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Abstract. We generalize a classical Steinhaus theorem replac-
ing addition by any two variable function which is differentiable.
We deal with category and measure case. Measure case was done
before in papers [3], [9]. We give a proof which can be easily gen-
eralized to category case.

We also obtain a variety of examples of nonmeasurable sets
which have interesting algebraic properties.

1. Definitions and notations

We use the standard set-theoretic notation. The set of all natural
numbers we denote by ω. The interior of a set A we denote by int(A).
The family of all Borel subsets of the real line we denote by Bor.
The σ-ideals of null and meagre subsets of R we denote by L and K
respectively. For any binary operation ◦ and sets A,B ⊆ R we denote
by A◦B the algebraic operation i.e. {a◦ b : a ∈ A∧ b ∈ B}. Moreover,
A ◦ b = A ◦ {b} for a real b.

Let I = L or I = K. We say that a set A is completely I nonmeasur-
able set if

(∀B ∈ Bor \ I)(A ∩B 6= ∅ ∧ Ac ∩B 6= ∅).

2. Generalization of Steinhaus theorem

Let us recall the famous Steinhaus theorem: for any two sets A, B
of positive Lebesgue measure the interior of the algebraic sum A+B is
nonempty.

In [3] and [9] there are generalization of Steinhaus theorem to first
class function with non-vanishing first derivatives. Futher generaliza-
tion in the case of measure was given by [7, 8]. Moreover the Steinhaus
theorem but in the category case was given in [10]: if A,B ⊂ V are
two Baire measurable second category subsets of the topological vector
space then both A + B and A−B contain some open set.
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From the other hand, the ideal L∩K does’t have Steinhaus property
what was given in [11].

We will proof a generalization of Steinhaus theorem to first class
function with non-vanishing first derivatives. The measure case was
proved in [3] and [9]. We give a proof which is similar in both cases:
measure and category.

Theorem 2.1. Let I = L or I = K. Assume that f : R×R→ R is C1

function such that{
(x, y) :

∂f

∂x
(x, y) = 0 ∨ ∂f

∂y
(x, y) = 0

}
∈ I.

Let A,B be positive subsets of real line, i.e. A, B ∈ Bor(R) \ I. Then
the set

f(A,B) = {f(a, b) : a ∈ A ∧ b ∈ B}
contains an interval.

Before we start the proof of Theorem 2.1, we state two claims - one
for measure and the second for category.

Claim 2.1 (measure case). Let A,B ∈ Bor \ L. Let a0 be a point of
density 1 in A and b0 be a point of denity 1 in B and h0 ∈ R Let
g : R× R→ R be C1 function such that

g(a0, h0) = b0 and
∂g

∂x
(a0, h0) 6= 0.

Then there exists an interval I such that h0 ∈ I and

(∀h ∈ I)(g(A, h) ∩B /∈ L),

where g(A, h) = {g(a, h) : a ∈ A}.
Proof. For convenience we will write gh(a) instead of g(a, h). By con-
tinuity of partial derivatives of g arroud (a0, h0) there exists positive
reals α, β, δ and an interval I which contains a0 such that

(∀x, x′ ∈ I)(∀h)(|h−h0| < δ −→ α|x−x′| ≤ |gh(x)−gh(x
′)| ≤ β|x−x′|).

Let us fix h such that |h − h0| < δ. There exist intervals Ih ⊆ I, Jh

such that if Ã = A ∩ Jh and B̃ = B ∩ Jh, then:

(1) a0 ∈ Ih, b0 ∈ Jh,
(2) gh(Ih) ⊆ Jh,
(3) λ(gh(Ih) ∩ Jh) ≥ 1

2
λ(Jh),

(4) λ(B̃)− λ(Jh) < 1
2
αλ(Ã) (by density argument).

Let us observe that

λ(gh(Ã) ∩ B̃) =λ(gh(Ã)) + λ(B̃)− λ(gh(Ã) ∪ B̃)

≥αλ(Ã) + λ(B̃)− λ(gh(Ih) ∪ Jh)
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=αλ(Ã) + λ(B̃)− λ(Jh)

≥αλ(Ã)− 1

2
αλ(Ã) =

1

2
αλ(Ã) > 0.

¤
Claim 2.2 (category case). Let A,B ∈ Bor\K. Let a0 ∈ A, b0 ∈ B and
h0 ∈ R be such that A is comeager in some open interval containing
a0 and B is comeager in some open interval containing b0. Let g :
R× R→ R be C1 function such that

g(a0, h0) = b0 and
∂g

∂x
(a0, h0) 6= 0.

Then there exists an interval I such that h0 ∈ I and

(∀h ∈ I)(g(A, h) ∩B /∈ K).

