
Modeling in GNU MathProg language -
a short introduction

Paweł Zieliński

Department of Fundamentals of Computer Science,
Wrocław University of Science and Technology, Poland

General informations

• Webpages:
• My home page: http://cs.pwr.edu.pl/zielinski/

• The GNU Linear Programming Kit (GLPK): glpsol solver
plus the GNU MathProg modeling language The software
is free and can be downloaded:

• GUSEK (GLPK Under Scite Extended Kit): The GLPK +
IDE - Windows version: http://gusek.sourceforge.net/,

• GLPK (GNU Linear Programming Kit) for Windows (without
IDE): http://gnuwin32.sourceforge.net/packages/glpk.htm,

• GLPK (GNU Linear Programming Kit) sources (without
IDE): http://www.gnu.org/software/glpk/glpk.html

http://cs.pwr.edu.pl/zielinski/
http://gusek.sourceforge.net/
http://gnuwin32.sourceforge.net/packages/glpk.htm
http://www.gnu.org/software/glpk/glpk.html

Linear programming problem

n∑
j=1

cjxj → min(max) (a linear objective function)

n∑
j=1

aijxj = (≤,≥)bi , i = 1, . . . ,m (linear constraints)

xj ≥ 0, j = 1, . . . ,n (nonnegative variables)

• Parameters (input data):
• cj , j = 1, . . . ,n, objective function coefficients,
• bi , i = 1, . . . ,m, the right hand side vector coefficients,
• aij , i = 1, . . . ,m, j = 1, . . . ,n, matrix coefficients.

• xj , j = 1, . . . ,n, decision variables (output).

Linear programming problem (LP)

Example 1: Solve the following linear programming problem:

4x1 + 5x2 → max
x1 + 2x2 ≤ 40

4x1 + 3x2 ≤ 120
x1 ≥ 0, x2 ≥ 0

/* decision variables*/
var x1 >= 0;
var x2 >=0;
/* Objective function */
maximize label : 4*x1 +5*x2;
/* Constraints */

subject to label1: x1 + 2*x2 <= 40;
s.t. label2: 4*x1 + 3*x2 <= 120;

end;

Solve the above model (feasible.mod) in glpsol.
glpsol --model feasible.mod

glpsol --model feasible.mod --output feasible.txt

Linear programming problem
Example 2: Solve the following linear programming problem:

4x1 + 2x2 → max
x1 + x2 = 40
x1 + x2 ≥ 120
x1 ≥ 0, x2 ≥ 0

The set of feasible solutions is empty - there is no a feasible solution.

/* The declaration of decision variables x1, x2 */
var x1 >= 0;
var x2 >=0;

/* Objective function */
maximize ObjectiveFunctionLabel : 4*x1 +2*x2;
/* Constraints */
s.t. label1: x1 + x2 = 2;
s.t. label2: x1 + x2 >= 4;
end;

Solve the above model (infeasible.mod) in glpsol.
glpsol --model infeasible.mod

Linear programming problem

Exercise: Implement in GNU MathProg and try to solve the
following linear programming model (surprise!):

4x1 + 2x2 → max
3x1 + 6x2 ≥ 18
x1 − 2x2 ≤ 4

x1 ≥ 0, x2 ≥ 0

LP: a production planning problem
Example 3: (S.P. Bradley, A.C. Hax, T.L. Magnanti, Applied Mathematical
Programming, 1977)
The Candid Camera Company manufactures three lines of cameras: the
Cub, the Quickiematic and the VIP, whose contributions are $3, $9, and $25,
respectively. The distribution center requires that at least 250 Cubs, 375
Quickiematics, and 150 VIPs be produced each week. Each camera requires
a certain amount of time in order to: (1) manufacture the body parts; (2)
assemble the parts (lenses are purchased from outside sources and can be
ignored in the production scheduling decision); and (3) inspect, test, and
package the final product. The Cub takes 0.1 hours to manufacture, 0.2
hours to assemble, and 0.1 hours to inspect, test, and package. The
Quickiematic needs 0.2 hours to manufacture, 0.35 hours to assemble, and
0.2 hours for the final set of operations. The VIP requires 0.7, 0.1, and 0.3
hours, respectively. In addition, there are 250 hours per week of
manufacturing time available, 350 hours of assembly, and 150 hours total to
inspect, test, and package. Maximize contribution.

