Faculty of Fundamental Problems of TechnologyCOURSE CARD					
Name in polish :	Algebra numeryczna				
Name in english :	Numerical algebra				
Field of study :	Computer Science				
Specialty (if applicable)	: Cor				
Undergraduate degree and form of :	masters, stationary				
Type of course :	optional				
Course code :	E2_W08				
Group rate :	Yes				
	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30			
The total number of hours of student workload (CNPS)	90	90			
Assesment	pass				
For a group of courses final course mark	X				
Number of ECTS credits	3	3			
including the number of points corresponding to the classes of practical (P)		3			
including the number of points corresponding occupations requiring direct contact (BK)	3	3			
PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS Pass the course Scientific Computing. Learning Octave or Matlab.					
COURSE OBJECTIVES					
C2 Achievement of practical competence in applications and implementation of basic algorithms of numerical linear algebra					

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

W1 Student knows QR and SVD decompositions, orthogonal transformations and their applications.
W2 Student knows parallel algorithm for systems of linear equations with banded matrices and ijk variants of Gauss elimination and Cholesky decomposition.

W3 Student knows methods for solving linear least squares problem and their properties. Student knows Savitzky-Golay method.

W4 Student knows bisection, QR method and power method for algebraic eigenvalue problem, matrix sign function and matrix equations of Sylvester and Lyapunov.

The student skills:

U1 Student is able to apply orthogonal transformations.
U2 Student is able to apply BLAS and parallel algorithms for solving systems of linear equations and comparing their costs.

U3 Student is able to choose suitable method for solving linear least squares problem and to investigate its conditioning.

U4 Student is able to implement algorithms for computing eigenvalues and eigenvectors of matrices, and for solving matrix equation of Sylvester by means of matrix sign function.

The student's social competence:

K1 Student understands role of numerical algorithms of algebra in computer science and technique.
COURSE CONTENT

Type of classes - lectures		
Wy1	BLAS, BLACS and libraries of algorithms of numerical linear algebra	2 h
Wy2	ijk forms of realization of Gauss elimination and Cholesky decomposition	2 h
Wy3	Orthogonal transformations, QR and SVD decompositions of matrix	2 h
Wy4	Applications of decompositions of matrix	2 h
Wy5	Parallel algorithms for solving systems of linear equations	2 h
Wy6	Linear least squares problem with matrix of full column rank	2 h
Wy7	Linear least squares problem with deficient rank matrix	2 h
Wy8	Savitzky-Golay algorithm for filtering noise data	2 h
Wy9	Bisection for computing eigenvalues of symmetric tridiagonal matrix	2 h
Wy10	QR method for computing eigenvalues	2 h
Wy11	Algorithms for computing dominant eigenvalues of large matrices	2 h
Wy12	Applications of theorem of Perron-Frobenius and algorithms for computing eigenvalues and eigenvectors in PageRank method	2 h
Wy13	Matrix equations of Sylvester and Lyapunov, and matrix sign function and its applications	2 h
Wy14	Algorithms for computing SVD and applications of SVD to classification of handwritten digits.	2 h
Wy15	Final test	2 h

BASIC AND ADDITIONAL READING

1. A. Kiełbasiński, H. Schwetlick, Numeryczna algebra liniowa, WNT 1993.
2. D. Kincaid, W. Cheney, Analiza numeryczna, WNT 2005.
3. P. Krzyżanowski, Obliczenia inżynierskie i naukowe. Szybkie, skuteczne, efektowne, PWN 2011.
4. J. Stoer, R. Burlisch, Wstęp do analizy numerycznej, t. 1 i t.2, PWN 1987.
5. L. Elden, Matrix Methods in Data Mining and Pattern Recognition, SIAM 2007.
6. C.B. Moler, Numerical Computing with MATLAB, SIAM 2004.
7. T.L Freeman, C. Phillips, Parallel Numerical Algorithms, Prentice Hall 1992.

SUPERVISOR OF COURSE

dr hab. Krystyna Ziętak

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE

Numerical algebra
WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course training effect	Reference to the effect of the learning outcomes defined for the field of study and specialization (if applicable)	Objectives of the course**	The con- tents of the course	Number teachingtools**
W1	K2_W02 K2_W04	C1	Wy1-Wy15	145
W2	K2_W02 K2_W04	C1	Wy1-Wy15	145
W3	K2_W02 K2_W04	C1	Wy1-Wy15	145
W4	K2_W02 K2_W04	C1	Wy1-Wy15	145
U1	K2_U09 K2_U10 K2_U11	C2	Ćw1-Ćw15	2345
U2	K2_U09 K2_U10 K2_U11	C2	Ćw1-Ćw15	2345
U3	K2_U09 K2_U10 K2_U11	C2	Ćw1-Ćw15	2345
U4	K2_U09 K2_U10 K2_U11	C2	Ćw1-Ćw15	2345
K1	K2_K01 K2_K13 K2_K14	C1 C2	Wy1-Wy15 Ćw1-Ćw15	12345

