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A simple production planning problem
Example: A store has requested a manufacturer to produce
pants and sports jackets. The manufacturer has 750 m2 of
cotton textile and 1,000m2 of polyester. Every pair of pants (1
unit) needs 1 m2 of cotton and 2 m2 of polyester. Every jacket
needs 1.5 m2 of cotton and 1 m2 of polyester. The price of the
pants is fixed at $50 and the jacket, $40. What is the number of
pants and jackets that the manufacturer must give to the stores
so that these items obtain a maximum sale?

50x1 + 40x2 → max

x1 + 1.5x2 ≤ 750 (cotton)
2x1 + x2 ≤ 1000 ( polyester)
x1, x2 ≥ 0.



Mix problem

Example: A drug company produces a drug from two
ingredients. Each ingredient contains the same three antibiotics
in different proportions. One gram of ingredient 1 contributes 3
units, and ingredient 2 contributes 1 unit of antibiotic 1; the drug
requires 6 units. At least 4 units of antibiotic 2 are required, and
the ingredients each contribute 1 unit per gram. At least 12
units of antibiotic 3 are required; a gram of ingredient 1
contributes 2 units, and a gram of ingredient 2 contributes 6
units. The cost for a gram of ingredient 1 is $80 and the cost for
a gram of ingredient 2 is $50. The company wants to determine
the number of grams of each ingredient that must go into the
drug in order to meet the antibiotic requirements at minimum
cost.



Mix problem

80x1 + 50x2 −→ min (cost, $)
3x1 + x2 ≥ 6 (antibiotic 1)

x1 + x2 ≥ 4 (antibiotic 2)
2x1 + 6x2 ≥ 12 (antibiotic 3)

x1, x2 ≥ 0



Building integer programming models

In mathematical programming models, integer variables are
used for different purposes:
• to model quantities that are integer in their nature, for

instance: the number of cars (aircrafts) produced, the
number of employees, etc.,

• to model logical conditions:
if a new product is developed, then a new plant must be
constructed,

• to model nonlinear dependences: for instance fixed costs
for building a warehouse,

• to express certain states of continuous variables in linear
programming models.

•
...



Binary variables - 0-1 variables

Suppose, we want to model activities:
• to build a plant,
• to undertake an advertising campaign,
• to develop a new product.

In each above case, we have to make YES-NO, GO-NO-GO
decision. We introduce a binary variable xj :

xj =

{
1 if the j-th decision is made,
0 otherwise

Suppose that at most one of the above three activities can be
performed:

x1 + x2 + x3 ≤ 3.



Integer variables

However, in some situation, variables may take different integer
values:

γ =


0 no warehouse is built
1 a warehouse of type A is built
2 a warehouse of type B is built



Indicator variables

To express certain states of continuous variables Indicator
variables are used.
Let δ be binary variable that helps to distinguish between two
states of continuous variable x - the state, when x = 0 and
state, when x > 0.
We introduce the following constraint that enforces: δ = 1,
when x > 0

x −Mδ ≤ 0, (1)

where M is an upper bound on values of x
Constraints (1) models the following implication:

x > 0⇒ δ = 1. (2)



Indicator variables
The opposite implication

x = 0⇒ δ = 0 (3)

or its equivalent form:

δ = 1⇒ x > 0 (4)

can not be expressed by a constraint. A slightly modified form
implication can be applied

δ = 1⇒ x > m, (5)

where m is the minimal threshold value such that: if x < m then
value of x can be regarded as a zero. Thus, (5) can be
expressed:

x −mδ ≥ 0. (6)



Indicator variables

A problem with fixed costs: Let x be the amount of product
produced. C1 is unit cost of producing the product, C2 are fixed
costs of production. The total cost (TC) is equal to

TC(x) =
{

0 if x = 0.
C1x + C2 if x > 0.

The TC is not linear function.
To linearize TC, we introduce indicator variable δ such that
x > 0⇒ δ = 1, in consequence the constraint x −Mδ ≤ 0, and
we get

TC(x) = C1x + C2δ.

In this case, we do need introduce the implication
x = 0⇒ δ = 0, since it holds in an optimal solution (the
minimization of objective function TC(x)).



