
Approximate Counters for Flash Memory
Jacek Cichoń and Wojciech Macyna

Institute of Mathematics and Computer Science
Wrocław University of Technology, Poland

Abstract—
Flash memory becomes the a very popular storage device. Due

to its shock - resistance and power economy is adopted in sensor
networks and embedded systems. Recently more attention is paid
to the data storage in flash memory. This is not a simple issue
due to the limitations of flash memory. Data in flash memory
should be distributed evenly among data blocks. If the number
of writes in a data block is too high, it may cause damage of the
block.

Requirements for highly reliable storage systems include effi-
cient algorithms to maximize its lifetime and tools to predict
it or monitor system status. One way to achieve this goal
is to embed a system of counters which could control block
usage (especially erasing operations). Some solutions of this kind
including necessary algorithms are patented.

In this paper we propose an innovative solution involving
the use of probabilistic counting of the number of block mod-
ifications. Our solution drastically reduces the number of bits
needed to memorize counters. We precisely estimate the space
requirements for the counter, discuss a series of experiments
conforming the correctness of our approach and investigate the
evolution system of counters.

Index Terms—flash memory, approximate counter

I. INTRODUCTION

Flash memory is a very popular storage device. This is
because of its shock - resistance, power economy and non-
volatile nature. In recent years flash memory technology takes
the lead as a main memory component in sensor networks
and embedded systems. There are significant breakthroughs
in the capacity and reliability of that technology. The capacity
of flash memory increases dramatically with the decreasing
cost of such devices. There are flash storage devices of 1
GB on the market and their size will increase. It seems
that storage memory will be a good alternative for hard
disks in many applications. Nowadays flash memory is used
in mobile applications such as PDA devices, cell phones,
music players and so on. There are many promising fields,
where flash memory may be applied. One of the research
directions considers application of flash memory in databases
[1]. A lot of papers consider implementation of the B-tree
or R-tree indexes over flash memory [2], [3]. There are two
types of flash devices: NOR and NAND. The NOR devices
have lower storage capacity, but faster and simpler access
to stored data, so they can be used for program storage.
On the contrary, the NAND devices are able to accumulate
more data, because of their storage capacity. They seem to
be more suitable for data storage and sensor networks. Flash
memory has a completely different architecture from hard
disks. The properties on NAND flash are described in [1]. In

summary, the read and write operations are performed at the
page granularity. One flash memory page has typically 512-
2048 bytes. Pages are organized into blocks; one block consists
of 32 or 64 pages. The first key feature of such memory type
is the way of data erasure. The page can be overwritten only
after the erasing of the entire data block, in which the page
resides. As a consequence, to perform a delete operation all
other pages in the block must be moved to another one. In
different scenario, instead of removing the page, it may be
checked as ”deleted”. Another important issue is the energy
consumption. To write a page the flash memory needs more
energy then to perform the read operation. This is important for
the system with limited energy supply. In such a case using the
energy must be planned optimally. The second feature with the
great impact on the data storage and data manipulation in flash
memory is the endurance issue. A block may be erased about
100000 to 1000000 times. Thereafter it may be worn out and
no more usable. So the write load should be spread over the
memory evenly. To do that, each block should be associated
with a counter, which can record the number of erase events
for this block. Due to these fundamental constraints efficient
storage management is a challenging task. The counter of
the block erase operation number must be maintained space-
efficiently. The naive approach is to store the exact number of
the erase events for each block. It’s not efficient, because it
requires about 21 bits memory per block.

There are several solutions to this problem in the literature.
Most of them appeared as US patents. Some approaches are
based on the maintaining of the exact counters associated with
the erase blocks [4], [5], [6], [7]. Han patented the solution,
which relies on wear estimation using erase latencies. It is
based on the observation that the erase time increases with
wear [8].

In this paper we propose approximate counters for the
measurement of the number of the erase operations performed
on the particular block in flash memory. Approximate counters
may be used in situations when knowledge of a precise number
of occurrences of observed phenomenon is not necessary.
The main advantage of this solution for our purposes is a
significant reduction of the number of bits required for storing
the system of counters.

