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1 Institute of Mathematics, Opole University
2 Institute of Computer Science, University of Wroc law

Przesmyckiego 20, 51–151 Wroc law, Poland
mgc@ii.uni.wroc.pl

Abstract. The reconstruction of discrete two-dimensional pictures from
their projection is one of the central problems in the areas of medical di-
agnostics, computer-aided tomography, pattern recognition, image pro-
cessing, and data compression. In this note, we determine the computa-
tional complexity of the problem of reconstruction of polyominoes from
their approximately orthogonal projections. We will prove that it is NP-
complete if we reconstruct polyominoes, horizontal convex polyominoes
and vertical convex polyominoes. Moreover we will give the polynomial
algorithm for the reconstruction of hv-convex polyominoes that has time
complexity O(m3n3).

1 Introduction

1.1 Definition of Problem

A finite binary picture is an m×n matrix of 0’s and 1’s, when the 1’s correspond
to black pixels and the 0’s correspond to white pixels. The i-th row projection and
the j-th column projection are the numbers of 1’s in the i-th row and of 1’s in the
j-th column, respectively. In a reconstruction problem, we are given two vectors
H = (h1, . . . , hm) ∈ {1, . . . , n}m and V = (v1, . . . , vn) ∈ {1, . . . ,m}n, and we
want to decide whether there exists a picture which the i-th row projection
equals hi and which j-th column projection equals vj .

Often, we consider several additional properties like symmetry, connectivity
or convexity. In this paper, we consider three properties:

horizontal convex (h-convex) — in every row the 1’s form an interval,

vertical convex (v-convex) — in every column the 1’s form an interval, and

connected — the set of 1’s is connected with respect to the adjacency relation,
where every pixel is adjacent to its two vertical neighbours and to its two
horizontal neighbours.
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A connected pattern is called a polyomino. A pattern is hv-convex if it is both
h-convex and v-convex.

In this paper we solve the problem (Woeginger [5]) whether there exists a
polynomial time algorithm that takes as an input a horizontal projection vector
H ∈ IRm

+ and a vertical projection vector V ∈ IRn
+, and which outputs a poly-

omino whose projections H∗ ∈ {1, . . . , n}m and V ∗ ∈ {1, . . . , n}m approximate
the vectors H and V , respectively. We consider two notions of “approximate”
(1) every component of (H,V ) differs by at most one from the corresponding

component of (H∗, V ∗), i.e. we select only the nearest positive integers (we
call this version the approximation with the absolute error), and

(2) for every hi and vj it is |hi − h∗i | ≤ log(hi + 1) and |vj − v∗j | ≤ log(vj + 1)
for i = 1, . . . ,m and j = 1, . . . , n (the approximation with the logarithmic
error).

The algorithm outputs “NO” if there does not exist a polyomino with approxi-
mate projections V and H.

1.2 Known Results

First Ryser [6], and subsequently Chang [2] and Wang [7] studied the existence of
a pattern satisfying orthogonal projections (H,V ) in the class of sets without any
conditions. They showed that the decision problem can be solved in time O(mn).
These authors also developed some algorithms that reconstruct the pattern from
(H,V ).

Woeginger [8] proved that the reconstruction problem in the class of poly-
ominoes is an NP-complete problem. Barcucci, Del Lungo, Nivat, Pinzani [1]
showed that the reconstruction problem is also NP-complete in the class of h-
convex polyominoes and in the class v-convex polyominoes.

The first algorithm that establishes the existence of an hv-convex polyo-
mino satisfying a pair of assigned vectors (H,V ) in polynomial time was de-
scribed by Barcucci et al. in [1]. Its time complexity is O(m4n4) and it is rather
slow. Gȩbala [4] showed the faster version of this algorithm with complexity
O(min(m2, n2) · mn logmn). The latest algorithm described by Chrobak and
Dürr in [3] reconstructs the hv-convex polyomino from orthogonal projection in
time O(min(m2, n2) ·mn).

All above results concern to the reconstruction polyominoes from exact or-
thogonal projections (RPfOP).