Indicator variables
A mix problem: Let xA i xB be the variables that represent the
percentage of components A and B in a mixture, respectively.
Additionally, apart from other constraints in the problem that can be
expressed in linear form, there is the following constraint:
“If the mixture contains component A then component B must be
contained in the mixture’.
We introduce indicator variable δ such that: xA > 0⇒ δ = 1, i.e. the
constraint xA − δ ≤ 0. (7)

Here M = 1, since xA ≤ 1. Furthermore, we need to introduce the
constraint

δ = 1⇒ xB > 0,

which can be modeled xB − 0.01δ ≥ 0, (8)

where m is the threshold value (here m = 0.01). If the value of xB is
below m then it is assumed that component B is not present in the
mixture.



Constraint feasibility “≤”

Checking if a given constraint is satisfied. Consider the
constraint: ∑

j

ajxj ≤ b.

The implication
δ = 1⇒

∑
j

ajxj ≤ b

can be represented by the constraint:∑
j

ajxj + Mδ ≤ M + b,

where M is an upper bound on
∑

j ajxj − b.



Constraint feasibility “≤”
The opposite implication∑

j

ajxj ≤ b ⇒ δ = 1,

which can be expressed in the form

δ = 0⇒
∑

j

ajxj > b (9)

is modeled as follows: inequality∑
j

ajxj > b

we rewrite it (as in (5)) ∑
j

ajxj ≥ b + ε.



Constraint feasibility “≤”

Thus, implication (9) (δ = 0⇒
∑

j ajxj > b) is written

δ = 0⇒ −
∑

j

ajxj + b + ε ≤ 0. (10)

Now, the condition (10) is represented by the constraint∑
j

ajxj − (m − ε)δ ≥ b + ε,

where m is an lower bound on values of
∑

j ajxj − b. ε is a small
positive value. Exceeding it makes the constraint unsatisfied.



Constraint feasibility “≥”

Checking if a given constraint with ‘≥” is satisfied. Consider the
constraint: ∑

j

ajxj ≥ b

We associate a indicator variable δ with the above constraint (δ
indicates if the constraint is satisfied or not satisfied). Hence∑

j

ajxj + mδ ≥ m + b

∑
j

ajxj − (M + ε)δ ≤ b − ε,

where m i M are, respectively, lower and upper bounds on∑
j ajxj − b.



Constraint feasibility “=”
Checking if a given constraint with ‘=” is satisfied. Consider the
constraint: ∑

j

ajxj = b

We associate a indicator variable δ with the above constraint
(δ indicates if the constraint is satisfied or not satisfied).∑

j

ajxj + Mδ ≤ M + b,

∑
j

ajxj + mδ ≥ m + b,

∑
j

ajxj − (m − ε)δ
′
≥ b + ε,

∑
j

ajxj − (M + ε)δ
′′
≤ b − ε,

δ
′
+ δ

′′
− δ ≤ 1.



Constraint feasibility
Example: We are given the inequality

2x1 + 3x2 ≤ 1,

where x1, x2 are integer numbers not greater than 1. In order to
indicate that the constraint is satisfied, we need to introduce the
conditions:

δ = 1⇒ 2x1 + 3x2 ≤ 1,
2x1 + 3x2 ≤ 1⇒ δ = 1.

Setting M = 4, m = −1 i ε = 0.1, we get the following
constraints represented the conditions

2x1 + 3x2 + 4δ ≤ 5
2x1 + 3x2 + 1.1δ ≥ 1.1



Logical constraints

Let Xi be the proposition

Component i is in the mixture,

where i ∈ {A,B,C}, then

XA ⇒ (XB ∨ XC)

means the proposition

If component A is in the mixture, then B or C or both are in the
mixture

We write the above proposition as

(XA ⇒ XB) ∨ (XA ⇒ XC)



Logical constraints

Recalling the known facts:

∼∼ P ≡ P,
P ⇒ Q ≡ ∼ P ∨Q,

P ⇒ Q ∧ R ≡ (P ⇒ Q) ∧ (P ⇒ R),

P ⇒ Q ∨ R ≡ (P ⇒ Q) ∨ (P ⇒ R),

P ∧Q ⇒ R ≡ (P ⇒ R) ∨ (Q ⇒ R),

P ∨Q ⇒ R ≡ (P ⇒ R) ∧ (Q ⇒ R),

∼ (P ∨Q) ≡ ∼ P∧ ∼ Q,
∼ (P ∧Q) ≡ ∼ P∨ ∼ Q.