This paper is organized as follows: in the next section
we describe the problem and propose our solution. In the
third section we show, how to store the data connected with
the approximate counters. In the next section we discuss the

evolution of the system of counters and next we describe
the experiments, which were done to confirm our method
empirically. In the last section we summarized the paper and
described conclusions and possible extensions of our work.

II. PROBLEM FORMULATION

A. Motivation

As we described in the previous section, each block in
flash memory should be written with the similar frequency.
So every single block must be associated with the counter,
which measures the number of erase events. Suppose that the
block wears out after 1 million repeated writes. In that case
the number of bits used for the maintenance of the single
counter is about 21 bits. So if the capacity of the flash is 4
GB, one block consists of 32 pages and every page has 512
bytes, the number of blocks is about 250000. In that case
660000 bytes of the flash memory is needed for the counters.
It makes 0.016 percent of the whole memory. Additionally,
the frequent increment of the counter is also not desirable,
because it needs the modification of the memory block. In
this article we propose the probabilistic counter instead of the
real counter described above. Our counter needs only 5 bits
per block in flash memory. Considering the number of blocks
mentioned above, instead of 1000000 bytes (8000000 bits) we
need about 1250000 bits. The other advantage of our approach
is the update frequency. In the case of the real counter, every
single erase of the block causes the increment of the counter.
Using our probabilistic counter we don’t need to do that so
often.

B. Description of the approximate counter

In our work we use the approximate counting proposed
by Morris [9]. The algorithm makes it possible to keep
approximate counts of large numbers in small counters. As
we explained before for the real counter, which range from 1
to M we need blog2Mc+ 1 bits. So for the counter with the
value up to 1 million we need 21 bits. On the contrary the
approximate counter needs only approximately log2 log2M
bits. In that case we need only 5 bits of flash memory for
the storage for the same range. So it seems to be much more
space efficient than using the real counter.

Now we shall describe the procedure shown in detail in
[10]: The approximate counter, called also sometimes called
as a probabilistic counter, starts with the counter value C
initialized to 0. The process of incrementation of the counter
C is described by the following pseudo-code:
d:= Random([0,1]);
if d < 2−C then

C:= C+1
end if
Let Cn denote the value of the counter C after n consecutive

increments. Then Cn is a random variable and in [9] it was
shown that E[2Cn] = n+2 and var[2Cn] = 1

2n(n+1) (where
E[X] denotes the expected value of a random variable X and
var[X] denotes its variance). Therefore the number 2C − 2

Fig. 1. Storage architecture

is an unbiased estimator of the number of increments n. In a
detailed analysis of the approximate counter done in [10] it
was shown that

E[Cn] = lg2 n+ c+ ω(n) +O

(
1

n0.98

)
, (1)

where c ≈ −0.273954 and ω is a periodic function with period
1, of mean value 0 and amplitude less than 10−5. Moreover
the variance of the variable Cn is small, namely we have
var[Cn] ≈ 0.8736 (see also [10]). Hence we see that:

1) the random variable Cn is strongly concentrated,
2) we need approximately lg2 log2 n bits to store the value

of the counter C after n increments,
3) the value 2Cn is a quite precise estimator of the number

n of increments.

III. STORAGE ISSUES

Lets assume, that one block contains 32 pages and each
page 512 bytes. So the number of blocks of the 4GB flash
memory is about 250000. As we estimated above, we need 5
bits to store one probabilistic counter. For the flash memory of
4GB it makes about 1250000 bits. The problem appears, how
to maintain the counters in the flash memory efficiently. We
propose to reserve the adequate number of blocks to the size
of flash memory, where the counters will be stored. Due to our
previous calculation 1250000 bits (156260 bytes) need about
10 blocks to store. We call these blocks the counter reservation
storage (CRS). Of course the CRS must also be controlled for
the number of erase events. For that purpose about 50 bits (7
bytes) are needed. So for the control of the CRS 1 block of
memory is enough. Figure 1 shows the concept of the storage.

