
Two-Phase Cardinality Estimation Protocols for
Sensor Networks with Provable Precision

Jacek Cichoń∗, Jakub Lemiesz∗, Wojciech Szpankowski† and Marcin Zawada∗
∗Faculty of Fundamental Problems of Technology

Wroclaw University of Technology
Poland

†Department of Computer Sciences
Purdue University, U.S.A.

Abstract—Efficient cardinality estimation is a common require-
ment for many wireless sensor network (WSN) applications.
The task must be accomplished at extremely low overhead due
to severe sensor resource limitation. This poses an interesting
challenge for large-scale WSNs. In this paper we present a
two-phase probabilistic algorithm based on order statistics and
Bernoulli scheme, which effectively estimates the cardinality of
WSNs. We thoroughly examine properties of estimators used in
each phase as well as the precision of the whole procedure. The
algorithm discussed in this paper is a modification of a recently
published idea - the modification enables us to obtain a provable
precision.

I. INTRODUCTION

Most important feature of WSNs is their distributed nature.
In such an architecture, sensor knowledge is limited to its
collection of neighbors. This architecture has good scalability
properties and does not suffer from central station becom-
ing a single point of failure. On the other hand, it makes
it increasingly difficult to observe some characteristics that
would be straightforward to monitor in a centralized system.
One example of such characteristic, which is required by the
most fundamental WSN algorithms, like initialization or data
aggregation, is the network cardinality (i.e. the number of
devices connected to the network).

The cardinality estimation task poses several major chal-
lenges for large-scale WSNs. For example, the most straight-
forward method would be counting of distinct sensor identi-
fiers. However, this simple approach is not desirable due to
limited memory available to a sensor. Notice that for widely
used sensors (e.g., MICA2DOT) based on Atmel’s ATmega128
with available 4kB memory for data, such method enables
us to count up to a thousand of sensors with 32-bit sensor
identifiers. Moreover, the counting of identifiers requires at
least logarithmic time to insert or check a newly arrived sensor
and entails high communication cost (see Section IV).

In this paper, we present a probabilistic algorithm for
approximate counting that uses tiny fraction of sensor memory
(100 bytes), requires constant time to insert and check a newly
arrived sensor and has much lower communication cost.

This research was supported by Polish Ministry of Science and Higher
Education grant N N206 369739

Related Work: The problem of probabilistic counting is well
studied in the literature (e.g. [1], [2], [3], [4]). Unfortunately,
almost all of these techniques are designed to count elements
in huge data sets and our simulations have shown that their
accuracy is highly unsatisfactory if they are used (unmodified
and separately) for a typical WSN size.

Recently, a part of authors of this paper proposed a proba-
bilistic algorithm for WSN size estimation [5] that combines
techniques of order statistics ([4], [6]) with balls and bins
model ([2], [3]) modified by preselection. However, in this
algorithm a modified balls and bins model was used and it
was hard to obtain analytical confirmation of the algorithm’s
accuracy. In this paper, we replaced the balls and bins model
with Bernoulli scheme and thanks to the work of Flajolet [7]
as well as Jacquet and Szpankowski [8], we are able to confirm
the high precision of the estimation (see Subsection II-B)
without sacrificing the efficiency of the algorithm. Moreover,
we are able to establish confidence intervals for the estimation
returned by our algorithm. This in turn enables us to set desired
accuracy by adjusting the parameter determining memory
consumption.

In Section VI we compare our solution to Extrema Propa-
gation, a randomized counting algorithm that was previously
proposed ([6], [9]) for distributed systems.

II. TWO-PHASE ALGORITHM

In this section, we present our two-phase algorithm. To
make the exposition clearer, we describe an intuitive way
of looking at the algorithm. In the first phase (see Subsec-
tion II-A) the order statistic is used to quickly obtain a rough
estimate of the network size. Next, in the second phase (see
Subsection II-B) we obtain a more accurate approximation on
the basis of the number of successes in a series of Bernoulli
trials. The probability of the success in a trial depends on the
result of the first phase. Finally, we investigate the precision of
the estimation in each phase separately as well as two phases
combined.

