 3.1 cost [L, 2] =n—Inn+ (2—v)+ O(22)



Notice that the cost of one round of transmission in the mixed strategy i9.577 and the cost of the optimal proba-
trivial routing on the structuré.,, » is preciselyn. There- bilistic strategy wag$).555625. As before, this strategy can
fore, the use of the optimal probabilistic routing strategy de- be implemented in a ,,round-robin” way: we use 8 tirmgs
scribed in [4] give us an improvement of ordem. Hence then 1 times, and so on.
the sense of using this kind of strategisgproblematic in
this case: we get a slightly better strategy but the protocol ~ The above example shows that the notion of mixed rout-
is more complicated. In fact, using the optimal probabilistic ing strategy with fractional probabilities with small denom-
strategy we obtain only one property - all nodes in the net- inators are easy for implementations and may be useful as
work die more of less precisely in the same time, while in an approximations of optimal probabilistic strategies.
the trivial strategy the first node (i.e. the node with number
1) dies first. Further Works

Let us consider the optimal probabilistic routing on the
structurelL,, ». Let p, ;, denote the probability of rout-

ing from thekth node directly to the sink placed at point di ltWO_UId tl)etdestlrable tHO extend t?}l'” angst;gat{\?vnslio two
0. Using the above notation we see that, — imensional structures. However, this kind of networks pro-

Net My duces large LP problems consuming large computational
i — _ _ 2 = L . .
Since My, = (k — Hy)/((k — 1)k) and Ny, + k"M = resources. Therefore it is essential to reduce size of these
2+ n—(141/n)H, we get . : :
problems by using, for example, symmetries of considered
k— Hy networks or any theoretical information about the shape of
(k—=Dk((n+1—k)+ (14 $)He — (14 2)Hy) -~ optimal solutions.
_ _ . Another interesting area is the problem of approxima-
From this equation we can, 1fOf example, deduce that if  tion of an arbitrary probabilistic routing strategy by mixed
tends to infinity therp,,,, ~ ;.. This observation shows strategies, which as we shown in Section 4 are easier to im-

some threats of using probabilistic strategies. Namely, if plement and behave in a more predictable way than the pure
the initial energyE;,; is relatively small (for example if  propabilistic strategies.

E:ni(x) = n?, i.e. there is a sufficient account of energy
for n rounds of collecting messages by a sink), then due to
probabilistic uncertainty with a quite high probability the
last node will exhaust its energy before thid round. The

problem in this example disappears, if the initial energy is  1he_paper was partially supported by EU Opera-
essentially larger, for example#;,,;(z) = n3 andn > 10. tional Programme Innovative Economy 2007 2013 No

POIG.01.03.01-02-002/08-00 and by the grant No 342346
of the Institute of Mathematics and Computer Science,
Wroclaw University of Technology.
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