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Abstract. We consider the problem of efficient alarm protocol for ad-hoc radio
networks consisting of devices that try to gain access for transmission through
a shared radio communication channel. The problem arise in tasks that sensors
have to quickly inform the target user about an alert situation such as presence of
fire, dangerous radiation, seismic vibrations, and more. In this paper, we present
a protocol which uses O(logn) time slots and show that Ω(logn/ log log n) is
a lower bound for used time slots.
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1 Introduction

We consider wireless sensor networks (WSNs) consisting of small programmable de-
vices equipped with radio-enabled sensing capabilities and have been applied in infor-
mation gathering ranging from the environment temperature, radiation, the presence of
fire, seismic vibrations, and more. WSNs compared with wired networks provide many
advantages in the deployment, cost and size. Wireless technology enables users to set
up a network quickly, more it enables them to set up a network where it is inconvenient
or impossible to wire cables. Moreover, common WSNs can consist of up to several
hundreds of those small devices.

The most straightforward application of a WSN is to monitor remote or hostile en-
vironments. For example, a remote forest area can be monitored by deploying hundreds
of sensors that configure themselves to form a network and immediately report upon
detection of any event such as fire. Moreover, such networks can be easily extended
by simply adding more devices without any rework or complex reconfiguration. The
sensor nodes can ideally run for over a year on a single set of batteries. Given the cost
of these sensor nodes, it is not feasible to discard dead sensor nodes, and it is also not
possible to replace the batteries on these sensor nodes. Hence, there is a great need for
energy-efficient protocols that can greatly reduce power consumption and increase the
lifetime of wireless sensor nodes.

In this paper, we address the problem of designing protocol for an alert situation
observed by the sensor nodes in a WSN and sending this information toward the sink
that acts as a collector and an interface to the external world. The traffic is usually
forwarded over multi-hops, that is, each node acts as a relay/router for some nodes



farther away to the sink. However, in this paper we restrict our attention to a quarter
size sensors e.g. MICA2DOT. We even assume that such sensors cannot listen to the
channel or receive messages of any kind, also they have a very limited energy supply.
Due to this restriction sensors are incapable of forwarding messages. Therefore, we
have to assume that the network of such sensors is single-hop or we have two classes of
wireless sensors; the first class of sensors are devices equipped with full communication
features such as receiving, sending and forwarding messages, and the second class of
sensors are our very weak tiny devices, capable only of sensing and sending information
in a single-hop fashion. For the first class of sensors, which is the backbone of the
network, we can use well known convergecast algorithms [1–5]. In this paper we deal
with the second class of devices.

In Sect. 3 we shall consider the sequence p = (( 12 )
i)i=0,...,L of probabilities of

length L = dlog2(n)e + 1, where n denote the number of sensors and we assume
that at ith slot stations try to transmit with probability ( 12 )

i. Let SCCn,k denotes the
event of the successful transmission when k ∈ {1, . . . , n} stations are activated and
let Pr[SCCn] = min{Pr[SCCn,k] : k = 1, . . . , n}. The same sequence was investi-
gated in a series of papers of Nakano and Olariu. In 2000 in [6] authors claimed that
Pr[SCCn] ≥ 0.6 but they omit the proof (due to page limitations). In 2001 in the next
paper [7] authors sketch a proof of inequality Pr[SCCn] ≥ 1/(2

√
e) ≈ 0.303. How-

ever they do not observe that the inequality (1 − x)n−1 > e−nx, which is used in the
proof, does not hold for all x ∈ [0, 1] and n > 1. Next, in 2002 in [8] they claim
that Pr[SCCn] ≥ 0.5 and for the proof they refer to the previous paper [6]. Let us
remark that numerical calculation for small values of n (say n < 1000) confirms that
Pr[SCCn] ≥ 0.6.

In Sect.3 we shall prove that Pr[SCCn] > 0.575 and to the best of our knowledge
this will be the first published proof of this fact. In Sect. 4 we analyze the lower bound
on number of slots required by our protocols for successful transmission of alert mes-
sages with a controllable probability of success and we show that Ω(log n/ log log n)
is asymptotically a lower bound for the number of necessary time slots. We will use the
following simple lemma which we leave without proof:

Lemma 1. Suppose A is an event, f ≥ 1, Pr[A] ≥ λ > 0 and let A1, . . . , Am be
independent copies of A. Then(

m ≥ log f

log 1
1−λ

)
−→ Pr[A1 ∪ . . . ∪Am] ≥ 1− 1

f
.