A. First Phase: Order Statistics

Detailed description of this phase can be found in [5].
Here we will only briefly remind the reader of its major

principles and emphasize the essential feature, which has not
been mentioned earlier.

Counting in this phase is based on order statistics. Initially
each of n sensors generates a number from the unit interval
uniformly at random. Let Xk:n denote the kth order statistic
of these numbers and let

Zk,n =
k − 1

Xk:n
.

The main idea is that at the end of the phase each sensor
knows the value of Xk:n and uses Zk,n to estimate the network
cardinality n. The value of the parameter k determines the pre-
cision of the estimation. Details are presented in pseudocode
(see Algorithm 1). Note that if n is smaller than k, then each
sensor will know the exact value of n.

It is worth of mentioning that most of counting algorithms
have strong limitation, namely they require some knowledge of
n in advance. For example, in counting algorithms based on
balls and bins model ([2], [5]) it is essential to know some
reasonable upper bound on the number of balls to set the
number of bins. Algorithm 1 theoretically works regardless of
the network size n. In practice, we should avoid the situation
when two sensor draw the same initial value, which is possible
because of the machine representation of real numbers. By
using 5-bytes representation we ensure proper functioning of
Algorithm 1 for n ≤ 106 (due to the Birthday Paradox, see
[5]). Then, for k = 20 the algorithm requires only 100 bytes
of memory on each device. Presently, we recall some facts
concerning the estimator Zk,n.

Theorem 1. Suppose that 3 ≤ k ≤ n and 0 < δ1 <
k−1
k < δ2.

Let f(x) = −xe−x+1 and

Fk(δ1, δ2) = f

(
k − 1

kδ1

)k
+ f

(
k − 1

kδ2

)k
then

Pr[δ1n < Zk,n < δ2n] > 1− Fk(δ1, δ2) .

The proof of Theorem 1 can be found in [5]. The main
idea is to reduce properties of order statistics to the Bernoulli
distribution and then employ the Chernoff inequalities. The
only change we introduce in this paper is the use of the
stronger version of the Chernoff’s theorem (see Lemma 1).

Corollary 1. Suppose that k = 20 and n ≥ 20. Then by
setting δ1 = 0.5 and δ2 = 2.21 from Theorem 1 we get
Pr[0.5n < Z20,n < 2.21n] ≥ 0.99.

Remark 1. Numerical calculations with the incomplete reg-
ularized Beta functions show that for all n ≤ 107 we have
Pr[0.5n < Z20,n < 2n] ≥ 0.99975.

B. Second Phase: Bernoulli Trials

The second phase of our algorithm is based on Bernoulli
trials (see Algorithm 2). At first, each sensor allocates a
bitmap T of size m, which represents m trials, and initializes
all entries to "0"s. For each trial i, a sensors decides with
probability p whether it will participate. If so, it sets ith bit

Algorithm 1 ORDERSTATISTICS(k)
Initialization

1: set T [i]← 1 for i = 1, . . . , k
2: x← generate uniformly at random a value from (0, 1)
3: T [1]← x
4: broadcast 〈x〉 to neighbours

Upon receiving a message
1: receive 〈x〉
2: if ∀1≤i≤kT [i] 6= x then
3: if ∃1≤i≤kT [i] = 1 then
4: T [i0]← x for i0 such that T [i0] = 1 and sort T
5: broadcast 〈x〉 to neighbours
6: else
7: if x < T [k] then
8: T [k]← x and sort T
9: broadcast 〈x〉 to neighbours