LP: a production planning problem

Definitions of decision variables: cub - total number of the Cub
produced, quick - total number of the Quickiematic
produced, vip - total number of the VIP produced.

The constraints:

0.1 cub + 0.2 quick + 0.7 vip ≤ 250,
0.2 cub + 0.35 quick + 0.1 vip ≤ 350,
0.1 cub + 0.2 quick + 0.3 vip ≤ 150,

cub ≥ 250,
quick ≥ 375,

vip ≥ 150.

The objective function: 3 cub + 9 quick + 25 vip → max.

The first approach (old one) - a mixture of data and
model

/* decision variables */

var cub >=0; # the number of the Cub produced
var quick >=0; # the number of the Quickiematic produced
var vip >=0; # the number of the VIP produced

/* objective function represents profit */

maximize profit: 3*cub + 9*quick + 25*vip;

/* constraints determine composition manufacturing cameras */

s.t. time_manufacture: 0.1*cub + 0.2*quick + 0.7*vip <= 250;
s.t. time_assemble: 0.2*cub + 0.35*quick + 0.1*vip <= 350;
s.t. time_inspect: 0.1*cub + 0.2*quick + 0.3*vip <= 150;
s.t. requirements_cub: cub >= 250;
s.t. requirements_quick: quick >= 375;
s.t. requirements_vip: vip >= 150;

end;

glpsol --model camera.mod --output camera.txt

Towards isolating the data from the model - arrays and
sets

/* Arrays and sets */
/* enumerated set Cameras represents the set of cameras manufactured by the company */

set Cameras;

/* array of three decision variables: production[’cub’], production[’quick’]
and production[’vip’] */

var production{Cameras} >=0;

/* objective function represents profit */
maximize profit: 3*production[’cub’] + 9*production[’quick’] + 25*production[’vip’];

/* constraints determine composition manufacturing cameras */

s.t. man: 0.1*production[’cub’] + 0.2*production[’quick’] +0.7*production[’vip’] <= 250;
s.t. ass: 0.2*production[’cub’] + 0.35*production[’quick’] +0.1*production[’vip’] <= 350;
s.t. insp: 0.1*production[’cub’] +0.2*production[’quick’] +0.3*production[’vip’] <= 150;

s.t. requirements_cub: production[’cub’] >= 250;
s.t. requirements_quick: production[’quick’] >= 375;
s.t. requirements_vip: production[’vip’] >= 150;

data;
/* Definition of the set Cameras */
set Cameras:= ’cub’ ’quick’ ’vip’;
end;

Model: camera_arrays.mod

Towards isolating the data from the model - arrays and
sets

• The declaration of the set of cameras manufactured by the
company:
set Cameras;
The initialization of the set Cameras
set Cameras:= ’cub’ ’quick’ ’vip’;

• The declaration of array of three nonnegative decision
variables indexed by Cameras (production[’cub’],
production[’quick’]and production[’vip’]):
var production{Cameras} >=0

• Other examples:
set Range:= 1..n;
set MyIntegerSet:= 4 8 9 10 ;
var array{1..m};

Isolating the data from the model - the data

• Declaring and initializing one dimensional array of profit:
param profit{Cameras} >=0;
param profit:= cub 3 quick 9 vip 25;

• Declaring and initializing one dimensional array of amount of times:
param capacity{Times} >=0;
param capacity:= manufacture 250 assemble 350
inspect 150;

• Similarly declaring and initializing one dimensional array of the
distribution center requirements.

• Declaring and initializing two dimensional array:
param consumption{Times,Cameras} >=0;
param consumption: cub quick vip:=

manufacture 0.1 0.2 0.7
assemble 0.2 0.35 0.1
inspect 0.1 0.2 0.3;

Isolating the data from the model - the model

set Cameras;
set Times;

/* Parameters */

param profit{Cameras} >=0; # one dimensional array of profit
param consumption{Times,Cameras} >=0; # two dimensional array
param capacity{Times} >=0; # one dimensional array of amount of times
param demand{Cameras} >=0; # one dimensional array of the distribution center requirements

/* Variables */

var production{j in Cameras} >=demand[j]; # decision variables plus trivial bounds

/* objective function represents profit */

maximize Profit: sum{j in Cameras} profit[j]*production[j];