It’s not difficult to imagine that frequent using of CRS may
lead to wearing out of the memory where CRS reside. The
number of write and erase events of CRS is very high, because
every change in flash memory will cause the change of the
associated CRS block. Using our probabilistic counter we scale
down the frequency of such operations on CRS. Our counters
don’t increment as often as it may take place in real counters,
so its value does not need to be updated so often (we will
come back to this property of CRS in section IV). Of course
to protect from wearing out, the CRS may be taken to the main
memory and then swap periodically. In one of our experiments
below we simulate this process.

IV. EVOLUTION OF SYSTEM OF COUNTERS

In this section we discuss the process of evolution of a
system of approximate counters. Let us fix a number m of
blocks and a system ~C = (Ci)i=1...m of approximate counters
describing the number of changes of corresponding blocks. Let
us recall that initially we have Ci = 0 for each i.

A. Random model

Suppose that we randomly, with the uniform distribution,
choose a block to be changed. Then we use the probabilistic in-
crement procedure to the corresponding approximate counter.

Lemma 4.1: Let Change denotes the event that after a
modification of a random block the system ~C is changed. Then

Pr[Change] =
1
m

m∑
i=1

(
1
2

)Ci
.

Proof: Let Bi denotes the event ,,the ith block is
changed”. Then

Pr[Change] =
m∑
i=1

Pr[Change|Bi] · Pr[Bi] =

m∑
i=1

Pr[Change|Bi]
1
m

=

1
m

m∑
i=1

Pr[Change|Bi] =
1
m

m∑
i=1

(
1
2

)Ci
.

Suppose for a while that we observe a vector ~C after a
large number n � m of increments. Then each block has
been changed approximately n

m times, so for each i we have
Ci ≈ log2

n
m , so 2−Ci ≈ m

n , hence Pr[Change] ≈ 1
n . So, we

see that if n is large then the probability of a change of ~C after
an increment operation applied to one counter is very small.
Notice that in the case of a vector of real counters increment of
each counter changes the counter, so the probability of change
is precisely 1. Thus the evolution of a system of approximate
counters radically differs from the evolution of real counters:
the intensity of changes in the first one decreases quite rapidly,
while it is constant in the real case.

In order to transform these intuitions into a precise result
we need to prove one auxiliary results. Let us recall that a
random variable Y has a Poisson distribution with a parameter
λ if Pr[Y = k] = e−λλk/k!.

Lemma 4.2: Suppose that n balls are drawn uniformly and
independently into m urns. Let X1, . . .Xm denote the numbers
of balls in corresponding urns. Then

Pr[X1 ≤
n

2m
∨ . . . ∨Xm ≤

n

2m
] ≤ 2m

(
2
e

) n
2m

.

Proof: Let us consider a sequence Y1, . . .Ym of in-
dependent random variables with Poisson distribution with
parameter λ = n

m . Using the classical Chernoff bound for

Poisson distribution (see e.g. [11]) we deduce that Pr[Y1 ≤
λ
2] ≤

(
2
e

)λ
2 , hence

Pr[Y1 ≤
λ

2
∨ . . . ∨ Ym ≤

λ

2
] ≤

m∑
i=1

Pr[Yi ≤
λ

2
] ≤ m

(
2
e

)λ
2

.

We use now a standard technology (see [11], sec. 5.4 and
corollary 5.11) of comparing urn and balls model with the
Poisson model we get the required result.

Using last lemma we deduce that when a large number n
of balls are drawn uniformly and independently into a fixed
number m of urns then with high probability all urns are
occupied by at least 1

2
n
m balls. Therefore if we increase n times

randomly chosen probabilistic counter then we may expect that
with a high probability each counter will have a value at least
log2(

n
2m). Indeed, we have the following result:

Theorem 4.3: Let Changen denote the event that after n
modifications of blocks the next modification will change a
counter. If n→∞ then

Pr[Changen] = o(1) .