10: end if
11: end if
12: end if
Return the estimated number of sensors

1: if ∃1≤i≤kT [i] = 1 then
2: return |{i : T [i] 6= 1}|
3: else
4: return (k − 1)/T [k]
5: end if

of T to "1" and broadcasts i to all neighbors. Upon receiving
i, the sensor checks whether T [i] = 0; if so, it changes the
value of T [i] to "1" and forwards the number to its neighbors.
Otherwise, it does nothing and goes to sleep. Notice that if a
sensor receives the same number twice then the proper bit is
already set so it does not forward the number further. As it
may happen that two sensors decide to participate in the same
trial, this feature allows to decrease the amount of transmitted
packets. At any time, each sensor can get the estimated number
of sensors by calculating log(x̂/m)/ log(1 − p), where x̂ is
the number of trials that result in "0" (trials when none of the
sensors decided to participate in).

Further, we present the derivation and analysis of the
estimator used in Algorithm 2. Let us assume that we have
n sensors and m trials. Let us fix a probability p ∈ (0, 1).
Then, we consider the following process: each sensor decides
to participate in each trial with probability p. If none of the
sensors decides to participate in a trial, the trial is considered
a success. Let random variable Ym,n denote the number of
successful trials at the end of the process. We easily obtain
the expectation of random variable Ym,n:

E [Ym,n] = m (1− p)n .

To derive an estimator of the number n, we use the method
of moments. We solve the equation Ym,n = m(1− p)n for n
and we define a random variable Wm,n to be the estimator:

Wm,n =
log(

Ym,n

m)

log(1− p)
.

Algorithm 2 BERNOULLITRIALS(m, p)
Initialization

1: set bitmap T [i]← 0 for i = 0, . . . ,m− 1
2: for i← 0, . . . ,m− 1 do
3: set T [i]← 1 with probability p
4: end for
5: set M ← {i : T [i] = 1}
6: broadcast 〈M〉 to neighbours

Upon receiving a message
1: receive 〈M〉
2: for all i ∈M do
3: if T [i] = 0 then
4: T [i]← 1
5: else
6: M ←M \ {i}
7: end if
8: end for
9: if M 6= ∅ then

10: broadcast 〈M〉 to neighbours
11: end if
Return the estimated number of sensors

1: x̂ = m−
∑m−1
i=0 T [i]

2: if x = 0 then
3: return ∞
4: else
5: return log(x̂/m)/ log(1− p)
6: end if

We shall use the above estimator for m = 800. Note that since
one bit represents one trial we need for this purpose 100 bytes.

In the derivation of the two following theorems which
determine the bias and the relative error of the estimatorWm,n

we apply a very useful result from [7]. For example, this
result allows us to obtain a precise asymptotic of the following
binomial sum

n∑
k=1

log(k)

(
n

k

)
pk(1− p)n−k = log(pn)+

p− 1

2pn
+O

(
1

n2

)
.

Theorem 2. Let n ≥ 2, p ∈ (0, 1) and Q = (1−p)n. Then the
random variableWm,n is an asymptotically unbiased estimator
of n, namely

E [Wm,n] = n

(
1 +

ϕ

m
+O

(
1

m2

))
,

where
ϕ =

Q− 1

2Q logQ
.

Proof: Notice that log(1− p) = logQ
n and

E [Wm,n] =
n

logQ
(E [log(Ym,n)]− logm) .

Hence, we need to find the asymptotic of the sum

E [log(Ym,n)] =

m∑
k=1

log kPr[Yn,m = k] .

Since Yn,m follows the binomial distribution, we can use the
method presented in [7] to obtain

E [log(Ym,n)] = log(Qm) +
Q− 1

2Qm
+O

(
1

m2

)
.

Theorem 3. Let the conditions for n, p and Q be the same as
in Theorem 2. Then

σ(Wm,n)

n
=

ψ√
m

+O

(
1

m

)
.

where

ψ =

√
1−Q
Q log2Q

.

Proof: To obtain the standard deviation σ(Wm,n) we note
that

Var [Wm,n] =
n2

log2Q
Var [log(Ym,n)] .

Then, by method presented in [7] we get

Var [log(Ym,n)] =
1−Q
Qm

+O

(
1

m2

)
.