1.3 Our Results

In this paper we study complexity of the problem of reconstruction polyominoes
from approximately orthogonal projections (RPfAOP). In section 2 we prove
that RPfAOP (for both kinds of errors) is NP-complete in the classes of (1)
polyominoes, (2) horizontal convex polyominoes and (3) vertical convex polyo-
minoes. In section 3 we show that RPfAOP, for an arbitrary chosen function of
error, is in P for the class of hv-convex polyominoes. We describe an algorithm
that solves this problem and has complexity O(m3n3).



2 Hardness

In this section we show the reduction from the problem of reconstruction of
polyominoes from exact orthogonal projections (RPfOP) to the problem of re-
construction of polyominoes from approximately orthogonal projections. Let

H̃ = {h̃1, . . . , h̃m} ∈ {1, . . . , n}m,

Ṽ = {ṽ1, . . . , ṽn} ∈ {1, . . . ,m}n

be an instance of RPfOP problem. Moreover we assume that

m∑
i=1

h̃i =
n∑
j=1

ṽj ,

otherwise the polyomino with the projections (H̃, Ṽ ) does not exist. By this
instance, we will construct a row vector H = {h1, . . . , hm} ∈ IRm

+ and a col-
umn vector V = {v1, . . . , vn} ∈ IRn

+ adequate to the notion of error. For the
approximation with the absolute error we fix

hi = h̃i −
1
2
, i = 1, . . . ,m,

vj = ṽj +
1
2
, j = 1, . . . , n.

And for the logarithmic approximation we choose hi such that

h̃i ≤ hi + log(hi + 1) < h̃i + 1,

and vj such that
ṽj − 1 < vj − log(vj + 1) ≤ ṽj .

The choice is always possible because functions x− log(x+ 1) and x+ log(x+ 1)
are continuous and strictly increasing surjections on IR+.

Now we can solve the RPfAOP problem for projections (H,V ).

Lemma 1. If there exists a polyomino P with row projections H∗ ∈ {1, . . . , n}m
and column projections V ∗ ∈ {1, . . . ,m}n, such that (H∗, V ∗) is the approxima-
tion with the absolute (logarithmic) error of (H,V ), then there exists a polyomino
with projections (H̃, Ṽ ).

Proof. For the polyomino P the following properties hold

(i)
∑
i h
∗
i =

∑
j v
∗
j (the sums are equal to number of 1’s in polyomino P), and

(ii) |h∗i −hi| ≤ 1 and |v∗j −vj | ≤ 1 for the absolute error ( |h∗i −hi| ≤ log(hi+1)
and |v∗j − vj | ≤ log(vj + 1) for the logarithmic error).



But from the definition of (H,V ) the above properties occur if and only if for
all i we have that h∗i is equal to the maximal admissible value, i.e.

h∗i = bhi + 1c = h̃i ( h∗i = bhi + log(hi + 1)c = h̃i ),

and for all j we have that v∗j is equal to the minimal admissible value, i.e.

v∗j = dvj − 1e = ṽj ( v∗j = dvj − log(vj + 1)e = ṽj ).

Therefore P also satisfies (H̃, Ṽ ). ut

Lemma 2. If there exists a polyomino P with projections (H̃, Ṽ ), then there
exists a polyomino with row projections H∗ ∈ {1, . . . , n}m and column projections
V ∗ ∈ {1, . . . ,m}n, such that (H∗, V ∗) is the approximation with the absolute
(logarithmic) error of (H,V ).

Proof. From definition of (H,V ) (for both kinds of approximation) we have that
every component of (H,V ) can be rounded to the corresponding component of
(H̃, Ṽ ). Hence P is also realisation of (H,V ). ut

Because we know that RPfOP for polyominoes, h-convex polyominoes and
v-convex polyominoes is NP-complete (see [1] and [8]) we obtain from Lemma 1
and Lemma 2 the following result

Theorem 1. The reconstruction of polyominoes, h-convex polyominoes and v-
convex polyominoes from their approximately orthogonal projections is NP-com-
plete. ut

3 hv-Convex Polyomino

In this section we use some ideas and notations from Chrobak and Dürr [3]
while describing the algorithm for reconstruction hv-convex polyominoes from
approximately orthogonal projection.