/* constraints determine composition manufacturing cameras */

s.t. time{i in Times}: sum{j in Cameras} consumption[i,j]*production[j] <=capacity[i];

Model: camera_isolation.mod

Isolating the data from the model - the data

/* Data section */
data;

/* Definitions of the sets */
set Cameras:= cub quick vip;
set Times:= manufacture assemble inspect;

/* The initialization of the parameters */

param profit:= cub 3 quick 9 vip 25;

param capacity:= manufacture 250 assemble 350 inspect 150;

param demand:=cub 250 quick 375 vip 150;

param consumption: cub quick vip:=
manufacture 0.1 0.2 0.7
assemble 0.2 0.35 0.1
inspect 0.1 0.2 0.3;

end;

Model: camera_isolation.mod

Aggregate operators and quantifiers

• The aggregate operator sum in the objective function:
sum{j in Cameras} profit[j]*production[j];
Other aggregate operators: prod, max, min.

• The universal quantifier: time{i in Times} - closely related
constraints
s.t. time{i in Times}: sum{j in Cameras} ...;

• The trivial bounds:
var production{j in Cameras} >=demand[j];

• One may add the bounds to the constraints using universal quantifier:
requirements{j in Cameras}
s.t. requirements{j in Cameras}:
production[j]>=demand[j];

Solving and checking the model
• Solving the model:

glpsol --model camera_isolation.mod

• Solving the model and writing results to the file:
glpsol --model camera_isolation.mod --output camera_isolation.txt

• Checking the model without solving it:
glpsol --check --model camera_isolation.mod

• Checking the model without solving it and writing the generated model
to the file:
glpsol --check --model camera_isolation.mod --wcpxlp camera_isolation.lp

* Problem: camera_isolation *\
Maximize
Profit: + 3 production(cub) + 9 production(quick) + 25 production(vip)

Subject To
time(manufacture): + 0.1 production(cub)
+ 0.2 production(quick) + 0.7 production(vip) <= 250
time(assemble): + 0.2 production(cub)
+ 0.35 production(quick) + 0.1 production(vip) <= 350
time(inspect): + 0.1 production(cub)
+ 0.2 production(quick) + 0.3 production(vip) <= 150

Bounds
production(cub) >= 250
production(quick) >= 375
production(vip) >= 150
End

Displaying results, the data section in a separated file
• Displaying results:

maximize Profit: sum{j in Cameras} profit[j]*production[j];
s.t. time{i in Times}: sum{j in Cameras} consumption[i,j]*production[j] <=capacity[i];

solve; /* solve command is needed !!!*/

display production;

display ’-----------more elegant way -------------’;
display ’profit =’, sum{j in Cameras} profit[j]*production[j];
display{j in Cameras} production[j];

• the data section in a separated file camera_isolation1.dat

data;
set Times:= manufacture assemble inspect;
param: Cameras: profit demand := cub 3 250

quick 9 375
vip 25 150;

param capacity:= manufacture 250
assemble 350
inspect 150;

param consumption: cub quick vip:=
manufacture 0.1 0.2 0.7
assemble 0.2 0.35 0.1
inspect 0.1 0.2 0.3;
end;

• Solving the model: glpsol --model camera_isolation1.mod --data camera_isolation1.dat

Integer programming problem (IP)

n∑
j=1

cjxj → min(max) (a linear objective function)

n∑
j=1

aijxj = (≤,≥)bi , i = 1, . . . ,m (linear constraints)

xj ≥ 0, j = 1, . . . ,n (nonnegative variables)
xj integer, (binary) j = 1, . . . ,n

The integrality constraints on variables make the general
integer programming problem NP-hard and thus very hard from
computational point of view.
If there exist real nonnegative variables and integer variables in
a model, then we call the problem the Mixed Integer
programming Problem (MIP)

MIP=LP+IP

Mixed Integer programming Problem (MIP)
Example 4: Solve the following mixed integer programming
problem:

−3x1 − 2x2 + 10 → max
x1 − 2x2 + x3 = 2.5;

2x1 + x2 + x4 ≥ 1.5
x1, x2, x3, x4 ≥ 0
x2, x3 integer

var x1 >= 0;
var x4 >=0;
/* The declaration of nonnegative integer decision variables*/
var x2 integer >= 0;
var x3 integer >=0;
/* Objective function */
maximize ObjectiveFunctionLabel : -3*x1 -2*x2+10;

/* Constraints */
s.t. label1: x1 - 2*x2 + x3 = 2.5;
s.t. label2: 2*x1 + x2 +x4 >= 1.5;
end;

Solve the above model (mip.mod) in glpsol.
glpsol --model mip.mod

glpsol --model mip.mod --output mip.txt

Integer programming Problem (IP)

Example 5: Let E = {1,2, . . . ,n} be a given set of items. A
nonnegative real cost ci is associated with every item i ∈ E and we
wish to choose a subset X ⊆ E that contains exactly p items, whose
total cost

∑
i∈X ci is minimal.