A simple substituting and normalization finishes the proof.

Remark 2. Note that ψ in Theorem 3 depends on p and n.
Assume p = cn/n and let cn be a number that minimizes the
value of ψ for a given n. It can be shown that

cn −→
n→∞

2 +W
(
−2/e2

)
≈ 1.59 ,

where W (x) denotes the Lambert function. In the following,
we use c = 1.59 (see Algorithm 3) .

Remark 3. For n < k Algorithm 1 gives precise answer. If
n ≥ k it returns an estimation Zk,n = nα. For k = 20, n ≥ 20
and 0.5 < α < 2 (see Remark 1) by setting p = c/Zk,n we
have ϕ ≤ 4.47 and ψ ≤ 1.61.

III. THE ALGORITHM’S PRECISION

Putting two phases together we get Algorithm 3 (let us recall
that we set c = 1.59).

Algorithm 3 TWOPHASEALGORITHM(k,m)
1: compute n̂1 using Algorithm 1 with parameter k
2: if n̂1 < k then
3: return n̂1
4: else
5: set p = c/n̂1
6: compute n̂2 using Algorithm 2 with parameters m, p
7: return n̂2
8: end if

The precision of Algorithm 3 can be determined by the
theorem presented in this section. In the proof we shall
use the following well known Chernoff bounds for binomial
distribution (see e.g. [10]):

Lemma 1. Let Bp,n denote a random variable with binomial
distribution with parameters p and n, i.e., Pr[Bp,n = k] =(
n
k

)
pk(1− p)n−k. Suppose that δ > 0 and 0 < ρ ≤ 1. Then

Pr[Bp,n ≥ (1 + δ)np] ≤
(

eδ

(1 + δ)(1+δ)

)np
and

Pr[Bp,n ≤ (1− ρ)np] ≤
(

e−ρ

(1− ρ)(1−ρ)

)np
.

Let Sµ denote the event that in Algorithm 3 we obtain the
cardinality estimation with a relative error not greater than
µ ∈ (0, 1). We will formulate now a technical theorem from
which we will derive practical corollaries.

Theorem 4. Suppose that conditions of Theorem 1 hold, δ1 >
c/n and m ≥ 1. Let Qn(α) = (1 − c

αn)
n, Q(α) = e−c/α,

g(x) = ex−1x−x and

Gµk,m(α) = g(Q(α)−µ)mQk(α) + g(Q(α)µ)mQk(α) .

Then

Pr[¬Sµ] ≤ Fk(δ1, δ2) + max
α∈(δ1,δ2)

Gµk,m(α) .

Proof: Let Fδ1,δ2 denote the event that in the first phase
we obtain an estimation Zk,n such that

δ1n ≤ Zk,n ≤ δ2n .

By the law of total probability and simple upper-bounds we
get

Pr[¬Sµ] ≤ Pr[¬Sµ|Fδ1,δ2] + Pr[¬Fδ1,δ2] .

The probability of the event ¬Fδ1,δ2 can be upper-bounded
as shown in Theorem 1. Observe that if Fδ1,δ2 occurs then
in the Algorithm 3 we get p = c

αn for some α satisfying
δ1 ≤ α ≤ δ2. Consequently, the probability of success in one
trial of the second phase is Qn(α) and

Pr[¬Sµ|Fδ1,δ2] =
Pr[Wm,n ≤ (1− µ)n ∨ Wm,n ≥ (1 + µ)n | Fδ1,δ2] =

Pr[Ym,n ≥ mQn(α)Qn(α)−µ | Fδ1,δ2]+
Pr[Ym,n ≤ mQn(α)Qn(α)µ | Fδ1,δ2] .

Since random variable Ym,n follows the binomial distribution
we can apply the Chernoff bounds

Pr[Ym,n ≥ mQn(α)Qn(α)−µ] ≤ g(Qn(α)−µ)mQn(α) ,

Pr[Ym,n ≤ mQn(α)Qn(α)µ]) ≤ g(Qn(α)µ)mQn(α) .