Logical constraints

Let Xi means the proposition “δi = 1”, whereδi is indicator
variable. Then, we have the following equivalent conditions:

X1 ∨ X2 ≡ δ1 + δ2 ≥ 1,
X1 ∧ X2 ≡ δ1 = 1, δ2 = 1,
∼ X1 ≡ δ1 = 0(or 1− δ1 = 1),

X1 ⇒ X2 ≡ δ1 − δ2 ≤ 0,
X1 ⇔ X2 ≡ δ1 − δ2 = 0.



Logical constraints

Example: If products A or B (both) are produced, then at least
one product from products C, D or E will have to be produced.
Let Xi means the proposition:

Product i is produced, i ∈ {A,B,C,D,E}

The following condition is included to a model:

(XA ∨ XB)⇒ (XC ∨ XD ∨ XE).

Let δi be the indicator variable such that:

δi = 1⇔ the i-th product is produced

and

δ = 1 if the proposition XA ∨ XB is true.



Logical constraints
Proposition XA ∨ XB is represented by the following inequality

δA + δB ≥ 1,

and proposition XC ∨ XD ∨ XE by the following inequality
δC + δD + δE ≥ 1,

We write the condition:
δA + δB ≥ 1⇒ δ = 1,

which is enforced by the constraint
δA + δB − 2δ ≤ 0.

And the condition
δ = 1⇒ δC + δD + δE ≥ 1,

which is enforced by the constraint
−δC − δD − δE + δ ≤ 0.



Logical constraints

Implication (XA ∨ XB)⇒ (XC ∨ XD ∨ XE) can be replaced

(XA ⇒ (XC ∨ XD ∨ XE) ∧ (XB ⇒ (XC ∨ XD ∨ XE)

and can be expressed by the following system of inequalities:

−δC − δD − δE + δ ≤ 0
δA − δ ≤ 0
δB − δ ≤ 0.

Both ways of modeling are correct.



The product of binary variables
If there is the product of two binary variables δ1δ2 in a model,
then we can linearize it in the following way:
• we replace δ1δ2 with binary variable δ3,
• we enforce the logical condition

δ3 = 1⇔ (δ1 = 1) ∧ (δ2 = 1)
by adding the following constraints:

−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1.

Constraint δ1δ2 = 0 represents the condition:
δ1 = 0 ∨ δ2 = 0.

The product of more than two binary variables can be
successively reduced to the product of two binary variables.



The product of binary variables
If there is the product of continuous variable x and binary
variable δ, xδ, then we can linearize it in the following way:
• we replace xδ with continuous variable y ,
• we enforce the logical conditions

δ = 0 ⇒ y = 0,
δ = 1 ⇒ y = x

by including the constraints:

y −Mδ ≤ 0,
−x + y ≤ 0,

x − y + Mδ ≤ M,

where M is upper bound on the values of x (and of y ).



Modeling bounded set of values

Suppose xi takes the values from the following set:
{a1, . . . ,am}.

In order to model this situation, we introduce binary variables δj ,
j = 1, . . . ,m and the constraints:

m∑
j=1

ajδj = x ,

m∑
j=1

δj = 1.



Modeling bounded set of values
Example:(Building warehouse) Suppose that we wish to make
decision about the size of a warehouse. Obviously, the sizes
depend on costs:

size cost
10 100
20 180
40 320
60 450
80 600

Using binary variables δi , we model the size and the cost of
building:

COST ≡ 100δ1 + 180δ2 + 320δ3 + 450δ4 + 600δ5

SIZE ≡ 10δ1 + 20δ2 + 40δ3 + 60δ4 + 80δ5.

We include the constraint:
δ1 + δ2 + δ3 + δ4 + δ5 = 1.



A piecewise linear objective function

• A piecewise linear function can be modeled by binary
variables.

• A function is given by ordered pairs (ai , f (ai)). We wish to
compute the value of f (x).

• We introduce binary variables δi , in order to indicate
interval ai ≤ x ≤ ai+1 that x belongs

• To compute the value of the function, we take linear
combination

∑k
i=1 λi f (ai).

• The above method can be applied if at most two adjacent
λi i λi+1 are positive. They correspond to interval bounds
ai , ai+1.