The model has the following form:

n∑
i=1

cixi → min

n∑
i=1

xi = p

xi ∈ {0,1}, i = 1, . . . ,n

xi is a binary decision variable that takes value 1 if and only if i-th
item belongs to X .

Integer programming Problem (IP)
/* input data */
param n, integer, >= 1; # the number of items
param p, integer, >= 1, <n; # the number of items for selecting
set E:={1..n}; # the set of items
param c{E} >=0; # the costs of items
/* The variables */
var x{E} binary;

/* The objective function */
minimize TotalCost: sum{i in E} c[i]*x[i];
/* The constraint */
s.t. exact_p: sum{i in E} x[i] = p;
solve;

/* Displaying results */
display ’solution X’;
display{i in E: x[i]=1 }: x[i];
display ’total costs=’,sum{i in E} c[i]*x[i];

/* Data section */
data;
param n:=10;
param p:=6;
param c:=[1] 3 [2] 2 [3] 6 [4] 3 [5] 9 [6] 5 [7] 8 [8] 1 [9] 2 [10] 6;

end;

Solve the above model (selecting.mod) in glpsol.
glpsol --model selecting.mod

Integer programming Problem (IP)
Example 6: The multidimensional zero-one knapsack problem can
be described as follows: given two sets of n items and m knapsack
constraints (or resources), for each item j a profit pj is assigned and
for each constraint i a consumption value rij is designated. The goal
is to determine a set of items that maximizes the total profit, not
exceeding the given constraint capacities ci . The problem is a
well-known NP-Hard combinatorial optimization problem. The
multidimensional zero-one knapsack problem can modeled:

n∑
j=1

pjxi → max

n∑
j=1

rijxj ≤ ci , i = 1, . . . ,m

xj ∈ {0,1}, j = 1, . . . ,n

xj = 1 if and only if the j-th item is chosen.

Integer programming Problem (IP)
/* Parameters */
param n>0 integer; /* the number of items */
param m>0 integer; /* the number of resources */

/* Sets */
set Items:=1..n;
set Resources:=1..m;

/* parametry */

param capacity{Resources}>=0; /* array represents the capacity of the resources*/
param consumption{Resources,Items}>=0; /* the consumption of resource by item */
param profit{Items}>=0; /* array the value of each item */

/* Decision variables */

/* variable */
var choose{Items} binary;

/* Objective function */

maximize Value: sum{j in Items} profit[j]*choose[j];

/* Constraints */
s.t. ResourceConstraints{i in Resources}: sum{j in Items} consumption[i,j]*choose[j] <= capacity[i];
solve;

display{j in Items: choose[j]=1} choose[j];

Solve the above model (knapsack.mod) in glpsol.
glpsol --model knapsack.mod

Dynamic Lot Sizing with Backorders (DLS)
Example 7: We are given T periods. For period t , t = 1, . . . ,T let dt

be the demand in period t , dt ≥ 0. We wish to meet prescribed
demand dt for each of T periods t = 1, . . . ,T by either producing an
amount xt up to ut (the production capacity limit on xt) in period t
and/or by drawing upon the inventory It−1 carried from the previous
period. Furthermore, we might not fully satisfy the demand of any
period from the production in that period or from current inventory, but
could fulfill the demand from production in future periods - we permit
backordering. The costs of carrying one unit of inventory from period
t to period t + 1 is given by cI

t ≥ 0 and the costs of backordering one
unit from period t + 1 to period t is given by cB

t ≥ 0. The unit
production cost in period t is ct . We assume that the total production
capacity is at least as large as the total demand. So, we wish to find a
production plan xt , t = 1, . . . ,T , that minimizes the total cost of
production, storage and backordering subject to the conditions of
satisfying each demand.