Observe that the conditions of Lemma 1 are satisfied as
Qn(α)

−µ > 1, 0 ≤ Qn(α)
µ < 1 and E [Ym,n] = mQn(α) .

Note that Qn(α) ≤ Q(α) for α > c/n. Using facts that
function g(x) is increasing for 0 < x ≤ 1, decreasing for
x ≥ 1 and maximizing over α ∈ (δ1, δ2) proves the theorem.

Let us now consider the case of memory size restricted to
100 bytes i.e. k = 20 and m = 800. Let us set an accuracy

goal to 20% which in most of practical applications should be
a sufficient precision.

Corollary 2. By setting δ1 = 0.5062 and δ2 = 2.1199 from
Theorem 4 we get that Pr[S0.2] ≥ 0.954 .

In fact, we are able to show that within 100 bytes
of available memory we have Pr[S0.2] ≥ 0.984 and
Pr[S0.25] ≥ 0.997 . The idea is to cleverly divide the
interval (δ1, δ2) into disjoint subintervals. Then we can
examine each subinterval separately by the technique similar
to the one presented in the proof of Theorem 4.

Corollary 3. For 1 kB of available memory and δ1 = 0.55,
δ2 = 1.5 Theorem 4 gives Pr[S0.1] ≥ 1− 10−6.

IV. COMMUNICATION COMPLEXITY

Let n denote the network size and let k, m be parameters
used in the first and in the second phase respectively. Note that
the energy consumed by transmissions is usually much higher
than energy consumed by listening. Hence, we measure the
communication complexity as the number of broadcasts Bn
that a sensor carries out during the algorithm’s run-time.

The number of broadcasts in the first phase is equal to the
number of changes Cn in the table T (see Algorithm 1). Let
I1, I2, . . . In be random variables such that Ii = 1 if there is
a change when the ith number occurs and Ii = 0 otherwise.
Observe that Pr[Ii = 1] = 1 for i = 1, . . . k. Let Xk:i be
the kth order statistic obtained from a sequence of i ≥ k
independent random variables uniformly distributed in (0, 1).
Recall that the density of Xk:i is given by the formula [11]

fk:i(t) = B(k, i− k + 1)−1tk−1(1− t)i−k ,

where B(a, b) is the Beta function. Notice that for a random
variable X uniformly distributed in (0, 1) and i = k+1, . . . n
we have

E [Ii] = Pr[X < Xk:i−1] =∫ 1

0

Pr[X < Xk:i−1|Xk:i−1 = t]fk:i−1(t)dt =
k

i
.

Hence E [Cn] = k + k
∑n
i=k+1

1
i = k(1 + Hn − Hk) where

Hn denotes the nth harmonic number. Let us recall that Hn =
lnn+O(1) = O (lnn).

It is easy to see, that in the second phase (Algorithm 2)
the number of broadcasts is upper bounded by m. Finally
we obtain that the expected communication complexity of our
algorithm is E [Bn] = O (lnn). Note that in the algorithm
that counts all distinct identifiers each sensor has to inevitably
broadcast each identifier. Thus, for such algorithm Bn = n.

V. TIME COMPLEXITY

Let D denote the diameter of the graph of the network. One
can easily check that phase (1) as well as phase (2) requires
D rounds. Hence, the whole algorithm requires 2D rounds
for the proper estimation of the network size. Note, that it
may happen that our algorithm will return ∞. However the
probability of such event is very low, namely for 100 bytes

Fig. 1. Plot of n̂/n for n = 1, . . . , 104: results given by Algorithm 3 for
k=20 and m=800

Fig. 2. Plot of n̂/n for n = 1, . . . , 104: results given by HyperLogLog
with 160 streams (5 bits per stream)

Fig. 3. Plot of n̂/n for n = 1, . . . , 104: results given by Extrema
Propagation with 20 floating-point numbers (5 bytes per number)

of available memory it is less than 10−11. In such a case the
algorithm can be simply re-executed.

