
Distributed Algorithms 2022/2023
(practical exercise)

Leader election
1 — Find the expected value for the random variableX ∼ Geo(p).

2 — Find the variance of the random variableX ∼ Geo(p).

3 — Let p ∈ [0, 1] and n ≥ k ≥ 1, n, k ∈ N . For what value of the argument a function f
takes the maximum value?
a. f(p) = np(1− p)n−1 ,
b. f(n) = np(1− p)n−1 ,
c. f(k) =

(
n
k

)
pk(1− p)n−k .

4 — Prove that (1 + x)r ≥ 1 + rx for x ≥ −1, r ≥ 1.

5 — Prove that (1 + x)r ≤ 1 + rx for x ≥ −1, r ∈ (0, 1) .

6 — Prove that 1 + x ≤ ex for x ∈ R .

7 — Prove that x
ex <

1.5
x2

for x > 0 .

8 — Let fi(n) = n 1
2i

(
1− 1

2i

)n−1 . Prove that functions fi(2i−1), fi+1(2i−1) are decreasing
and function fi−1(2i) is increasing for i ≥ 2.

9 — Present the definition of the LambertW functions family and draw its real branches.

10 — Use LambertW function to analytically determine real solutions to the equation

3x = x3 .

What is Lambert’sW function called in Mathematica?

11 — Have a look at this paper and show that for x ≥ e

lnx− ln lnx < W0(x) ≤ lnx− 1

2
ln lnx .

12 — Completion of the lecture proof. Check that ifK ≥ 1, f > 1, u ≥ 2 and

3e(K + 1)u
−1

2(K+1) ≥ 1− 1

f
then K ≥ lnu

2W0(3e
2

f
f−1 lnu)

− 1 .

https://en.wikipedia.org/wiki/Lambert_W_function
https://en.wikipedia.org/wiki/Lambert_W_function#Solving_equations
https://www.emis.de/journals/JIPAM/images/107_07_JIPAM/107_07.pdf


Data stream analysis: approximate counting

13 — For continuous and independent random variables X1, X2, . . . , Xn with the same di-
stribution given by the density function f(x) and the cumulative distribution function F (x)
show that k-th order statisticXk:n has a distribution described by the density function

fk(x) =
F k−1(x) [1− F (x)]n−k f(x)

B(k, n− k + 1)
,

where B(α, β) denotes beta function. Hint: see this notes.

14 — For n independent random variables U1, U2, . . . , Un with the uniform distribution:
Ui ∼ U(0, 1), show that k-th order statistic has distributionBeta(k, n−k+1) and an expected
value equal to k/(n+ 1).

Hint. In this and in the next exercise use different representations of the beta function: given
by the definition and by factorial for arguments that are natural numbers.

15 — Let Uk:n denote kth order statistic for n independent uniformly distributed random
variables with distribution U(0, 1). Show that for the estimator n̂k = k−1

Uk:n
and k ≥ 2 we

have E (n̂k) = n and that for for k ≥ 3 we have

Var (n̂k) =
n(n− k + 1)

k − 2
.

16 — (Markov’s inequality) Let X denote the random variable that takes only non-negative
values. Then for all a > 0

P (X ≥ a) ≤ E (X)

a
.

17 — (Chebyshev’s inequality) LetX denote a random variable with a finite expected value
and a finite, non-zero variance. Show that for any a > 0 the following inequality holds:

P (|X − E (X) | < a) > 1− Var (X)

a2
.

Hint: use Markov’s inequality.

18 — (Chernoff inequality for sum of Bernoulli trials) LetX1, . . . , Xn be independent Berno-
ulli trials such that P (Xi = 1) = pi. LetX =

∑n
i=1Xi and µ = E (X). Show that

a) for any δ > 0

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
,

b) for any 0 < ρ ≤ 1

P (X ≤ (1− ρ)µ) ≤
(

e−ρ

(1− ρ)(1−ρ)

)µ
.

Hint: see chapter 4.2. in this book.

19 — Using the notations and the inequalities obtained in the previous task, show that for
any 0 < δ < 1

P (|X − µ| ≥ δµ) ≤ 2e−µδ
2/3 .

https://en.wikipedia.org/wiki/Beta_function
http://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec15.pdf
https://en.wikipedia.org/wiki/Beta_function#Properties
https://en.wikipedia.org/wiki/Chernoff_bound
https://utexas.instructure.com/files/44880730/download?download_frd=1


20 — Let Sn be the number of heads in n flips of a symmetrical coin. Show that
a) using Chebyshev’s inequality we have

P
(∣∣∣Sn − n

2

∣∣∣ ≥ n

4

)
≤ 4

n
,

b) using Chernoff’s inequality from the previous task we have

P
(∣∣∣Sn − n

2

∣∣∣ ≥ n

4

)
≤ 2e−n/24 .

21 — Consider the following algorithm, from which the idea of the HyperLogLog algorithm
is derived.

Probabilistic Counter
1: Initialization: C ← 1

Upon event:
2: if random( ) <= 2−C then . random returns a random number in a range [0, 1)
3: C ← C + 1
4: end if

In other words, when an event occurs, we toss a coinC times, and if each timewe get heads,
we increment the C counter by one. Otherwise, we do nothing. Let Cn be the value stored in
the counterC after observingn events. Show thatE

(
2Cn
)

= n+2 andVar
(
2Cn
)

= 1
2n(n+1).

