Zał. nr 5 do ZW 16/2020

Faculty of Information and Communication Technology/Department of Fundamentals of Computer Science						
	COURSE	CARD				
Name of the course in polish	: Algorytmiczna teoria liczb					
Name of the course in english	: Algorithmic Number Theory					
Field of study	: Algoritmic Computer Science					
Specialty (if applicable)	:	:				
Level and form of studies	: II degree	: II degree, stationary				
Type of course	: compuls	: compulsory				
Course code	: W04INA	: W04INA-SM4010G				
Group of courses	: Yes					
	Lectures	Exercides	Laboratory	Project	Seminar	
Number of classes held in schools (ZZU)	15		15			
The total number of hours of student wor-	25		35			
kload (CNPS)						
Assesment	pass					
For a group of courses final course mark	X					
Number of ECTS credits	1		1			
including the number of points correspon-			1			
ding to the classes of practical (P)						
including the number of points correspon-	1		1			
ding occupations requiring direct contact						
(BK)						
PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS						
COURSE OBJECTIVES						

C1 Presentation of basic algorithms and number theoretic dependencies used in public key cryptography.

C2 Practice of the knowledge gained during the lecture.

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows modular arithmetic.
- W2 Knows the rules used to determine the structure of an abelian group, knows the notion of the order of group element.
- W3 Understands the presented algorithm for taking square roots in finite fields.

The student skills:

U1 Using SageMath the student is able to generate test vectors for his/her own implementations.

U2 Is able to optimize the discussed algorithms for some special input data.

U3 Is able to locate errors in an implementations of the discussed number theoretic algorithms.

The student's social competence:

K1 Understands a role of algebra in cryptography.

K2 Can carry out tasks pragmatically and creatively.

COURSE CONTENT

Type of classes - lectures				
Wy1	Congruences.	1h		
Wy2	Groups, rings, fields, prime fields.	2h		
Wy3	Inversion of an element: by the Fermat's Little Theorem and by the Extended Euclidean	2h		
	Algorithm.			
Wy4	Quadratic residues and quadratic nonresidues. Lagrange and Jacobi symbols.	2h		
Wy5	Taking square roots in a prime field: the Tonelli-Shanks Algorithm and the algorithm by	2h		
	Siguna Mueller.			
Wy6	Structure of finite abelian groups. The multiplicative group of a prime field.	3h		
Wy7	The order of group's element and the algorithm for finding it.	3h		
	Sum of hours	15h		
Type of classes - laboratory				
Lab1	SageMath package.	3h		
Lab2	Finding inversion of a nonzero element of a field.	4h		
Lab3	Taking sqare roots in a prime field.	4h		
Lab4	The order of group element.	4h		
	Sum of hours	15h		
Applied learning tools				

- 1. Traditional lecture
- 2. Solving programming tasks
- 3. Consultation
- 4. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS						
Value	Number of training effect	Way to evaluate the effect of educa-				
		tion				
F1	W1-W3, K1-K2	Final test.				
F2	U1-U3, K1-K2	Evaluation of the solutions of the li-				
		sts of tasks.				
P=0.4%*F1+0.6%*F2						
BASIC AND ADDITIONAL READING						
 Neal Koblitz: A Course in Number Theory and Cryptography, Springer, Graduate Texts in Mathematics Series Joachim von zur Gathen, Jurgen Gerhard: Modern Computer Algebra, 3rd Cambridge University Press New York, NY, USA 2013 						
SUPERVISOR OF COURSE						

dr Przemysław Kubiak

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT Algorytmiczna teoria liczb WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

Subject lear-	Relating the subject effect to the learning	Objectives of	Program con-	Teaching tool
ning effect	outcomes defined for the field of study	the course**	tent**	number**
W1	K2_W01 K2_W02	C1	Wy1-Wy7	134
W2	K2_W01 K2_W02	C1	Wy1-Wy7	134
W3	K2_W03 K2_W04	C1	Wy1-Wy7	134
U1	K2_U01 K2_U03 K2_U05	C2	Lab1-Lab4	234
U2	K2_U02 K2_U05	C2	Lab1-Lab4	234
U3	K2_U01 K2_U03	C2	Lab1-Lab4	234
K1	K2_K03 K2_K10	C1 C2	Wy1-Wy7	1234
			Lab1-Lab4	
K2	K2_K03 K2_K10	C1 C2	Wy1-Wy7	1234
			Lab1-Lab4	