Proof: Let A denotes the event “X1 >
n

2m ∧ . . .∧Xm >
n

2m”. From Lemma 4.2 we get Pr[Ac] ≤ 2m
(

2
e

) n
2m . Next we

have

Pr[Changen] =
Pr[Changen|A] Pr[A] + Pr[Changen|Ac] Pr[Ac] ≤

Pr[Changen|A] + 2m
(

2
e

) n
2m

.

Hence, we may assume that the event A holds. Let us fix an
index i of a counter. Then, according to Eq. (1) for sufficiently
large n we have

E[Ci] > log2(Xi)− 1 = log2(Xi/e) .

Moreover, for sufficiently large n we have var[Ci] < 1. From
the Chebyshev inequality we deduce that

Pr[Ci >
1
2
E[Ci]] ≤

4
E[Ci]

so under the assumption that the event A holds we get

Pr[Ci >
1
2

log2

n

2em
] ≥ 1− 4

log2
n

2em

.

The increments of approximate counters are independent,
hence

Pr[
m∧
i=1

(
Ci >

1
2

log2

n

2em

)
] ≥

(
1− 4

log2
n

2em

)m
(on the event A). Observe now that

m∧
i=1

(
Ci >

1
2

log2

n

2em

)
→ 1

m

m∑
i=1

(
1
2

)Ci
<

√
2me
n

Putting all the above pieces together and using Lemma 4.1 we
finally get

Pr[Changen] ≤√
2me
n

+
(

1− 4
log2

n
2em

)m
+ 2m

(
2
e

) n
2m

,

so the theorem is proved .

B. Controlled Use of Blocks

Lets suppose now that each time we need to modify a block
we shall use the block with minimal value of the corresponding
probabilistic counter. We call this scenario of block using a
controlled use of blocks.

Notice that if a value of a approximate counter is C then
the probability of changing its value after a single call of the
increment procedure is 2−C , hence an expected number of
calls of the increment procedure needed to change its value is
2C .

The expected number of steps to change the initial state
(0, 0, . . . , 0) of the counter ~C to (1, 1, . . . , 1) is m. Next, to
change (1, 1, . . . , 1) into (2, 2, . . . , 2) we need (in average)
21 steps. In general, in order to change ~C from (a, a, . . . , a)
to (a + 1, a + 1, . . . , a + 1) we need 2am steps. Using this
observations and making some additional calculus we get the
following result:

Theorem 4.4: Let Ln denote the number of changes of the
system ~C after n updates in the controlled use of blocks. Then

E[Ln] ∼ m log2(
n

m
+ 1) .

Therefore if we use the system of approximate counters
in an optimal way n times then there will be only O(lnn)
changes to the system, so only so many times we should flash
its contents into flash memory.

V. EXPERIMENTS

In this section we shall discuss some numerical experiments
which have been made with the probabilistic counters in
context of flash memory.

A. Comparison of the real and probabilistic counter

In this experiment we recorded randomly k write events
among m blocks of flash memory (Fig. 2). For each block we
maintain the probabilistic counter (pi) and the real counter (ri).
Note, that the real counter is recorded only for the need of the
experiment and will not be maintained in the real environment.
We repeated the experiment n times. For each block we
estimate the precision defined by Preci = pi/ri. The average
precision for one experiment is: Precj = 1

m

∑
(Preci). We

also calculate the standard deviation for the experiment defined
as Std =

√∑
(pi − Prec)2/m.

We estimated the average precision and standard deviation
for 10 experiments and we get Prec ≈ 1.002 and Std ≈
0.068. This experimental result confirms the high precision of
the approximate counters.