Based on Cn, define an unbiased estimator of n and calculate its variance.

Data stream analysis: approximate summation

22 — Recall the basics of the exponential distribution.
a) Recall the formula for density and distribution function. Derive the formula for expected

value and variance.
b) Suppose you have a generator that returns numbers in the range [0, 1) following a uni-

form distribution. Present a procedure that will transform the returned values into va-
lues that follow the exponential distribution with the parameter λ.
Hint: see pages 28 and 29 in this book.

c) Present and prove the theorem on which the procedure in point b) is based.

23 — Let S1, S2, . . . , Sn be a sequence of independent exponential random variables and
Si ∼ Exp(λi) for λi > 0. Let Λ = λ1 + λ2 + . . . + λn. Show that the first order statistic
Smin =min {S1, S2, . . . , Sn} has an exponential distribution with parameter Λ:

Smin ∼ Exp(Λ) .

24 — Let X and Y be independent random variables with density functions fX(x) and
fY (y), respectively. For Z = X + Y show that

fZ(z) =

∫ +∞

−∞
fX(x)fY (z − x)dx .

How does this task relate to the next task?
Hint: see convolution of probability distributions.

http://www.nrbook.com/devroye/
https://en.wikipedia.org/wiki/Convolution_of_probability_distributions


25 — Assume Λ > 0,m ∈ N>0 and let S(1)
min, S

(2)
min, . . . , S

(m)
min will be independent random

variables with the same exponential distribution

S
(i)
min ∼ Exp(Λ) .

Show that the variable

Gm =

m∑
i=1

S
(i)
min

has gamma distribution defined by density function:

gm(x) = Λ
(Λx)m−1

Γ(m)
e−Λx for x > 0 .

Hint 1: use the previous exercise and induction.
Hint 2: Γ(m) = (m− 1)! form ∈ N>0.

26 — Using the notations from the exercise 25 show that for m ≥ 2 and the estimator
defined as

Λ̄m =
m− 1∑m
i=1 S

(i)
min

we have E
(
Λ̄m
)

= Λ.

27 — Using the notations from the exercise 25 and 26 show that for m ≥ 3 the standard
error of the Λ̄m estimator depends only on them parameter and is expressed by the formula:

SE
(
Λ̄m
)

=
1√
m− 2

.

28 — Suggest an algorithm that can estimate the average value

Av =
λ1 + λ2 + . . .+ λn

n

for all unique elements of the stream M. Determine the bias of the proposed estimator.

Hint: note that for λ1 = λ2 = . . . λn = 1 we have E
(
Λ̄m
)

= n.



Blockchain

29 — Show that for the notations from the task 23 we have:

P (Smin = Si) =
λi
Λ
.

30 — Let the continuous random variable X take values in the range [0,∞). We say that
the distribution ofX is memory-less if the following condition holds:

(∀x1, x2 > 0 ) (P (X > x1 + x2|X > x2) = P (X > x1) ) .

Show that the exponential distribution
a) satisfies this definition,
b) is the only continuous distribution that satisfies this definition.

31 — We toss a coin until we obtain r tails. Assume that tails and heads appear with pro-
babilities p and q, respectively. Derive the distribution of the random variable X describing
the number of heads obtained. What is the name of this distribution? Derive the formula for
the expected value and variance.

32 — Recall the definitions and basic properties of the Poisson distribution. Show that the
Poisson distribution with parameter µ is the limiting distribution for the binomial distribution
Bin(n, pn) if lim

n→∞
npn = µ > 0. You may refer to this book.

33 — (Coupon collector’s problem) We have n urns into which we randomly (uniformly)
throw balls. Let X be the number of balls thrown until there is at least one ball in each urn.
Using the approximation of the number of balls in a given urn by the Poisson distribution,
show that for large values of n, we have

Pr[X > n lnn+ cn] ≈ 1− e−e−c
,

and then determine the smallest value of c such that for large values of n, the value ofX lies
in the interval [n lnn− cn, n lnn+ cn] in 99% of cases. Hint: you may refer to this book.

Self-stabilization

34 — Present the self-stabilizing algorithm for obtaining themaximum independent set de-
veloped in laboratory task 11. Prove its correctness and convergence. Derive the tightest
possible upper bound on the number of steps until reaching a legal configuration.

35 — (Conservative MM) Propose a modification to the Maximal Matching algorithm pre-
sented during the lecture, which will enable it to operate under the additional assumption
that each process is either type A or B, and two processes of the same type cannot form a
pair. Furthermore, you can assume that the type of a given process is predetermined and
can never be changed. Justify the correctness and convergence of the algorithm.

36 — (Liberal MM) Propose a modification to the Maximal Matching algorithm presented
during the lecture, which will enable it to operate under the additional assumption that the
number of edges incident with a given vertex can be greater than one (so-called b-matching).
Justify the correctness of the algorithm. You may rely, for example, on this paper.

https://utexas.instructure.com/files/44880730/download?download_frd=1
https://utexas.instructure.com/files/44880730/download?download_frd=1
http://ki.pwr.edu.pl/lemiesz/info/listy/b-matching.pdf


Good luck,
J.L.