DLS - a model

The Dynamic lot sizing with backorders can be formulated as follows:∑T
t=1(ctxt + cI

t It + cB
t Bt) → min

Bt − It =
∑t

j=1(dj − xj), t = 1, . . . ,T ,

xt ≤ ut , t = 1, . . . ,T ,
xt ,Bt , It ≥ 0, t = 1, . . . ,T .

Decision variables:

• xt - production amount in period t ,

• It - inventory amount carried from period t to period t + 1,

• Bt - backordering amount carried from period t + 1 to period t .

DLS - implementation (lotsizing.mod)
/* input data */
param T, integer,>=1; # number of periods
set Periods:={1..T}; # set of Periods
param cI{Periods} >=0; # costs of carrying one unit of inventory
param cB{Periods} >=0; # costs of backordering one unit
param c{Periods} >=0; # unit production costs
param u{Periods}>=0; # the production capacity limits
param d{Periods}>=0; # demands

/* Checking the total production capacity is at least
as large as the total demand*/

check sum{t in Periods} d[t]<= sum{t in Periods} u[t];

var x{t in Periods}>=0,<=u[t]; # production plan
var I{Periods}>=0; #inventory amount
var B{Periods}>=0; # backordering amount

minimize TotalCost: sum{t in Periods} (c[t]*x[t]+cI[t]*I[t]+cB[t]*B[t]);

s.t. balance{t in Periods}: B[t]-I[t]=sum{j in Periods : j<=t}(d[j]-x[j]);
solve;

/* Displaying results */
display ’production plan’;
display {t in Periods}: x[t];
display ’total cost=’, sum{t in Periods} (c[t]*x[t]+cI[t]*I[t]+cB[t]*B[t]);
display {t in Periods}: I[t];
display {t in Periods}: B[t];

Exercise: Provide a separated data file and solve the problem.

DLS, a positive initial inventory (lotsizing1.mod)
If initial inventory is positive I0, then one can append period 0 and
assign x0 = I0 and d0 = 0 with zero inventory cost.

param InitInvent>=0, default 0; # initial inventory

param T, integer,>=1; # number of periods
/* Adding period 0*/
set Periods:=if InitInvent =0 then {1..T} else {0} union {1..T};

param cI{t in Periods}>=0; # costs of carrying one unit of inventory
param cB{Periods}>=0; # costs of backordering one unit
param c{Periods}>=0; # unit production costs
param u{Periods}>=0; # the production capacity limits
param d{Periods}>=0; # demands
/* input data with period 0 */
param c0I{t in Periods}:=if t=0 then 0 else cI[t];
param c0B{t in Periods}:=if t=0 then 0 else cB[t];
param c0{t in Periods}:=if t=0 then 0 else c[t];
param u0{t in Periods}:=if t=0 then InitInvent else u[t];
param d0{t in Periods}:=if t=0 then 0 else d[t];

/* Assigning x_0 = I_0 */
var x{t in Periods} >=(if t=0 then InitInvent else 0), <=u0[t]; # production plan
var I{Periods}>=0; #inventory amount
var B{Periods}>=0; # backordering amount

minimize TotalCost: sum{t in Periods} (c0[t]*x[t]+c0I[t]*I[t]+c0B[t]*B[t]);
s.t. balance{t in Periods}: B[t]-I[t]=sum{j in Periods : j<=t}(d0[j]-x[j]);

The minimum cost flow problem
Example 8: Consider the problem of shipment of a commodity through a
network in order to satisfy demands at certain nodes V3 from available
supplies at other nodes V1. For each i ∈ V1 supply ai is given, for each i ∈ V3

demand bi is given. Each arc (i , j) has an associated cost cij that denotes the
cost per unit flow on that arc. A capacity uij is also associated with each arc
(i , j) that denotes the maximum amount that can flow on the arc. The
problem consists in finding a least cost flow.
Given a network G = (V ,A), V = {1, . . . , n}. The set of nodes V is
partitioned into V1 (sources - supply nodes), V2 (transshipment nodes), V3

(sinks - demand nodes). For every i ∈ V the following sets are defined

S(i) = {j | (i , j) ∈ A} and P(i) = {j | (j , i) ∈ A}

∑
(i,j)∈A

cijxij → min

∑
j∈S(i)

xij −
∑

j∈P(i)

xji =

ai i ∈ V1,
0 i ∈ V2,

−bi i ∈ V3,

0 ≤ xij ≤ uij , (i , j) ∈ A.