Proof. Let Ia0 , Ib0 be open intervals containing a0 and b0 respectively
such that A, B is comeagre in Ia0 , Ib0 respectively. Then there exists
nonempty open interval I such that gh(Ia0) ∩ Ib0 6= ∅ for any h ∈ I.
Thus gh(A) ∩B /∈ K for any h ∈ I. ¤
Proof of Theorem 2.1. We consider the measure case only. The cate-
gory case is similar. From our assumption we see that there exists a
point (a, b) such that the partial derivatives are non-zero in some its
neighborhood and h0 = f(a, b). Moreover, we can choose (a, b) such
that a, b are density points of A and B respectively by Fubini theorem.

By implicite function theorem there exists an open interval I contain-
ing h0 and familly C1 functions {gh : h ∈ I} such that f(x, gh(x)) = h
where x belongs to some interval cointaining a. The assumptions of
Claim 2.1 is fulfilled. Than there exists an interval I such that

(∀h ∈ I)(gh(A) ∩B 6= ∅),
which gives the requaired assertion. ¤

3. Nonmeasurable sets

In this section, we say that a set A ⊆ R is completely nonmea-
surable iff A is completely L-nonmeasurable and A is completely K-
nonmeasurable. We are interested in examples of completely nonmea-
surable sets with some algebraic properties. This topic was investigated
in papers [4, 5, 6] Let us recall the following result from [1].

Theorem 3.1 (Cichoń, Szczepaniak). Let Φ : R2 → R be a linear
isomorphism of R2 and R treated as linear spaces over Q. Let K ⊆ R2

be bounded and int(K) 6= ∅. Then Φ[K] is completely nonmeasurable.

We get immediate corollary (see [1]).

Corollary 3.1 (Cichoń, Szczepaniak). Let Φ : R2 → R be a linear
isomorphism over Q. Let K ⊆ R2 be such that int(K) 6= ∅ and
int(Kc) 6= ∅. Then Φ[K] is completely nonmeasurable.
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We use the above corollary to obtain a few examples of completely
nonmeasurable sets.

Theorem 3.2. There exists completely nonmeasurable set A ⊆ R such
that A + A = A and A− A = R.

Proof. Consider K = R× [0,∞) ⊆ R2. Here

K + K = K, int(K) 6= ∅, int(Kc) 6= ∅.
Let Φ : R2 → R be a linear isomorphism over Q. Put A = Φ[K].
By Corollary 3.1 A is completely nonmeasurable and since Φ preserves
addition A + A = A. Moreover K −K = R2 so Φ preserves addition
we get A− A = R. ¤

Theorem 3.3. There exists a partition {An}n∈ω of the real line into
countably many completely nonmeasurable sets such that An +An = An

for every n ∈ ω.

Proof. Let (αn)n∈ω be any strictly increasing sequence of reals such
that

(1) α0 = 0,
(2) limn→∞ αn = 2π,
(3) (∀n ∈ ω)(αn+1 − αn < π).

Consider the following family of subsets of R2

K0 = {(0, 0)} ∪ {(r cos α, r sin α) : r > 0 ∧ α0 ≤ α < α1},
Kn = {(r cos α, r sin α) : r > 0 ∧ αn ≤ α < αn+1}, for n ≥ 1.

Here for every n ∈ ω

Kn + Kn = Kn, int(Kn) 6= ∅.
What is more {Kn}n∈ω is a partition of R2. Let Φ : R2 → R be a
linear isomorphism over Q. For each n put An = Φ[Kn]. By Corollary
3.1 An is completely nonmeasurable and since Φ preserves addition
An + An = An. Moreover Φ is a bijection, so {An}n∈ω is a partition of
R. ¤

Theorem 3.4. Let N be a positive natural number. There exists a
partition {An}n∈N of the real line into completely nonmeasurable sets
such that An + An = An for every n ∈ N .

Proof. Fix a strictly increasing sequence of reals (α0, α1, . . . , αN) satis-
fying

(1) α0 = 0,
(2) αN = 2π,
(3) (∀n ∈ N)(αn+1 − αn < π).

The rest of the proof is the same as in Theorem 3.3. ¤
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Theorem 3.5. There exist countable partition (An)n∈ω of R \ {0} into
countable completely many nonmeasurable sets such that

∀m, n ∈ ω n 6= m → Am + An = R \ {0}.
Proof. Let (αn)n∈ω be any strictly increasing sequence of reals such
that

(1) α0 = 0,
(2) limn→∞ αn = π.

Consider the following family of subsets of R2

Kn = {(r cos α, r sin α) : r ∈ R\{0}∧α ∈ [αn, αn+1)∪[αn+π, αn+1+π)},
for any n ∈ ω.

Here for every m,n ∈ ω, n 6= m

Km + Kn = R2 \ {(0, 0)} ∧ int(Kn) 6= ∅.
What is more {Kn}n∈ω is a partition of R2\{(0, 0)}. Let Φ : R2 → R be
a linear isomorphism over Q. For each n put An = Φ[Kn]. By Corollary
3.1 An is completely nonmeasurable and since Φ preserves addition
Am + An = R \ {0} for any m,n ∈ ω, n 6= m. Moreover Φ is a
bijection, so {An}n∈ω is a partition of R \ {0}. ¤
Theorem 3.6. Let N be a positive natural number. There exists a
partition {An}n∈N of R \ {0} into completely nonmeasurable sets such
that An + Am = R \ {0} for every n,m ∈ N, n 6= m.