Related work. The alarm problem is similar to the wake-up problem [9–11]. In the
wake-up problem it is assumed that any subset of sensors wake up spontaneously at
arbitrary times and awake the remaining sensors. However, in the alarm problem it is
not important to inform other sensors about a dangerous situation. Only the sink should
be informed as soon as possible. Therefore, we want to design such a protocol, which is
able to inform the sink with a minimal time complexity. Our considerations are directly
related to the previously mentioned papers [6–8].



Algorithm 1 Randomized Alarm Algorithm RAA(n,f ,T0,∆)
1: if NOT ALERT then
2: EXIT
3: end if
4: wait until (GetT ime() ≥ T0)
5: SendMessage()
6: L := dlog2(n)e+ 1
7: r := d1.1553 log fe
8: for j := 0 to r − 1 do
9: for i := 1 to L do

10: wait until (GetT ime() ≥ T0 + (i+ j ∗ L) ∗∆)
11: if (Random() < max(1/n, (1/2)i)) then
12: SendMessage()
13: end if
14: end for
15: end for

2 Model Description

We consider a wireless sensor network consisting of n processing units, called sen-
sors with limited power and one distinguished station called the sink with an unlimited
power. The sensors communicate directly with the sink through a shared radio channel
and a transmission succeeds if exactly one station sends at a time. We assume that sen-
sors can only send messages and that they cannot listen or recognize the state of the
channel. We consider only single-hop networks in which each station can directly com-
municate with the sink through a shared communication channel. We also assume that
stations are synchronized and that the time is divided into short time-slots S0, . . . , SL
of the same length ∆. There is also a fixed vector p0, . . . , pL of probabilities.

Let A ⊆ {1, . . . , n} be a set of sensors which detect an alert and let k = |A|.
Each sensor from the set A try to send an alert message in the ith slot Si independently
with probability pi. The transmission will be successful if in some slot Si precisely
one sensor from A will transmit. Nakano and Olariu (see [6]) call this variant of leader
election algorithm an oblivious one: all stations use the same probabilities which are
fixed beforehand and does not depend on the history.

Our goal is to find a reasonable small L and a vector p0, . . . , pL of probabilities
which will guarantee a successful transmission of an alert with a probability at least
1− 1

f where f > 1 is a given fixed parameter and 1 ≤ k ≤ n is arbitrary.

3 Upper Bound

By n ≥ 1 we denote the number of stations. We divide time into L+ 1 slots. At ith
time slot each station decides to transmit the alert message independently with the prob-
ability pi = (1/2)i for i = 0, . . . , L. Let SCCL,n,k denote the event of the successful



transmission when k ∈ {1, . . . , n} stations are activated. Then Pr[SCCL,n,1] = 1 and

Pr[SCCL,n,k] = 1−
L∏
i=0

(
1−

(
k

1

)
1

2i

(
1− 1

2i

)k−1)
for k > 1. Finally we put

Pr[SCCL,n] = min{Pr[SCCL,n,k] : k = 1, . . . , n} .

Theorem 1. If L = dlog2 ne+ 1 then

Pr[SCCL,n] ≥ 1− 3

4
(1− 1

2
e−1/2)(1− 1

4
e−1/4) ≈ 0.579 .

Proof. Let λ = 1 − 3
4 (1 −

1
2e
−1/2)(1 − 1

4e
−1/4). Notice that λ ≈ 0.579. Let us fix

k ∈ {1, . . . , n}. Then there exists i ∈ {0, . . . , L− 1} such that

2i−1 < k ≤ 2i . (1)

We shall consider the following three cases separately: i = 0, i = 1 and 2 ≤ i ≤
L− 1.

Case 1: If i = 0 then (2i−1, 2i] = (1/2, 1] so k = 1 and Pr[SCCL,n,1] = 1 > λ for all
n ≥ 1.

Case 2: If i = 1 then (2i−1, 2i] = (1, 2], therefore k = 2 and

Pr[SCCL,n,2] ≥ 1− (1− f1(2)) · (1− f2(2)) = 1− 5

16
=

11

16

for n ≥ 2. Notice that 11/16 = 0.6875 > λ.

Case 3: Suppose that 2 ≤ i ≤ L− 1. Let us consider functions

fj(k) = k · 1
2j
·
(
1− 1

2j

)k−1
(k ≥ 1, 1 ≤ j ≤ L) .