The minimum cost flow problem - an implementation
param n, integer, >= 2; #the number of nodes

set V:={1..n}; # the set of nodes
set V1 within V; # sources - supply nodes
set V3 within V; # sinks - demand nodes
set V2:=V diff V1 diff V3; # transshipment nodes
check: (V1 inter V3) within {}; # check if V1 and V3 are disjoint sets
set A within V cross V; # the set of arcs

set S{i in V}:={j in V: (i,j) in A}; # the set of direct successors of i
set P{i in V}:={j in V: (j,i) in A}; # the set of direct predecessors of i

param a{V1}>=0; # the supplies
param b{V3}>=0; # the demands
check sum{i in V1} a[i] = sum{i in V3} b[i]; # check if the problem is balanced

param c{A}>= 0; # the arc costs
param u{A}>= 0; # the capacities of arcs

var x{(i,j) in A}>= 0, <= u[i,j]; # the flow on arc (i,j)

minimize Cost: sum{(i,j) in A} c[i,j]*x[i,j];

s.t. supplies{i in V1}:sum{j in S[i]} x[i,j]-sum{j in P[i]}x[j,i]=a[i];
s.t. trans{i in V2}: sum{j in S[i]} x[i,j]-sum{j in P[i]}x[j,i]=0;
s.t. demands{i in V3}: sum{j in S[i]} x[i,j]-sum{j in P[i]}x[j,i]=-b[i];
solve;

glpsol --model mincostflow.mod

The minimum cost flow problem - an implementation

• Sets:
set V1 within V; the declaration of set V1 such that V1 ⊆ V
set V2:=V diff V1 diff V3; the declaration of set V2 of the form
V \ V1 \ V3

set A within V cross V; the declaration of set A such that
A ⊆ V × V (the subset of the Cartesian product)
set S{i in V}:={j in V: (i,j) in A};
S(i) = {j ∈ V | (i , j) ∈ A}
set P{i in V}:={j in V: (j,i) in A};
P(i) = {j ∈ V | (j , i) ∈ A}

• Checking a value of logical expression:
check: (V1 inter V3) within {}; test: V1 ∩ V3 = ∅; if test fails
then glpsol reports error
check sum{i in V1} a[i] = sum{i in V3} b[i]; test:∑

i∈V1
ai =

∑
i∈V3

bi

The shortest path problem - a model

Example 9: We are given G = (V ,A) with distinguished nodes s and t ,
s, t ∈ V . A nonnegative cost cij is given for each arc (i , j) ∈ A. We wish to
find a path from s to t whose total cost is minimal.
It is sufficient to set V1 = {s}, V3 = {t}, a1 = 1, bn = 1, uij = 1 for (i , j) ∈ A in
the model of the minimum cost flow problem (see Example 6) and so:∑

(i,j)∈A

cijxij → min

∑
j∈S(i)

xij −
∑

j∈P(i)

xji =

1 i = s,
0 i ̸= s, i ̸= t ,

−1 i = t ,

0 ≤ xij ≤ 1, (i , j) ∈ A.

The shortest path problem - an implementation

param n, integer, >= 2; # the number of nodes
set V:={1..n}; # the set of nodes
set A within V cross V; # the set of arcs

param c{(i,j) in A} >= 0; # cij the cost of arc (i,j)
param s in V, default 1; # source s
param t in V, != s, default n; # sink t

var x{(i,j) in A}, >= 0, <= 1;
/* x[i,j] =1 if arc belongs to the shortest path, 0 otherwise*/

minimize Cost: sum{(i,j) in A} c[i,j]*x[i,j];
s.t. node{i in V}:

sum{(j,i) in A} x[j,i] + (if i = s then 1)= sum{(i,j) in A} x[i,j] + (if i = t then 1);

glpsol --model path.mod

The shortest path problem - randomly generated costs

Example 10: We construct an acyclic and complete graph G = (V ,A), with
arc costs cij , (i , j) ∈ A, randomly generated from interval [a, b].

param n, integer, >= 2; # the number of nodes
set V :={1..n}; # the set of nodes

set A:={i in V, j in V:i<j};
/* the set of arcs in the complete acyclic graph*/

param a >=0;
param b, >a;
/* the interval of costs */

param c{(i,j) in A}, >= 0 :=Uniform(a,b); # cij the cost of arc (i,j)
/* the costs are randomly generated according to uniform distribution */

/* The rest is the same as in Example 7 */

glpsol --model path1.mod --data path1.dat

The flow shop problem

Example 11: Given m different items that are to be routed through n
machines. Each item must be processed first on machine 1, then on
machine 2, and finally on machine n. The sequence of items may
differ for each machine. Assume that the times pij required to perform
the work on item i by machine j are known. Our objective is to
minimize the total time necessary to process all the items called
makespan.

