Faculty of Fundamental Problems of Technology

COURSE CARD

Name in polish: Programowanie DeklaratywneName in english: Declarative Programming

Field of study : Computer Science

Specialty (if applicable)

Undergraduate degree and form of : masters, stationary

Type of course : optional Course code : $E2_W11$ Group rate : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30			
The total number of hours of student work-	90	90			
load (CNPS)					
Assesment	pass				
For a group of courses final course mark	X				
Number of ECTS credits	3	3			
including the number of points correspond-		3			
ing to the classes of practical (P)					
including the number of points correspond-	3	3			
ing occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

The prerequisites are not defined for this module.

COURSE OBJECTIVES

- C1 Getting to know the theoretical foundations of logic programming
- C2 Learning to use the methods of automatic theorem proving

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Student knows the issue of unification termów
- W2 Student knows the issues related to the interpretation of first-order logic formulas
- W3 Student knows the automated theorem proving methods based on the principle of resolution

The student skills:

- U1 Student is able to apply the resolution to automatic theorem proving
- U2 Student is able to apply the control strategies used to increase the efficiency of inference
- **U3** Student is able to use Prolog as a practical programming system based on the resolution

The student's social competence:

K1 Student is able to indicate the applications of automated theorem proving in various fields

COURSE CONTENT				
Type of classes - lectures				
Wy1	Terms and cyclic terms	2h		
Wy2	Matching and unification	2h		
Wy3	Semiunification	2h		
Wy4	Interpretations of formulas in first order logic	2h		
Wy5	Normal forms and Skolem standard forms	2h		
Wy6	Herbrand procedure	2h		
Wy7	The resolution principle	2h		
Wy8	Semantic resolution	2h		
Wy9	Lock resolution	2h		
Wy10	Linear resolution	2h		
Wy11	Control strategies	2h		
Wy12	The equality relation	2h		
Wy13	SLD(NF)-resolution	2h		
Wy14	The least Herbrand model	2h		
Wy15	Conclusions	2h		
Type of classes - exercises				
Ćw1	Terms	2h		
Ćw2	Unification	4h		
Ćw3	Interpretation	4h		
Ćw4	Skolem normal form and Herbrand procedure	4h		
Ćw5	Resolution	4h		
Ćw6	Linear rezolution	4h		
Ćw7	Control strategies	4h		
Ćw8	SLD(NF)-resolution and its semantics	4h		
Applied learning tools				

Applied learning tools

- 1. Traditional lecture
- 2. Multimedia lecture
- 3. Solving tasks and problems
- 4. Consultation
- 5. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-	
		tion	
F1	W1-W3, K1-K1	Test	
F2	U1-U3, K1-K1	Realization of exercises	
P=60%*F1+40%*F2			

BASIC AND ADDITIONAL READING

- 1. C.L. Chang, R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, Inc., 1973.
- 2. J.W. Lloyd. Foundations of logic programming. Springer-Verlag New York, 1987.
- 3. M. Wójcik. Zasada rezolucji. Metoda automatycznego wnioskowania. PWN, 1991.

SUPERVISOR OF COURSE

dr Przemysław Kobylański

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE

Declarative Programming WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course train-	Reference to the effect of the learning out-	Objectives of	The con-	Number of
ing effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W02	C1	Wy1-Wy15	1 2 4 5
W2	K2_W02	C1	Wy1-Wy15	1 2 4 5
W3	K2_W02	C1	Wy1-Wy15	1 2 4 5
U1	K2_U12	C2	Ćw1-Ćw8	3 4 5
U2	K2_U12	C2	Ćw1-Ćw8	3 4 5
U3	K2_U12	C2	Ćw1-Ćw8	3 4 5
K1	K2_K14	C1 C2	Wy1-Wy15	1 2 3 4 5
			Ćw1-Ćw8	