If j > 0 then the function fj is unimodal (with the maximum at the point k = 1/ log(1/(1−
(1/2)j))) hence the minimum of the function fj on interval (2i−1, 2i] is achieved at one
of the edges of this interval.

Let lj(i) = fj(2
i−1) and rj(i) = fj(2

i) for j = i− 1, i, i+ 1. From the inequality
(1− 1/x)x ≤ 1/e we get

ri−1(i)

li−1(i)
= 2

(
1− 2−(i−1)

)2i−1

≤ 2

e
.

On the other hand we have

li(i)

ri(i)
=

1

2

(
1− 2−i

)2i·(−1/2)
,

li+1(i)

ri+1(i)
=

1

4

(
1− 2−i

)2i·(−1/4)
.



Notice that those functions are decreasing, so the maximum is achieved for i = 2. Thus,
li(i)/ri(i) ≤ 8/9 < 1, li+1(i)/ri+1(i) ≤ 32/49 < 1 for i ≥ 2. Therefore, we deduce
that minimum of the functions fi−1(x), fi(x), fi+1(x) on the interval are achieved at
points 2i, 2i−1, 2i−1 respectively, and are equal to ri−1(i), li(i), li+1(i) i.e. fi−1(2i),
fi(2

i−1), fi+1(2
i−1).

Next, we notice that the functions lx(x), lx+1(x) are decreasing and rx−1(x) is
increasing for x ≥ 2. This can be checked by inspecting the sign of the derivative (see
Appendix A). Moreover

lim
x→∞

lx(x) = lim
x→∞

1

2

(
1− 2−x

)2x−1−1
=

1

2
e−1/2 .

Hence lx(x) > (1/2)e−1/2 and therefore for each u ∈ (2i−1, 2i] we have fi(u) >
(1/2)e−1/2. Similarly, we have

lim
x→∞

lx+1(x) =
1

4
e−

1
4 , rx−1(x) ≥

1

4
for x ≥ 2

and for each u ∈ (2i−1, 2i] we have fi−1(u) ≥ 1
4 and fi+1(u) >

1
4e
− 1

4 . Notice that
Pr[SCCL,n,k] is greater than or equal to

1− (1− fi−1(k))(1− fi(k))(1− fi+1(k))

for 2 ≤ i ≤ L− 1 and 0 ≤ fj(k) ≤ 1. Therefore theorem is proved. ut

By Thm. 1 we are able successfully send an alert message with a probability at least
1 − 3

4

(
1− 1

2e
−1/2) (1− 1

4e
−1/4) ≈ 0.579 in dlog2 ne + 2 time-slots. However, we

are interested in sending an alert message with probability at least 1− 1
f for some fixed

f > 1. We shall achieve this goal by repeating the sequence
(
( 12 )

i
)
i=1,...,dlog2 ne+1

a
sufficient number of times to obtain the needed probability of success. Namely, Lemma
1 implies that a sufficient total number of time-slots required to send an alert message
with probability at least 1− 1

f is equal to

⌈
log f

log 1
1−λ

⌉
· (dlog2 ne+ 1) + 1 ≈ 1.1553 · log f · (dlog2 ne+ 1) + 1 (2)

where λ = 1− 3
4

(
1− 1

2e
−1/2) (1− 1

4e
−1/4).

Based on the above discussion we build a Randomized Alarm Algorithm (see Algo-
rithm 1). The small correction of probabilities in line 11 of its pseudo-code is motivated
by Lemma 2 from the next section. The following theorem summarize its basic prop-
erty:

Theorem 2. For each n ≥ 1 and f > 1 the Randomized Alarm Algorithm RAA sends
successfully an alert message in

d1.1553 · log fe · (dlog2 ne+ 1) + 1

time slots with probability at least 1− 1
f for arbitrary number of activated stations.



It is worth to mention that in RAA(n, f, T0, ∆) algorithm each station which want
to transmit an alert message sent a signal in no more than 2d1.1553 · log fe time-slots
on average.

4 Lower bound

Let p = (pi)i=1,...,L be a vector of probabilities. By SCC(p, k) we denote the event of
successful transmission of an alert message when k of n stations tries to transmit using
the vector of probabilities p.

Lemma 2. Let p = (pi)i=1,...,L be a vector of probabilities, let qi = max{pi, 1
n} and

let q = (qi)i=1,...,L. Then

(∀k ∈ {1, . . . , n})(Pr[SCC(p, k)] ≤ Pr[SCC(q, k)]) .