In the algorithm described below we generalise the error of approximation
and assume that it is in the form of a function f . We assume that the function f
is positive on IR+. For example, the absolute error is a constant function equal 1
(f(x) = 1) and the logarithmic error is a logarithmic function (f(x) = log(x+1)).

First we define some auxiliary expressions:

v̌j = max{1, dvj − f(vj)e} and v̂j = min{m, bvj + f(vj)c}

for j = 1, . . . , n, and

ȟi = max{1, dhi − f(hi)e} and ĥi = min{n, bhi + f(hi)c}

for i = 1, . . . ,m.
These expressions have following properties: ȟi (v̌j) is the minimal positive

integer value and ĥi (v̂j) is the maximal positive integer value for an horizontal
(vertical) projection that differs by at most f(hi) (f(vj)) from hi (vj).
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Fig. 1. The convex polyomino P that is anchored at (p, q, r, s), with corner re-
gions A, B, C and D

Let (i, j) denote the cell of matrix that is in the i-th row and the j-th column.
For an hv-convex polyomino an object A is called an upper-left corner region (see
Fig.1) if (i + 1, j) ∈ A or (i, j + 1) ∈ A implies (i, j) ∈ A. In an analogous way
we can define other corner regions. By P we denote the complement of P .

From the definition of hv-convex polyominoes we have the following lemma

Lemma 3 (Chrobak and Dürr [3]). P is an hv-convex polyomino if and only
if

P = A ∪B ∪ C ∪D,

where A, B, C, D are disjoint corner regions (upper-left, upper-right, lower-left
and lower-right, respectively) such that

(i) (i− 1, j − 1) ∈ A implies (i, j) /∈ D, and

(ii) (i− 1, j + 1) ∈ B implies (i, j) /∈ C. ut

We say that the hv-convex polyomino P is anchored at (p, q, r, s) if cells
(1, p), (q, n), (m, r), (s, 1) ∈ P (i.e. these cells do not belong to any corner region).

The main idea of our algorithm is, given (H,V) – vectors of approximately
orthogonal projections, to construct a 2SAT expression Fp,q,r,s(H,V ) with the
property that Fp,q,r,s(H,V ) is satisfiable if and only if there exists an hv-convex
polyomino with projections (H∗, V ∗) that is anchored at (p, q, r, s) and every
component of (H,V ) differs by at most the value of function f from the corre-
sponding component of (H∗, V ∗).

Fp,q,r,s(H,V ) consists of several sets of clauses, each set expressing a cer-
tain property: “Corners” (Cor), “Connectivity” (Con), “Anchors” (Anc), “Lower
bound on column sums” (LBC), “Upper bound on column sums” (UBC), “Lower
bound on row sums” (LBR) and “Upper bound on row sums” (UBR).