Proof. Fix a strictly increasing sequence of reals (α0, α1, . . . , αN) satis-
fying

(1) α0 = 0,
(2) αN = π.

The rest of the proof is the same as in Theorem 3.5. ¤
Theorem 3.7. There exists completely nonmeasurable set A ⊆ R such
that each of the sets

A, A + A, A + A + A, A + A + A + A, . . .

is completely nonmeasurable and
⋃

n∈ω A + A + · · ·+ A︸ ︷︷ ︸
n

= R.

Proof. Consider K = R× (−∞, 1] ⊆ R2. Here for n ≥ 1

K + K + · · ·+ K︸ ︷︷ ︸
n

= R× (−∞, n].

Let Φ : R2 → R be a linear isomorphism over Q. Put A = Φ[K].
By Corollary 3.1 A is completely nonmeasurable and since Φ preserves
addition A + A + · · ·+ A︸ ︷︷ ︸

n

is also completely nonmeasurable. The fact

that
⋃

n∈ω K + K + · · ·+ K︸ ︷︷ ︸
n

= R2 implies
⋃

n∈ω A + A + · · ·+ A︸ ︷︷ ︸
n

= R.

¤
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Theorem 3.8. Let N be a positive natural number. There exists com-
pletely nonmeasurable set A ⊆ R such that each of the sets

A, A + A, A + A + A, A + A + A + A, . . . , A + A + · · ·+ A︸ ︷︷ ︸
N

is completely nonmeasurable and A + A + · · ·+ A︸ ︷︷ ︸
N+1

= R.

Proof. Consider a set K =
⋃

k∈Z[(N +1)k, (N +1)k+1)×R. As before
we put A = Φ[K]. ¤

Theorem 3.9. There exists completely nonmeasurable set A ⊆ R such
that each of the sets

A ( A + A ( A + A + A ( A + A + A + A ( . . .

is completely nonmeasurable and
⋃

n∈ω A + A + · · ·+ A︸ ︷︷ ︸
n

is completely

nonmeasurable.

Proof. It is enough to consider the set K = [0, 1)× [0,∞). ¤

Theorem 3.10. Let N be a positive natural number. There exists
completely nonmeasurable set A ⊆ R such that each of the sets

A ( A + A ( . . . ( A + A + · · ·+ A︸ ︷︷ ︸
N

= A + A + · · ·+ A︸ ︷︷ ︸
N+1

is completely nonmeasurable.

Proof. Consider a set K =
⋃

k∈Z[(N + 1)k, (N + 1)k + 1)× [0,∞). As
before we put A = Φ[K]. ¤

Theorem 3.11. There exists completely nonmeasurable set A ⊆ R
such that each of the sets

A ) A + A ) A + A + A ) A + A + A + A ) . . .

is completely nonmeasurable.

Proof. Consider a set K = [1,∞)×R. As before we put A = Φ[K]. ¤

We can obtain similar results for multiplication as we have obtained
for addition. Let us consider a function ϕ(x) = ex. Having completely
nonmeasurable set A ⊆ R we get a set ϕ[A] which is completely non-
measurable in R+. Now, it is enough to put B = ϕ[A] ∪ −ϕ[A]. All
properties of a set A with respect to addition remains true for a set B
with respect to multiplication.

So, we get a series of corolarries. Let us quote two examples.

Corollary 3.2 (of Theorem 3.2). There exists completely nonmeasur-
able set A ⊆ R such that A · A = A.
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Corollary 3.3 (of Theorem 3.9 ). There exists completely nonmeasur-
able set A ⊆ R such that each of the sets

A ( A · A ( A · A · A ( A · A · A · A ( . . .

is completely nonmeasurable and
⋃

n∈ω A · A · . . . · A︸ ︷︷ ︸
n

is completely non-

measurable.

4. Questions

Let us start with the following question.

Question 4.1. Is it possible to replace addition in Theorem 3.1 by any
differentiable function with non-vanishing derivatives?

We hope that Theorem 2.1 can help in proving the above proposition
since the proof of Theorem 3.1 strongly uses the classical Steinhaus
theorem.

From the other hand, we are interested in the following problem.

Question 4.2. Is it possible to obtain the analogues of examples given
in Theorems (Corollaries) from previous section replacing addition (mul-
tiplication) by any differentiable function with non-vanishing deriva-
tives?
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E-mail address, Robert RaÃlowski: robert.ralowski@pwr.wroc.pl
E-mail address, PrzemysÃlaw Szczepaniak: przeszcz@gmail.com
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