Fig. 2. Typical counter contents after one experiment for m=100 and
k=100000

Fig. 3. The chart shows real counter values when the block with minimum
approximate counter value is erased. The experiment was made for m=100
and k=100000

B. Data distribution method

In the second experiment we simulated the data distribution
in the flash memory blocks. As we mentioned before, the data
in the memory blocks should be distributed. In our approach,
we use the approximate counter to decide into which memory
block to write the data. In our experiment we erase that block,
which has the smallest value of the approximate counter. If
we erase the block j, we increment the real counter value(rj)
and we use the probabilistic method for the estimation of the
approximate counter (pj). In figure 3 we compared the values
of both counters.

C. Swap simulation

In this experiment we simulate the situation where the
CRS is loaded into the main memory and then after several
operations on counter values swapped back to the blocks of
flash memory. We compare the cases when the probabilistic
counters and the real counters are stored in the CRS. In our
experiment we assume that our CRS consists of 10 blocks and
100 erase operations are performed on the counters of CRS
loaded into the main memory. After that the CRS blocks are
swapped back to the flash memory. We repeat that procedure
100 times. Figure 4 illustrates our experiment.

Fig. 4. Typical number of CRS changes where 100 swap operations were
performed on 10 CRS blocks and in every swap operation 100 erase events
occurs.

Fig. 5. Global approximate counters changes after erase operations for m=100
and k=100000

D. Counters changing

In this experiment we show the correlation between the
number of flash memory changes and the number of coun-
ters changes. We changed 100000 times the flash memory
consisted of 100 blocks. We see that in the first phase the
value of approximate counters increases rapidly and after the
certain number of modifications goes up very slowly. Figure
5 illustrates this experiment. A theoretical background of this
behavior is explained in sec. IV.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a system of approximate counters
for flash memory devices. In our approach each block of
the memory is associated with one counter. The counters
are stored in the special area of flash memory called CRS.
We showed that the CRS needs only 0.004 percent of the
memory. Of course it strongly depends on flash memory
architecture. In this paper we discussed statistical properties
of the proposed method and we described several experiments
which confirm the correctness of our method. The very low
memory requirements is not the only advantage of our
approach. The other one is that the approximate counter values
don’t need to be changed so often as it is in the case of
the real counter. It’s a very important issue in flash memory

environment. In the future investigations we want to combine
our approximate counters with the erase reclamation policies.

REFERENCES

[1] S. Nath and A. Kansal, “Flashdb: dynamic self-tuning database for nand
flash,” in IPSN, T. F. Abdelzaher, L. J. Guibas, and M. Welsh, Eds.
ACM, 2007, pp. 410–419.

[2] C.-H. Wu, L.-P. Chang, and T.-W. Kuo, “An efficient r-tree implemen-
tation over flash-memory storage systems,” in GIS. ACM, 2003, pp.
17–24.

[3] C.-H. Wu, T.-W. Kuo, and L.-P. Chang, “An efficient b-tree layer imple-
mentation for flash-memory storage systems,” ACM Trans. Embedded
Comput. Syst., vol. 6, no. 3, 2007.

[4] K. M. Lofgren, R. D. Norman, G. B. Thelin, and Gupta, “Wear leveling
techniques for flash eeprom systems,” US Patent 6,594,183, 1998.

[5] ——, “Wear leveling techniques for flash eeprom systems,” US Patent
6,081,447, 1999.

[6] J. M. Marshall and C. D. H. Manning, “Flash file management system,”
US Patent 5,832,493, 1998.

[7] E. Jou and J. I. J. H., “Flash memory wear leveling system providing
immediate direct access to microprocessor,” US Patent 5,568,423, 1996.

[8] S. W. Han, “Flash memory wear leveling system and method,” US Patent
6,016,275, 1998.

[9] R. Morris, “Counting large numbers of events in small registers,”
Commun. ACM, vol. 21, no. 10, pp. 840–842, 1978.

[10] P. Flajolet, “Approximate counting: A detailed analysis,” BIT, vol. 25,
no. 1, pp. 113–134, 1985.

[11] M. Mitzenmacher and E. Upfal, Probability and Computing : Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, January 2005.