Cor ≡
∧
i,j


Ai,j ⇒ Ai−1,j Ai,j ⇒ Ai,j−1

Bi,j ⇒ Bi−1,j Bi,j ⇒ Bi,j+1

Ci,j ⇒ Ci+1,j Ci,j ⇒ Ci,j−1

Di,j ⇒ Di+1,j Di,j ⇒ Di,j+1


Con ≡

∧
i,j

{Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1}

Ancp,q,r,s ≡
∧

A1,p B1,p C1,p D1,p

Aq,n Bq,n Cq,n Dq,n

Am,r Bm,r Cm,r Dm,r

As,1 Bs,1 Cs,1 Ds,1



LBC ≡
∧
i,j

Ai,j ⇒ Ci+v̌j ,j Ai,j ⇒ Di+v̌j ,j

Bi,j ⇒ Ci+v̌j ,j Bi,j ⇒ Di+v̌j ,j

 ∧∧
j

C v̌j ,j

Dv̌j ,j



UBCp,r ≡
∧
i



∧
j≤min{p,r}

Ai,j ⇒ Ci+v̂j ,j∧
p≤j≤r

Bi,j ⇒ Ci+v̂j ,j∧
r≤j≤p

Ai,j ⇒ Di+v̂j ,j∧
max{p,r}≤j

Bi,j ⇒ Di+v̂j ,j



LBR ≡
∧
i,j

Ai,j ⇒ Bi,j+ȟi Ai,j ⇒ Di,j+ȟi

Ci,j ⇒ Bi,j+ȟi Ci,j ⇒ Di,j+ȟi

 ∧∧
i

Bi,ȟi

Dȟi



UBRs,q ≡
∧
j



∧
i≤min{s,q}

Ai,j ⇒ Bi,j+ĥi∧
s≤i≤q

Ci,j ⇒ Bi,j+ĥi∧
q≤j≤s

Ai,j ⇒ Di,j+ĥi∧
max{s,q}≤j

Ci,j ⇒ Di,j+ĥi





(LBC) assigns the minimal distance between corner regions for columns (for
j-th column it is equal to v̌j). (UBC) assigns the maximal distance between
corner regions for columns (for j-th column it is equal to v̂j). (LBR) and (UBR)
are analogous for rows. Now we define a 2SAT formula

Fp,q,r,s(H,V ) = Cor ∧ Con ∧Ancp,q,r,s ∧ LBC ∧ UBCp,r ∧ LBR ∧ UBRq,s.

All literals with indices outside the set {1, . . . ,m} × {1, . . . , n} are assumed to
have value 1.

Now we give the algorithm of reconstruction.

Algorithm

Input: H ∈ IRm
+ , V ∈ IRn

+

FOR p, r = 1, . . . , n AND q, s = 1, . . . ,m DO
IF Fp,q,r,s(H,V ) is satisfiable
THEN RETURN P = A ∪B ∪ C ∪D AND HALT

RETURN “NO”

Theorem 2. Fp,q,r,s(H,V ) is satisfiable if and only if P is an hv-convex polyo-
mino with projections (H∗, V ∗) that is anchored at (p, q, r, s) and every compo-
nent of (H∗, V ∗) differs from the correspondent component of (H,V ) by at most
the value of function f for this component.

Proof. (⇐) If P is an hv-convex polyomino with properties like in the theorem,
then let A, B, C, D be the corner regions from Lemma 3. By Lemma 3, A, B,
C, D satisfy conditions (Cor) and (Con). Condition (Anc) is true because P is
anchored at (p, q, r, s). Moreover for all i = 1, . . . ,m we have |h∗i−hi| ≤ f(hi) and
h∗i ∈ IN, hence ȟi ≤ h∗i ≤ ĥi and conditions (LBR) and (UBR) hold. Analogous,
conditions (LBC) and (UBC) hold for vertical projections.

(⇒) If Fp,q,r,s(H,V ) is satisfiable, take P = A ∪B ∪ C ∪D. Conditions
(Cor), (Con), (LBC) and (LBR) imply that the sets A, B, C, D satisfy Lemma
3 ((LBC) and (LBR) guarantee disjointness of A, B, C, D), and thus P is an hv-
convex polyomino. Also, by (Anc), P is anchored at (p, q, r, s). Conditions (LBR)
and (UBR) imply that ȟi ≤ h∗i ≤ ĥi for each row i. Hence |h∗i − hi| ≤ f(hi).
Analogous, conditions (LBC) and (UBC) imply that v̌j ≤ v∗j ≤ v̂j for each col-
umn j and therefore |v∗j − vj | ≤ f(vj). Moreover because P is the finite set we
have

∑
i h
∗
i =

∑
j v
∗
j . Hence P must be an hv-convex polyomino with approxi-

mately orthogonal projections (H,V ) with respect to function f . ut

Each formula Fp,q,r,s(H,V ) has size O(mn) and can be computed in the linear
time. Since a 2SAT formula can also be solved in the linear time, we obtain the
following result

Theorem 3. The problem of reconstruction of hv-convex polyominoes from ap-
proximately orthogonal projections can be solved in time O(m3n3). ut
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