Minimizing a piecewise linear objective function

A model for minimizing a piecewise linear objective function:

min
k∑

i=1

λi f (ai)

∑k
i=1 λi = 1,

λ1 ≤ δ1,
λi ≤ δi−1 + δi , i = 2, . . . k − 1,
λk ≤ δk−1,∑k−1

i=1 δi = 1,
λi ≥ 0.



Alternative Constraints

Assume that at least one, but not necessary the all of the
conditions:

R1,R2, . . . ,RN .

must be satisfied. One can express this as follows:

R1 ∨ R2 ∨ · · · ∨ RN ,

where Ri is a condition.

“The i-th constraint is satisfied”.



Alternative Constraints

We introduce N indicator variables δi associated with the
fulfillment of the conditions Ri , i = 1, . . . ,N:

δi = 1⇒ Ri .

If Ri jest an inequality of the form
∑

j ajxj ≤ b, then we include
the condition: ∑

j

ajxj + Mδ ≤ M + b. (11)

If Ri jest an inequality of the form
∑

j ajxj ≥ b, then we include
the condition: ∑

j

ajxj + mδ ≥ m + b. (12)

For inequalities (11) and (12), we append the constraint:

δ1 + δ2 + · · ·+ δN ≥ 1.



Alternative Constraints

Assume that we want to express the condition:
“at least k conditions R1,R2, . . . ,RN must be satisfied”.
The above condition can be modeled by

δ1 + · · ·+ δN ≥ k .

The condition:
“at most k conditions R1,R2, . . . ,RN must be satisfied”.
can be modeled by

Ri ⇒ δi = 1,
δ1 + · · ·+ δN ≤ k .



Modeling nonconvex regions (sets)
The application of alternative constraints
Consider the following nonconvex region (ABCDEFGO).
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The above region can be treaded as union of convex regions
ABJO, ODH i KFGO.



Modeling nonconvex regions

Region ABJO is determined by the following constraints

x2 ≤ 3, (13)
x1 + x2 ≤ 4. (14)

Region ODH is determined by the following constraints

−x1 + x2 ≤ 0, (15)
3x1 − x2 ≤ 8. (16)

Region KFGO is determined by the following constraints

x2 ≤ 1, (17)
x1 ≤ 5. (18)



Modeling nonconvex regions
We introduce indicator variables: δ1, δ2, δ3

δ1 = 1 ⇒ (x2 ≤ 3) ∧ (x1 + x2 ≤ 4),
δ2 = 1 ⇒ (−x1 + x2 ≤ 0) ∧ (3x1 − x2 ≤ 8),
δ3 = 1 ⇒ (x2 ≤ 1) ∧ (x1 ≤ 5).

The above implications are modeled by the constraints:

x2 + δ1 ≤ 4,
x1 + x2 + 5δ1 ≤ 9,
−x1 + x2 + 4δ2 ≤ 4,
3x1 − x2 + 7δ2 ≤ 15,

x2 + 3δ3 ≤ 4,
x1 ≤ 5.

We need to include also the condition (constraint) that (13) and (14)
or (15) and (16) or (17) and (18) are satisfied

δ1 + δ2 + δ3 ≥ 1.



Restricting the number of variables
Suppose, we wish to restrict the number of variables (integer
and continuous) that take positive values in a feasible solution.
For instance, we wish to restrict the number of components in a
mixture or we wish to restrict an assortment of products
produced.
In order to restrict the number of variables x1, x2, . . . , xn to k , we
introduce indicator variables δi associated with xi

xi > 0⇒ δi = 1 i = 1, . . . ,n.

The above implication is modeled by

xi −Miδi ≤ 0 i = 1, . . . ,n,

Mi is an upper bound on values of xi . We also include the
constraint:

δ1 + δ2 + · · ·+ δn ≤ k .



Resource limits having discrete values
Suppose that a linear programming model has the constraint,
which limits a resource:

∑
j ajxj ≤ b0.

and the resource limit can be increased successively only by
certain discrete values b1,b2, . . . ,bn at certain costs

COST =

{
0 for i = 0
ci otherwise

where c1 < c2 < · · · < cn. This situation can be modeled by
introducing binary variables δi that represent the resource
increase ∑

j

ajxj ≤ b0δ0 + b1δ1 + · · ·+ bnδn.