VI. EXPERIMENTAL RESULTS

In this section, we present simulation of Algorithm 3 with
parameters k = 20 and m = 800. Note, that in such a setting
our algorithm will use at most 100 bytes of memory. As a
matter of fact, that was our storage limitation in the practical
problem we considered.

In Fig. 1 we show a typical result of simulations. For
each n ∈ {1, . . . , 104} we made a simulation of a network
with n nodes. The dots represent values of n̂

n , where n̂ is
the estimation returned by the algorithm. One can see that
except for a few points we have 0.85 < n̂

n < 1.15. Hence,
for most experiments we have 0.85 · n < n̂ < 1.15 · n.
This fact corresponds to the result from Section III, that our
algorithm estimates the total number of nodes in the network
with relative error of order 0.2 with high probability.

We compared our algorithm with two probabilistic counting

techniques. As far as we know, HyperLogLog, is currently one
of the most memory-efficient size approximation algorithms.
Originally it was dedicated to estimating the number of distinct
elements in massive data sets, however the adaptation to WSN
requirements is quite straightforward and does not interfere
with estimator properties, except that for small cardinalities the
balls and bins model is used (see [3]). Extrema Propagation
was introduced in the context of counting and data aggregation
in distributed systems. In Fig. 1, Fig. 2 and Fig. 3 we compare
the precision of Algorithm 3, HyperLogLog and Extrema
Propagation within 100 bytes of available memory.

Note that by executing algorithms several times and aver-
aging the results one can improve the estimation accuracy.
However, based on a standard deviation of estimators, we can
expect that in order to achieve at least the same accuracy as
Algorithm 3, HyperLogLog and Extrema Propagation should
be executed 3 and 18 times, respectively. According to our
knowledge the proposed algorithm is the most accurate of all
currently known algorithms estimating the number of nodes
using only 100 bytes of memory.

VII. CONCLUSIONS

In this paper we presented a two-phase algorithm that effi-
ciently solves the problem of estimating the size of a connected
multi-hop network. We examined the estimators used in each
phase as well as the precision of the whole algorithm. The
precision is connected to the memory consumption and can
be freely adjusted. The algorithm is fully distributed and the
estimation is produced at each node. The algorithm’s run-time
is controlled by the diameter of the network.

REFERENCES

[1] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
1985.

[2] K.-Y. Whang, B. T. V. Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, 1990.

[3] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm,” in
Conference on Analysis of Algorithms, AofA 2007, 2007.

[4] J. Lumbroso, “An optimal cardinality estimation algorithm based on or-
der statistics and its full analysis,” in AofA’10, ser. Discrete Mathematics
and Theoretical Computer Science, no. 5333, 2010, pp. 491–506.

[5] J. Cichon, J. Lemiesz, and M. Zawada, “On cardinality estimation
protocols for wireless sensor networks,” in ADHOC-NOW, ser. Lecture
Notes in Computer Science, vol. 6288. Springer, 2011.

[6] C. Baquero, P. S. Almeida, and R. Menezes, “Fast estimation of
aggregates in unstructured networks,” in Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous Systems, 2009,
pp. 88–93.

[7] P. Flajolet, “Singularity analysis and asymptotics of Bernoulli sums,”
Theoretical Computer Science, vol. 215, no. 1-2, pp. 371–381, 1999.

[8] P. Jacquet, W. Szpankowski, and L. N, “Entropy computations via
analytic depoissonization,” IEEE Trans. Information Theory, vol. 45,
pp. 1072–1081, 1998.

[9] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” in Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, ser. PODC ’06, 2006, pp. 113–122.

[10] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. New York, NY, USA:
Cambridge University Press, 2005.

[11] B. Arnold, N. Balakrishnan, and H. Nagaraja, A First Course in Order
Statistics. New York: John Wiley & Sons, 1992.