Proof. Let us fix a number k ≥ 1 and let fk(p) = kp(1 − p)k−1. The function fk is
unimodal, reaches a maximum at point p = 1

k . Hence if k ≤ n ≤ 1
p then fk(p) ≤

fk(
1
n ). ut

We shall prove the following theorem:

Theorem 3. If p = (pi)i=1,...,L is an arbitrary vector of probabilities then there exists
k ∈ {1, . . . , n} such that

Pr[SCC(p, k)] ≤ 1−
(
1− 3e

n
1

2(L+1)

)L
.

Proof. Let us fix n and let us consider a sequence p of length L such that

min
1≤k≤n

Pr[SCC(p, k)] = sup
x∈[0,1]L

min
1≤k≤n

Pr[SCC(x, k)] .

Using Lemma 2 we may assume that pi ≥ 1
n for all i ∈ {1, . . . , L}. We may also

assume that p1 ≥ p2 ≥ . . . ≥ pL. We additionally put p0 = 1 and pL+1 = 1/n.

Lemma 3. There exists i ∈ {0, . . . , L} such that

pi
pi+1

≥ n
1

L+1 .

Proof. Suppose that p0/p1 < n1/(L+1), p1/p2 < n1/(L+1), . . . , pL/pL+1 < n1/(L+1).
Then

n =
p0
p1
· p1
p2
· · · pL

pL+1
< n

L+1
L+1 = n ,

what is impossible. ut



Let us fix a such that pa
pa+1

≥ n
1

L+1 . We shall consider three cases separately:
0 < a < L, a = 0 and a = L. In the next considerations we shall use several
times the inequality x/ex < 1.5/x2 which holds for all x > 0 and the inequality
(1− x)1/x < e−1 which holds for all x ∈ (0, 1).

Case 1: 0 < a < L. Let p = pa and q = pa+1. We choose k = 1/
√
pq. Notice that

p/q ≥ n1/(L+1), kp =
√
p/q and k2 ≥ n1/(L+1) (because: k2 = (pq)−1 = p−2(p/q) ≥

p−2n1/(L+1) ≥ n1/(L+1)). Let k∗ = dke. Then for arbitrary x ∈ (0, 1) we have
k∗x(1− x)k∗−1 ≤ 2kx(1− x)k−1.
Subcase 1. If i ≤ a and p ≤ 1− 1

e then we have

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kp(1− p)k−1 ≤ 2kp(1− p)ke =√
p

q
(1− p)

1
p

√
p
q 2e <

√
p
q

exp(
√

p
q )

2e <
3e

n1/(L+1)

Subcase 2. If i ≤ a and p > 1− 1
e then we have

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kp(1− p)k−1 <

2kp

(
1

e

)k−1
≤ 2

ke

ek
<

3e

k2
≤ 3e

n1/(L+1)

Subcase 3. If a < i ≤ L and q ≤ 1− 1
e then

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kq(1− q)k−1 ≤ 2kq(1− q)ke =

2

√
q

p
(1− q)

1
q

√
q
p e < 2

√
q
p

exp(
√

q
p )
e < 2

√
q

p
e ≤ 2e

n1/(2(L+1))

Subcase 4. If a < i ≤ L and q > 1− 1
e then

k∗pi(1− pi)k
∗−1 ≤ 2kpi(1− pi)k−1 ≤ 2kq(1− q)k−1 < 2kq

(
1

e

)k−1
≤

2ke

exp(k)
<

3e

k2
≤ 3e

n1/(L+1)

Therefore we shown that in all subcases of Case 1 we have

Pr[SCCk∗ ] = 1−
L∏
i=1

(1− k∗pi(1− pi)k
∗−1) < 1− (1− 3e

n1/(2(L+1))
)L

Case 2: a = 0. In this case we take k = 1 and since p1 ≤ 1/n1/(L+1) we get

Pr[SCC1] = 1−
L∏
i=1

(1− 1 · pi(1− pi)1−1) ≤

1− (1− 1

n1/(L+1)
)L < 1− (1− 2e

n1/(2(L+1))
)L .