We have to add to an objective function the expression:

c0δ0 + c1δ1 + · · ·+ cnδn.



max−max objective functions
Consider the following objective function:

max

max
i

∑
j

aijxj


where a set of feasible solution is determined by linear
constraints.
We model this objective function by alternative constraints

max z

subject to ∑
j

a1jxj − z = 0 ∨
∑

j

a2jxj − z = 0 ∨ · · ·



The set cover problem

The set cover problem is: given a set of elements
E = {e1,e2, . . . ,en} and a set of m subsets of E ,
S = {S1,S2, . . . ,Sm} with costs c1, c2, . . . , cm.
Find a least cost collection C of sets from S such that C, covers
all elements in E . That is,

⋃
Si∈C Si = E .

Example:
E = {1,2,3,4,5},

and
S = {{1,2}, {1,3,5}, {2,4,5}, {3}, {1}, {4,5}}.

Assume that ci = 1, i = 1, . . . ,m. A collection C (feasible
solution, cover) that covers E is

C = {{1,2}, {1,3,5}, {2,4,5}}.



The set cover problem - a model

Binary variables δi , i = 1, . . . ,6:

δi =

{
1 if the i-th subset S belongs to a cover
0 otherwise.

The following constraints ensure that each element i ∈ E must
be covered:

δ1 + δ2 + δ3 + δ4 + δ5 + δ6 → min
δ1 + δ2 δ5 ≥ 1 element 1
δ1 + δ3 ≥ 1 element 2

δ2 + δ4 ≥ 1
δ3 + δ6 ≥ 1

δ2 + δ3 + δ6 ≥ 1 element 6



The set packing problem

The set packing problem is: given a set of elements
E = {e1,e2, . . . ,en} and a set of m subsets of E ,
S = {S1,S2, . . . ,Sm} with weights w1,w2, . . . ,wm.
Find collection C of mutually disjoint sets from S whose weight
is maximal.
Example:

E = {1,2,3,4,5,6},

and
S = {{1,2,5}, {1,3}, {2,4}, {3,6}, {2,3,6}}.

Assume that wi = 1, i = 1, . . . ,m. A collection C (feasible
solution) is

C = {{1,2,5}, {3,6}}.



The set packing problem

Binary variables δi , i = 1, . . . ,5:

δi =

{
1 if the i-the subset Sbelongs to C
0 otherwise.

The following constraints ensure that each element i belongs to
at most one subset of E

δ1 + δ2 + δ3 + δ4 + δ5 → max
δ1 + δ2 ≤ 1 element 1
δ1 + δ3 + δ5 ≤ 1 element 2

δ2 + δ4 + δ5 ≤ 1
δ3 ≤ 1

δ1 ≤ 1
+ δ4 + δ5 ≤ 1 element 6



Generalized assignment problem

The generalized assignment problem consists in assigning |I|
“objects” to |J| “boxes”. We wish to assign each object to
exactly one box; if assigned to box j , object i consumes aij units
of a given “resource” in that box. The total amount of resource
available in the j th box is dj . This generic problem arises in a
variety of problem contexts.

Example Machine scheduling: the objects are jobs, the boxes
are machines; aij is the processing time of job i on machine j
and dj is the total amount of time available on machine j .



Generalized assignment problem - a model

min
∑
i∈I

∑
j∈J

cijxij

∑
j∈J

xij = 1 for i ∈ I

∑
i∈I

aijxij ≤ dj for j ∈ J

xij ∈ {0,1} i ∈ I, j ∈ J
.

xij = 1 if object i is assigned to box j ; xij = 0 otherwise.



Facility location problem∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

Fjyj ← min

∑
j∈J

xij = 1 for i ∈ I

∑
i∈I

dixij ≤ Kjyj for j ∈ J

0 ≤ xij ≤ 1 i ∈ I, j ∈ J

yj ∈ {0, 1} j ∈ J

I - the set of customers
J - the set of potential facility (warehouse) locations used to supply to the
customers
yj - the binary variable indicates whether or not we choose to locate a facility
at location j
xij - the fraction of the demand of customer i that we satisfy from facility j
di - the demand of customer i
cij - the cost (transportation cost) of satisfying all of the i th customer’s
demand from facility j
Fj - the fixed cost of opening (leasing) a facility of size Kj at location j