The flow shop problem...

The flow shop problem can modeled as follows:

ms → min

precedence constraints:

ti,j+1 ≥ tij + pij i = 1, . . . ,m, j = 1, . . . , n − 1

resource constraints:

tij + Byjik ≥ tjk + pkj j = 1, . . . , n, i = 1, . . . ,m − 1, k = i + 1, . . . ,m

tkj + B(1 − yjik) ≥ tij + pij j = 1, . . . , n, i = 1, . . . ,m − 1, k = i + 1, . . . ,m

tin + pin ≤ ms i = 1, . . . ,m

tij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

yjik ∈ {0, 1} j = 1, . . . , n, i = 1, . . . ,m − 1, k = i + 1, . . . ,m

Decision variables: tij is the earliest starting time of processing item i on
machine j , yjik = 1 if and only if on machine j item i is processed before
item k , ms is the makespan.
B is a big number, for instance: B = 1 +

∑m
i

∑n
j=1 pij .

The flow shop problem...

Exercise: Implement the flow shop problem in GNU MathProg and solve it
by glpk for the following data:

data;

param n:=3; # the number of machine

param m:=7; # the number of items

/* the times p_ij required to perform the work on item i by machine j */
param p: 1 2 3:=

1 3 3 2
2 9 3 8
3 9 8 5
4 4 8 4
5 6 10 3
6 6 3 1
7 7 10 3;

end;

Exercises
Exercise 1: Generalize the model presented in Example 1 to m constraints
and n variables. Isolate the model from data. Input data: n, m, A ∈ Rm×n (the
constraint matrix), b ∈ Rm (the right hand side vector), c ∈ Rn (the vector of
objective function coefficients) Solve the model with the data provided in
Example 1.
Exercise 2:(C.H. Papadimitriou, K. Steiglitz, 1998). Consider the problem
faced by a homemaker when buying food to meet certain nutritional
requirements. He has a set of different kinds of foods F (for example
F = {potato, carrot, bread, butter, apple}) and a set of nutrients N (for
example N = {vitamin A, vitamin B, vitamin C}. Each food from F has some
of each nutrient from N. Namely, he has some information about amount aij

of i-th nutrient, i ∈ N, in a unit of the j-th food, j ∈ F . The requirements of i-th
nutrient are given by ri , i ∈ N. The cost per unit of the j-th food is cj , j ∈ F .
The homemaker has to decide how many units of each food to buy in order to
satisfy the nutritional requirements.
Formulate a linear programming model for finding the least expensive diet
(which foods to buy) and implement in GNU MathProg and solve it for a
sample data by glpk. The model must isolated from data. Hint : See
Example 3.

Exercises

Exercise 3: (The constrained shortest path) Given a directed graph
G = (V ,A) with distinguished nodes s and t , s, t ∈ V and cost cij , length lij for
each arc (i , j) ∈ A and length L. We wish to find a path from s to t whose total
cost is minimal and total length is at most L.
Formulate an integer programming model for finding the problem and
implement in GNU MathProg and solve it for a sample data by glpk. The
model must isolated from data.
Hint : Modify Example 9.
Exercise 4: Scheduling a set of jobs on identical parallel machines to
minimize the makespan is one of the basic and most extensively studied
scheduling problems . We are given a set of jobs J = {1, . . . , n} which must
be processed on m identical machines M1, . . . ,Mm. Each machine can
process at most one job at a time. Each job i ∈ J has a processing time pi .
We wish to assign each job to exactly one machine so that the maximum job
completion time of the resulting schedule, called a makespan, is minimal.
Formulate an integer programming model for finding the problem and
implement in GNU MathProg and solve it for a sample data by glpk. The
model must isolated from data.