Case 3: a = L. In this case we take k = n. Then npL ≥ n1/(L+1). If pL ≤ 1 − 1
e we

have

npL(1− pL)n−1 ≤ npL(1− pL)ne ≤ npL(1− pL)
1

pL
npLe <

npL
exp(npL)

e <
2e

n1/(L+1)

and if pL > 1− 1
e then

npL(1− pL)n−1 < npL

(
1

e

)n−1
≤ n

exp(n)
e <

2e

n1/(L+1)
,

therefore

Pr[SCCn] = 1−
L∏
i=1

(1− npi(1− pi)n−1) ≤

1−
(
1− 2e

n1/(L+1)

)L
< 1−

(
1− 3e

n1/(2(L+1))

)L
.

Hence we have finished the analysis of cases and we see in each case we are able to find
k ∈ {1, . . . , n} such that

Pr[SCCk] < 1−
(
1− 3e

n1/(2(L+1))

)L
.

ut

Let W denote the main branch of the Lambert function. Let us consider an arbi-
trary vector p = (pi)i=1,...,L of probabilities of length L. Let SCCL,n,k denotes the
event of successful transmission when k sensors are activated and let Pr[SCCL,n] =
min{Pr[SCCL,n,k] : k = 1, . . . , n}.

Theorem 4. If L ≤ logn
2 log(3e) − 1, f > 1 and Pr[SCCL,n] > 1− 1

f then

L ≥ log n

2W
(

3e
2

f
f−1 log n

) − 1 .

Proof. If L ≤ logn
2 log(3e) − 1 then 3e/n1/(2(L+1) ≤ 1 so we may apply the classical

Bernoulli inequality ((∀x ≤ 1)((1 − x)n ≥ 1 − nx)) to Theorem 3 and obtain the
following inequality

Pr[SCCL,n] <
3eL

n
1

2(L+1)

.

Hence from Pr[SCCL,n] > 1 − 1
f we deduce that 3eLn

−1
2(L+1) > 1 − 1

f , so also

3e(L + 1)n
−1

2(L+1) > 1 − 1
f . This inequality may be solved by the use of the Lambert

functionW , giving us the required inequality. ut



Let us recall that log x − log log x < W(x) < log x − 1
2 log log x for x ≥ e (see

e.g. [12]). Using this bounds we get

log n

2W
(

3e
2

f
f−1 log n

) > log n

2 log
(

3e
2

f
f−1 log n

) =
1

2

log n

log log n+ log
(

3e
2

f
f−1

) .
If f > 1 is fixed and n tends to infinity then

log n

2W
(

3
2e

f
f−1 log n

) ∼ log n

2 log log n
.

Let us finally remark that if f = n then the inequality

1−
(
1− 3e

n1/(2(L+1))

)L+1

> 1− 1

f

can be solved precisely giving us a bound L > 0.236594 log n− 1.

5 Conclusions

In this paper we show that there exists an oblivious alarm protocol for sensor network
which useO(log n) time slots and that each oblivious alarm protocol for sensor network
requires Ω( logn

log logn ) time slot. The algorithmic gap remains to be clarified.
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A Monotonicity of Functions from Section 3

In this appendix we prove monotonicity of functions considered in Sect. 3.

Lemma 4. Let fi(k) = k 1
2i (1−

1
2i )

k−1. Then, the functions fi(2i−1), fi+1(2
i−1) are

decreasing and fi−1(2i) is increasing for i ≥ 2.

Proof. Let gα(x) = (1− 1
αx )

x−1. Then fi(2i−1) = 1
2g2(2

i−1), fi+1(2
i−1) = 1

4g4(2
i−1)

and fi−1(2i) = 2g 1
2
(2i). Notice that

d

dx
gα(x) =

(
1− 1

αx

)x−1
·
(
1

x
+

α− 1

1− αx
+ log

(
1− 1

αx

))
.

We consider x ≥ 4 and α ≥ 1
2 . Then 1 − 1/(αx) > 0, so

(
1− 1

αx

)x−1
> 0. We are

interested in the sign of derivative of the function gα, so we only need to check the sign
of the remaining part of the derivative. Let z = 1

αx . Then 0 < z < 1
2 and

1

x
+

α− 1

1− αx
+ log

(
1− 1

αx

)
= αz + (α− 1)

z

z − 1
− log

(
1

1− z

)
.

We expand the right side of this equation and obtain

αz − (α− 1)

∞∑
i=1

zi −
∞∑
i=1

zi

i
= αz −

∞∑
i=1

(α− 1 +
1

i
)zi = −

∞∑
i=2

(α− 1 +
1

i
)zi .

The last formula implies that if α = 1/2 then this series is greater than zero and for
α ≥ 1 this series is less than zero. ut


